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Abstract

The homogenization H(g) of the enveloping algebra of a finite di-
mensional Lie algebra g is an Artin-Schelter regular algebra. We char-
acterize d-dimensional linear subspaces in the corresponding quan-
tum space Py(g) as homogenizations of induced representations from
codimension d Lie subalgebras. Furthermore we prove that the point
variety has an embedded component iff there is a line, not contained
in this point variety.

1 Introduction and notations

To any finite dimensional Lie algebra
g= CX1 G---P (:Xn with [X,,X,] = Z Ozi‘]‘,ka
k=1

one classically associates an associative algebra U(g), the so-called “envelop-
ing algebra” of g. The enveloping algebra carries a natural filtration

Us(g) CUs(g) C -+ C Un(g) C -+
*Research associate of the NFWO (Belgium)
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such that grU(g) = S(g), the symmetric algebra on g. This is the famous
Poincaré-Birkhoff-Witt-theorem.

By homogenizing the defining relations of U(g) one can also associate a
regular algebra in the sense of Artin and Schelter [1] to g. This algebra, which
will be denoted by H(g) in the sequel, is the positively graded quadratic
algebra generated by Xo, ..., X,, where X, is taken to be central and the
remaining defining relations are

XiX; — X; X — Y cijnXeXo

=1

Observe that H(g)/(Xo — 1)H(g) = U(yg), the enveloping algebra of g and
that H(g)/XoH(g) = gr(U(g)) = S(g). From these facts one derives as
usual (see e.g. [8] or [9]) that H(g) is a Noetherian maximal order domain,
it is Auslander-regular of dimension n + 1 and satisfies the Cohen-Macaulay
property.

Following M. Artin [3] we define the quantum space P,(g) of g to be
Proj(H(g)) which is the quotient category of the category of all finitely gen-
erated graded left H(g)-modules modulo the subcategory of finite length
modules. Via the identification S(g) = H(g)/XoH(g), P(g*) = Proj S(g) will
be thought of as the hyperplane at infinity of P,(g) with equation X, = 0.

As in [2] one can define points and lines in P,(g). This note originated
from our attempts to understand the following example, taken from [7].

Example 1.1 Let s((2,C) = Ce @ Cf @ Ch with [e, f] = h, [h, €] = 2¢ and
[h, f] = —2f. Then the lines in Py(s1(2,C)) are precisely the lines lying on
the pencil of quadrics in P® = Proj(Cle, f, k, t])

Q(6) = V((h* + 4ef) + 61%)

In particular, all lines intersect the hyperplane V(t) at infinity in a point
of the conic (t,h? + 4ef) which is precisely the embedded component of the
point-variety of Py(sl(2,C)).

Moreover all three dimensional Lie algebras behave in a similar way. That is,
the point-variety has an embedded component lying in the plane at infinity
and all lines not lying on the point-variety intersect with the hyperplane at
infinity in a point of this component.




In this note we partially generalize Example 1.1 by showing that there
always is a subvariety of the hyperplane at infinity in P,(g), closely related
with a possible embedded component of the point variety, such that.all lines,
not lying in the hyperplane at infinity intersect this variety. In case [g,g] = g
this variety s the embedded component of the point variety.

We also show that the existence of such an embedded component is caused
by the fact that there may be lines in Py(g), not lying in the point variety of
Py(g).

The proofs of these results, given in Section 3, rely on the classification
of linear subspaces in P,(g), given in the next section.

2 Linear subspaces, Lie subalgebras and po-
larizations

We first state a few generalities. To any finitely generated filtered U(g)-
module

-CMyCcMycMyC---C | Mi=M
1=—00
we can associate a graded H(g)-module (and hence an object in Py(g)) :
M=a2_ MX:c M[X, X5

i=—00
We observe that M/ (Xo — 1)]\;[ = M and conversely, any Xp-torsion free
graded left H(g)-module arises in this way, see [4] or [6].
_ In the sequel there will be a few occasions where we use the notation
M for a graded H(g)-module, even if it is not a priori obtained from some

filtered U(g)-module M. Le. M could have X,-torsion.
In this note we concentrate on a specific class of graded left H(g)-modules :

Definition 2.1 A d-dimensional linear subspace of Py(g) is the object in
P,(g) associated to a cyclic graded left H(g)-module M = @2 M; with Hilbert
series H(M,t) = 132, dime (M;)# = 1/(1 — )3+,

Theorem 2.2 The d-dimensional linear subspaces of P,(g) are :

1. The d-dimensional subspaces in P*~! = Proj(S(g))




- 2. The homogenizations M of induced modules
M =U(g) ®u(y) Cs

where §) is @ Lie subalgebra of g of codimension d and Cy is the one-
dimensional representation of b determined by f € h* such that f([b, §]) =
0. Here the pair (h, f) is unigquely determined by M.

Proof Let M be a graded H(g)-module as in Definition 2.1. Then it is easy
to see that M is either annhilated by X, or X acts without torsion. In the
first case M will be a quotient of H(g)/XoH (g) = S(g). Le. M will represent
a linear subspace in Proj S(g).

In the second case M = M/(Xo—1)M is a filtered H(g)/(Xo—1)H(g) =
U(g)-module. Le. there is map ¢ : U(g) — M such that

amoi@) = (*7)

The result now follows from the following proposition w

Proposition 2.3 Assume that M is a left U(g)-module and there is a sur-
jective map ¢ : U(g) — M such that

dim $(Ui(g)) = (d ;”) for i € N. (1)

Then there is o unique pair (, f) such that
M = U(g) ®uy) Cr (2)

with notation as in Theorem 2.2.
Furthermore the filtration induced on M via ¢ makes (2) into a filtered

tsomorphism,.

Proof The uniqueness of the pair (§, f) is easy to see. Therefore we con-
centrate on its existence. First define

b = Ui(g) Nker ¢

Clearly dimp’ = n - d.




Using the fact that U(g) has a PBW-basis, it is easy to see that
Ur(g)h' NnUi(g) = [, 5T+ b
Furthermore if V is the image of Ui(g)h’ in Us(g)/U1(g) = S2(g) then we

compute that
. n+1 d41
e ()-(7)
Hence we obtain

dimUi(g)h’ = dimV + dimUi(g)h’ N Us(g)

= (PO S (4 ram@p1+y) @)
(37 (%)

Also, using (1) and the fact that U;(g)h’ C ker ¢ we find that
. d+2 +2
dim Uy (g)h’ + ( ; ) < (n 5 ) (4)
Combining (3) and (4) we find

dim([y, b7+ §') < n — d = dim}’

Hence
[0, 9T C b
and thus we find that b’ is a Lie subalgebra of U;(g).
Let b be the image of §’ in g under the canonical decomposition Us(g) =
C®g. Since 1 € b/, there will be a linear map f € §* such that

b= {u— f(u) | v € b}
Let u, v € h. Then
[u— f(u),v— f()] = [u,v] € Y

and therefore f([u,v]) = 0.
We have now a surjective map

U(g)/U(g)h' 2 U(g) ®upy Cr — M

Applying (1) yields that this map must be a filtered isomorphism. n
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To any d-dimensional linear subspace in P,(g) we can associate a unique
d-dimensional linear subspace in P* = P(g* @ CX{) as follows. Let M be a
graded quotient H(g) — M Then restriction to degree 1 defines a linear map
g® CX, — M, hence a linear subspace in P*. Conversely, a linear subspace
in P™ can at most correspond to one linear subspace in Proj H(g).

If we identity the open affine piece Xy = 1 with g* we would like to know
the minimal dimension d(f) of a linear subspace in Py(g) containing f € g*.

If f € g* then we denote by By the bilinear form (z,y) — f([z,y]) and
with gf = {z € g | f([z,g]) = 0} the radical which is a Lie subalgebra of
g and as By induces a non-degenerate alternating bilinear form on g/g’ we
have that n — dim(g”) is even.

In view of Theorem 2.2 we see that a d-dimensional linear subspace of
P,(g) containing f is the homogenization of an induced one-dimensional rep-
resentation of a codimension d Lie subalgebra § such that f([h,h]) =0. In
the terminology of [5, Ch I, §12] b is subordinate to f. One knows that the
maximal dimension of such a Lie subalgebra is ;(n + dim(g’)) meaning that

&() > 3 (n ~ dim(g"))

and if equality occurs, b is said to be a polarization of g at f. Note that
polarizations exist for every f if g is solvable or g = sl(n) and for arbitrary
g a (solvable) polarization exists whenever f is a regular form, cfr. [5, Ch I,

§11].
Corollary 2.4 The minimal dimension d such that every point in P(g* @

CX3) is contained in o d-dimensional linear subspace of P,(g) is equal to
3(n —r) where r is the indez of g.

If g is semi-simple, the index of g is equal to its rank. Moreover, in this case
all linear subspaces in P,(g), not lying in the hyperplane at infinity and of
minimal dimension, are obtained by parabolic induction.

3 Points, lines and embedded components

Recall from [2] that the bihomogeneous equations for the point-variety of
H(g) are given by

A2 o (S gl




2'2{” = 2l (5)

where 1 <z,5,k < n.

To simplify some of the notations in the sequel, let us make the following
conventions. If U = S u; X; € g then v = Sugzy, uld) = Eui:v,(-l), etc....
Similarly, if U, V € g and [U,V] = ¥ w; X; then [u,v] = > w;z;. As above,
U and V may be equipped with the superscripts (1) and (2).

Using this notation we may rewrite (5) more succinctly as

o2~ oDl = ol o) ©)
e = oPelp 0

These equations determine a variety X C P(g* & Cz3) x P(g* & Cazf).

Let 0 : Y = pri(X) — Y’ = pry(Y') be the induced automorphism, which
is given by shifting point modules one place to the right (we are working with
left modules, instead of with right modules as in [2]). From the description
(Theorem 2.2) of points as one-dimensional representations of U(g) or points
at infinity it follows that o is the identity on Yeq.

Theorem 3.1 If we set x; = :cgl), then the defining relations for' Y are

(@ilej, 2] + @j[ze, 7] + wi[zi, 25])w0 = 0
[iI)i,LI}j]SU% = 0 (8)
Proof We will cover Y by affine opens. First assume that z¢ = :cc(,l) = 1.
Then from o = id on Y;¢q we may assume that ;v(()2) = 1. Then from (7) we
obtain that wgl) = :cz(z). Substituting this in (6) yields that [z;,z;] = 0 for
i, € {1,...,n}. This set of equations clearly defines the same variety as (8)
when zg = 1.

Assume now that z, = 2{!) = 1 for some s € {1,...,n}. Again we may
assume that z(?) = 1. Put ¢; = () — 2. Clearly ¢, = 0, and from (7) it
follows that ¢y = 0.

(6) and (7) may now be rewritten as

Tiep — Tpe; = [Tj,Zk)To (9)
zoe; = 0 (10)

Jke{l,...,n}.




Applying (9) with j = s yields
ex = [2s, Tx]2o
Resubstituting yields the equations

(zs[z5, r) + zr[2s, 5] + Tj[2Ry 25] )20 = O
[z, 25]z5 = 0 (11)

where j, k € {1,...,n}. Using the fact that z; = 1, we find that the equations
(11) are equivalent with the equations (8). ]

Now we give an interpretation for the two sets of equations occuring in (8).

Lemma 3.2 1. A= V([z;,2];1 < 4,5 < n) C P(g*) is the linear space
of one-dimensional representations of g

2. B = V(z;|zj, zk] + zj[zr, 2] + ze[zi, 25);1 < 4,5,k < n) C P(g*) classi-
fies codimension one Lie subalgebras of g

Proof (1) is clear. A point of B is a surjective map ¢ : g — C satisfying
$(u)¢([v,w]) + ¢(v)§([w,u]) + ¢(w)¢([u,v]) = 0. Let h = ker(¢) and take
u,v € h and w ¢ b, it follows that ¢([u, v]) = 0 i.e. b is a codimension one Lie
subalgebra. Conversely the quotient map g — g/h & C for any codimension
one Lie subalgebra b of g gives a point of B. n

Corollary 3.3 Every line in Py(g), not lying in the hyperplane at infinity,
intersects B.

Proof Such a line is given by a module of the form

(U(g) Qun) CrJ

where b is a codimension one Lie subalgebra of g, and f € h* is a linear form
such that f([h,5]) =0.
The intersection with the hyperplane at infinity is represented by

(Ulg) ®usy) C1J© H(g)/XoH(g) = S(g)/5(8)b

The corresponding point in P(g*) is given by the quotient map g — g/h = C.
Hence it must be a point of B. n




Corollary 3.4 If [g,g] = g then the point variety of Py(g) consists of
1. The origin.

2. The hyperplane at infinity.
3. An embedded component at infinity given by B.

Proof Clear from the equations (8). ]

Theorem 3.5 The following are equivalent

1. The point variety of H(g) is reduced, i.e. Y = Yiea = V([2i, z]20;1 <
i,j < n)

2. All lines in Py(g) lie on the point variety

3. For every codimension one Lie subalgebra b of g holds [h, 5] = [g, g]

Proof From the results of the foregoing section it is clear that (2) and (3)
are equivalent. Let us prove that (1) implies (3) :

First, there can be no codimension one Lie subalgebra § such that [g, g] is
not contained in § for otherwise there is a point in A not lying on B meaning
that there would be an embedded point at infinity. Hence, assume there is
a decomposition g = h @ Ce where § is a codimension one Lie algebra and
(b, b] is properly contained in [g,g] C . Let x5 : g — C be the projection
on the second factor. Then, there exists a ¢ € g* s.t. &([h,]) = 0 whereas
#([g,9]) # 0. But then ¢ = xy + €.4 is a point of B over the dual ring Cle]
which is not a point of A over C[e¢] meaning again that the point variety has
an embedded point.

Finally, let us prove that (3) implies (1) : we have to show that A = B
and as A is smooth it suffices to prove that any point of B over C[e] lies in
A. So, take a surjection 9 : g — C[¢] with the property that

P(u)y([v, w]) + P(0)%([w, u]) + Y (w)¥([u,v]) = 0
Decompose 1 = 11 + €ep;. Then the kernel of v is a codimension one Lie

subalgebra hj. Put g = ) @ Ce where ¢/(e) = 1. Substitute u,v € hand w = ¢
in the above relation and as [g,g] = [h, 5] C b we obtain ¥([u,v]) = 0, i.e.

p([h,h]) = ¥([g, g]) = 0 so it belongs to B. n

With this result in mind, we pose the question whether d-dimensional linear
subspaces (for d > 1) of Py(g) arise in a similar way from embedded points
in varieties describing lower-dimensional subspaces.
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