Homogenized sl(2)

L. Le Bruyn*

Dept. Wiskunde & Informatica

Universiteit Antwerpen (UIA), Belgium

S. P. Smith**

Dept. Mathematics, University of Washington

Seattle, USA 98195

July 1991 – 91-37

Abstract

This note relates the lines on the pencil of quadrics which are the conjugacy classes in $sl(2, \mathbb{C})$ to the line-modules in Artin's projective geometry [1] of the homogenization of the enveloping algebra $U(sl(2,\mathbb{C}))$.

AMS-Classification 16S30

 ${\bf Keywords} \\ {\bf Enveloping \ Algebras, \ Quantum \ Spaces}$

^{*} Research Associate of the NFWO

^{**} Supported by NSF grant DMS-8901890

Homogenized sl(2)

lieven Le Bruyn*
Dept. Wiskunde
U.I.Antwerpen
B-2610 Wilrijk, Belgium

S.P. Smith[†]
Dept. Mathematics
University of Washington
Seattle, USA 98195

July 4, 1991

Abstract

This note relates the lines on the pencil of quadrics which are the conjugacy classes in $sl(2,\mathbb{C})$ to the line-modules in Artin's projective geometry [1] of the homogenization of the enveloping algebra $U(sl(2,\mathbb{C}))$.

1 Level quadrics for sl(2,G)

Throughout we will write $g = C e \oplus C f \oplus C h$ and define a vector space isomorphism $sl(2, C) \to g$ by

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \rightarrow e, \quad \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \rightarrow f, \quad \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \rightarrow h$$

We transfer the Lie bracket on $sl(2,\mathbb{C})$ to $\mathfrak g$ giving

$$[e, f] = h, \quad [h, e] = 2e, \quad [h, f] = -2f.$$

The cone of nilpotent elements in $sl(2,\mathbb{C})$ is the variety defined by the quadratic relation det=0 where det is the determinant function on $sl(2,\mathbb{C})$. The conjugacy classes of semi-simple elements in $sl(2,\mathbb{C})$ are the level surfaces $det=\lambda^2$ where $\lambda\in\mathbb{C}^*$; in particular this surface is the conjugacy class of the element $\begin{pmatrix} \lambda & 0 \\ 0 & -\lambda \end{pmatrix}$.

Transfering this to g via the above isomorphism it follows that the determinant function on g is given by $det = -h^{*2} - e^*f^*$ where e^*, f^*, h^* is the

^{*}research associate of the NFWO

[†]supported by NSF grant DMS-8901890

dual basis to e, f, h. Hence the nilpotent cone (resp. the conjugacy class of the element λh) is given by the quadric surface $-h^{*2} - e^*f^* = 0$ (resp. $= \lambda^2$) in \mathfrak{g} .

It is a good tradition though to identify g with g* under the Killing form induced by the non-degenerate pairing

$$sl(2, \mathbb{C}) \times sl(2, \mathbb{C}) \to \mathbb{C}; (x, y) \to Tr(x.y).$$

Transfering this to g, gives the identifications $e = f^*$, $f = e^*$ and $h = 2h^*$. Under this identification the nilpotent cone (resp. the conjugacy class of λh) is given by the equation $det = -\frac{1}{4}h^2 - ef = 0$ (resp. $= \lambda^2$).

We may homogenize the defining equations with respect to a new variable t and hence thus consider the following pencil of quadrics in \mathbb{P}^3 :

$$Q(\delta) = \mathcal{V}(det + \delta^2 t^2)$$
 for all $\delta \in \mathbb{P}^1$.

The base locus of this pencil is the conic $\mathcal{V}(t^2, -h^2 - 4ef)$ in the plane at infinity. The only singular quadrics in this pencil are Q(0) and $Q(\infty)$ (the plane at infinity twice). If we identify \mathfrak{g} with the affine open piece t=1, then the intersection of Q(0) with \mathfrak{g} is the cone of nilpotent elements. If $\lambda \neq 0$ then $Q(\lambda)$ is smooth and its intersection with \mathfrak{g} is a conjugacy class of semi-simple elements.

On each smooth quadric there are two families of lines. Our first objective is to characterize the lines in the pencil of quadrics $Q(\delta)$.

Any two-dimensional Lie subalgebra of \mathfrak{g} is a Borel subalgebra. A standard basis for a Borel subalgebra is a basis E, H such that [H, E] = 2E. Any standard basis for a Borel subalgebra may be extended to a standard triple E, F, H which is a triple of linearly independent elements such that

$$[E, F] = H$$
, $[H, E] = 2E$ and $[H, F] = -2F$

The standard triples form a single orbit under conjugation by GL(2). If \mathfrak{b} is a Borel subalgebra with standard basis E, H then $\lambda \in \mathbb{C}$ determines $f_{\lambda} \in \mathfrak{b}^*$ by requiring that $f_{\lambda}(E) = 0$ and $f_{\lambda}(H) = \lambda$. Notice that f_{λ} depends only on λ and not on the choice of the standard basis, since any other standard basis for \mathfrak{b} is of the form $\nu E, H + \mu E$.

For each pair (b, λ) we define a line in \mathbb{P}^3 :

$$\ell_{\mathbf{b},\lambda} = \mathcal{V}(E, H - \lambda t)$$

where E, H is a standard basis for \mathfrak{b} . If we identify the plane at infinity with $IP(\mathfrak{g})$ and the affine open piece as before with \mathfrak{g} then the following two facts are easily verified:

1.
$$\ell_{\mathbf{b},\lambda} \cap IP(\mathfrak{g}) = [\mathbf{b},\mathbf{b}] = \mathbb{C} E$$

2. $\ell_{\mathfrak{h},\lambda} \cap \mathfrak{g} = \frac{1}{2}\lambda H + \mathbb{C} E$ where E,H is a standard basis for \mathfrak{b} .

In particular, $\ell_{b,\lambda}$ is a line on the quadric $Q(\frac{1}{2}\lambda)$ (the factor $\frac{1}{2}$ comes from the identification via the Killing form). In fact,

Theorem 1 The lines which lie on the quadrics $Q(\delta) = \mathcal{V}(\det + \delta^2 t^2)$ for $\delta \in \mathbb{P}^1$ are

- 1. the lines at infinity, and
- 2. lines $\ell_{\mathbf{b},\lambda}$ for a Borel subalgebra b and $\lambda \in \mathbb{C}$.

Proof: The first case corresponds to lines on $Q(\infty)$. Suppose $\delta \neq 0$. Then $Q(\delta)$ is the conjugacy class of $\begin{pmatrix} \delta & 0 \\ 0 & -\delta \end{pmatrix}$. If ℓ is a line lying on $Q(\delta)$ then we can choose a basis for $\mathrm{sl}(2,\mathbb{C})$ such that $\ell = \{x + \nu y \,|\, \nu \in \mathbb{C}\,\}$ where $x = \begin{pmatrix} \delta & 0 \\ 0 & -\delta \end{pmatrix}$ and y is some other element of $\mathrm{sl}(2,\mathbb{C})$. Write $y = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Since $\det(x + \nu y) = \det(x)$ for all ν , a calculation shows that $\det(y) = 0$ and a = 0. Thus y is (up to scalar multiples) either $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ or $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. In the first case $\ell = \ell_{\mathbf{b}, 2\delta}$ with \mathbf{b} having standard basis y, x. In the second case $\ell = \ell_{\mathbf{b}, -2\delta}$ with \mathbf{b} having standard basis y, -x.

Suppose that $\delta=0$, so that $Q(\delta)$ is the nilpotent cone. We can choose a basis for $\mathrm{sl}(2,\mathbb{C})$ such that $\ell=\{x+\nu y\,|\,\nu\in\mathbb{C}\}$ where $x=\begin{pmatrix}0&1\\0&0\end{pmatrix}$ and $y=\begin{pmatrix}a&b\\c&d\end{pmatrix}$. Since $\det(x+\nu y)=0$ for all ν , a calculation shows that $\det(y)=0$ and c=0 (whence a=0 also). Thus y is a scalar multiple of x, so the line is $\ell=\mathbb{C}\,x=\ell_{\mathbf{b},\lambda}$ having standard basis x,H where H satisfies [H,x]=2x (such an H does exist since every non-zero nilpotent element belongs to some standard triple).

Conversely, we have already seen that $\ell_{b,\lambda}$ lies on the quadric $Q(\frac{1}{2}\lambda)$

If $\delta \neq 0, \infty$ then the two rulings on $Q(\delta)$ are given by $\{\ell_{\hat{\mathfrak{b}},2\delta} \mid \hat{\mathfrak{b}} \text{ is a Borel}\}$ and $\{\ell_{\hat{\mathfrak{b}},-2\delta} \mid \hat{\mathfrak{b}} \text{ is a Borel}\}$.

2 The quantum space of sl(2, G)

Let A denote the homogenization of the enveloping algebra of g with respect to a central variable t. That is,

$$A = \mathbb{C}[e, f, h, t]$$

with defining equations

$$ef - fe = ht$$
, $he - eh = 2et$, $hf - fh = -2ft$
 $et - te = ft - tf = ht - th = 0$

Note that $A/A(t-1) \simeq U(\mathfrak{g})$ and $A/At \simeq \mathbb{C}[e,f,h] = grU(\mathfrak{g})$. From these facts one deduces that A has Hilbert series $(1-t)^{-4}$, is a positively graded Noetherian domain, a maximal order, Auslander-regular of dimension 4 and satisfies the Cohen-Macaulay property, see e.g. [6],[4] and [5]. Moreover, the center of A is $\mathbb{C}[\Omega,t]$ where $\Omega=h^2+2ef+2fe$ is the 'Casimir' element.

M. Artin [1] associates to any regular algebra R its quantum space Proj(R) which is by definition the quotient-category of all finitely generated graded left R-modules by the full Serre subcategory of the finite length modules. We will denote the quantum space associated to A by $Q(\mathfrak{g})$. We want to characterize the linear subspaces in $Q(\mathfrak{g})$. There are three types to consider:

- 1. A plane module S is a cyclic module with Hilbert series $(1-t)^{-3}$.
- 2. A line module \mathcal{L} is a cyclic module with Hilbert series $(1-t)^{-2}$.
- 3. A point module \mathcal{P} is a cyclic module with Hilbert series $(1-t)^{-1}$.

As in [5] one can characterize these modules (up to shifts) as the Cohen-Macaulay modules with multiplicity one (there are two other obvious such modules, namely A and the trivial module A/Ae + Af + Ah + At). We will associate to each of them a linear subspace in ordinary IP^3 .

As $dim(A_1) = 4$ and the homogeneous degree 1 component of a plane (resp. line, point) module is 3 (resp. 2, 1) one can find $a \in A_1$ (resp. $a, b \in A_1$, resp. $a, b, c \in A_1$) and surjections

$$A/Aa \rightarrow \mathcal{S}$$
 resp. $A/(Aa + Ab) \rightarrow \mathcal{L}$, resp. $A/(Aa + Ab + Ac) \rightarrow \mathcal{P}$

(in fact we will see shortly that these maps have to be isomorphisms). Hence to each plane (resp. line, point) module we can associate a plane (resp. line, point) in $\mathbb{P}^3 = \mathbb{P}(A_1^*)$ namely $\mathcal{V}(a)$ (resp. $\mathcal{V}(a,b)$, resp. $\mathcal{V}(a,b,c)$). We will now determine which linear subspaces of \mathbb{P}^3 arise in this way.

We observe that there is a dichotomy in the problem. As a linear subspace module is critical (because it is of multiplicity 1) it follows from [5] that t either kills the module or acts faithfully. The first case gives a linear subspace module over the commutative polynomial ring $A/At \simeq \mathbb{C}[e,f,h]$ i.e. we get a linear subspace in $IP^2 = \mathcal{V}(t)$. In the latter case we can form $\overline{M} = M/(t-1)M$ which is a filtered $U(\mathfrak{g})$ -module $\overline{M}_0 \subset \overline{M}_1 \subset ...$ where $\dim(\overline{M}_i)$ is equal to 1 (if M is a point module), i+1 (if M is a line module) or $\frac{1}{2}(i+1)(i+2)$ (if M is a plane module). Moreover, this process can be reversed, namely $M \simeq \bigoplus \overline{M}_i t^i$ (see [3] or [6]).

Proposition 1 1. Every plane V(a) in \mathbb{P}^3 determines a plane module S.

2. The points at infinity and the origin (0,0,0,1) are the only points in \mathbb{P}^3 which determine a point module \mathcal{P} .

Proof: Since A is a domain, A/Aa has Hilbert series $(1-t)^{-3}$ for every non-zero $a \in A_1$. Hence the surjection $A/Aa \to \mathcal{S}$ given above is an isomorphism.

¿From the dichotomy remark it follows that point-modules either correspond to points on the plane at infinity or to the one-dimensional representation of $\mathfrak g$ which corresponds to the origin in $\mathfrak g$ which is being identified with the complement to the plane at infinity. In the first case we can take a=t and let b,c determine the point in $Proj(A/At) = IP^2$. Hence the Hilbert series of A/At + Ab + Ac is $(1-t)^{-1}$ so $\mathcal P = A/At + Ab + Ac$. In the later case $A/Ae + Af + Ah \simeq \mathbb C[t]$ which also has the right Hilbert series.

Still, the situation concerning point-modules is slightly more subtle. To describe the point-variety we will use the multilinearization trick as in [2] or [7]. That is, the point-variety is the zero set of the 4×4 minors of either of the following two matrices:

$$\begin{pmatrix} -f & e & 0 & -h \\ h & 0 & -e & -2e \\ 0 & h & -f & 2f \\ -t & 0 & 0 & e \\ 0 & -t & 0 & f \\ 0 & 0 & -t & h \end{pmatrix}$$

or

$$\begin{pmatrix} f & -h-2t & 0 & t & 0 & 0 \\ -e & 0 & -h+2t & 0 & t & 0 \\ -t & e & f & 0 & 0 & t \\ 0 & 0 & 0 & -e & -f & -h \end{pmatrix}.$$

Proposition 2 The ideal determining the point-modules of A in IP3 is

$$t\langle (h^2+4ef)(e,f,h),te,tf,th\rangle$$

Hence the conic at infinity $V(t, h^2 + 4ef)$ is an embedded component of the point-variety.

So the base locus of the pencil of quadrics described in Section 1 appears here as the embedded component of the point-variety for A. Let us now describe the line-modules of $Q(\mathfrak{g})$:

Theorem 2 The lines in \mathbb{R}^3 determining line modules are precisely the lines in the pencil of quadrics $Q(\delta) = \mathcal{V}(\det + \delta^2 t^2)$ for $\delta \in \mathbb{R}^1$.

Proof: As in the case of point-modules, the lines in the plane at infinity are already accounted for. Hence we have to prove that any line module of A is of the form

$$\mathcal{L} \simeq A/(AE + A(H - \lambda t))$$

where E, H is a standard basis for a Borel subalgebra \mathfrak{b} and $\lambda \in \mathbb{C}$

There is a surjection $A/Aa + Ab \to \mathcal{L}$ for some $a,b \in A_1$ since $dim\mathcal{L}_1 = 2$. Clearly, we can change a,b if necessary so that a = y, $b = z + \lambda t$ with $y,z \in \mathfrak{g}$. Let x,y,z be a basis of \mathfrak{g} . Then, the following seven linearly independent elements in A_2 belong to Aa + Ab:

$$xy, yy, ty = yt, x(z + \lambda t), y(z + \lambda t), z(z + \lambda t), t(z + \lambda t) = (z + \lambda t)t$$

As $dim\mathcal{L}_2=3$ and $dim(A_2)=10$ these elements must be a basis for $(Aa+Ab)_2$. Note that both $yz=y(z+\lambda t)-\lambda yt$ and zy belong to this space. Hence yz-zy can be written as a linear combination of the seven elements. If $\lambda\neq 0$ then only ty can occur with non-zero coefficient and if $\lambda=0$ so might tz. At any rate $\mathbf{b}=\mathbb{C}\,y\oplus\mathbb{C}\,z$ is a two dimensional Lie subalgebra of \mathbf{g} and hence is a Borel subalgebra.

But then A/(Aa+Ab) is the homogenization of $U(\mathfrak{g}) \otimes_{U(\hat{\mathfrak{b}})} \mathbb{C}_{f|_{\hat{\mathfrak{b}}}}$ for some $f \in \mathfrak{g}^*$ such that $f|_{[\hat{\mathfrak{b}},\hat{\mathfrak{b}}]} = 0$ and hence has as its Hilbert series $(1-t)^{-2}$. Therefore, $A/Aa+Ab=\mathcal{L}$ and $\mathcal{V}(a,b)=\ell_{\hat{\mathfrak{b}},\lambda}$ as claimed.

3 Some Comments

The line module associated to $\ell_{\mathbf{b},\lambda}$ will be denoted by $M(\mathbf{b},\lambda)$. By Theorem $2\ M(\mathbf{b},\lambda)\cong A/AE+A(H-\lambda t)$, and hence $M(\mathbf{b},\lambda)$ is the homogenization of the Verma module $M_{\mathbf{b}}(\lambda)=U(\mathbf{g})\otimes_{U(\mathbf{b})}\mathbb{C}_{\lambda}$ of highest weight λ . The (n+1)-dImensional simple $U(\mathbf{sl}(2,\mathbb{C}))$ -modules will be denoted V(n). For each Borel \mathbf{b} there is a short exact sequence $0\to M_{\mathbf{b}}(-n-2)\to M_{\mathbf{b}}(n)\to V(n)\to 0$. Taking homogenized modules, there is a corresponding short exact sequence $0\to M(\mathbf{b},-n-2)\to M(\mathbf{b},n)\to F(n)\to 0$ where F(n) is a certain fat point module of multiplicity n+1.

This is reminiscent of some of the results on the Sklyanin algebra in [8]. Homogenized sl(2, C) shares some other common features with the Sklyanin algebra: for example annihilators of line modules behave in a similar way. We leave the details to the interested reader.

The quantum space of any 3-dimensional Lie algebra has similar properties. Let us briefly scetch the case of the 3-dimensional Lie algebra $\mathfrak{h} = \mathbb{C} \ x \oplus \mathbb{C} \ y \oplus \mathbb{C} \ z$ with z central and [x,y]=z. The corresponding algebra $H(\mathfrak{h})$ is $\mathbb{C}[x,y,z,t]$ with relations

$$xy - yx = zt$$
 and z and t centra;

The point variety in $Q(\mathfrak{h}) = Proj(H(\mathfrak{h}))$ is determined by the ideal

that is, it consists of the plane V(z), the plane at infinity V(t) and their intersection is an embedded component.

The line-modules of H(b) are precisely the lines in the pencil of planes

$$P(\delta) = \mathcal{V}(z + \delta t) \text{ for } \delta \in \mathbb{P}^1$$

which has as its base locus the embedded component (z,t).

References

- [1] M. Artin, Geometry of quantum planes, Preprint MIT (1990)
- [2] M.Artin, J.Tate, M.Van den Bergh, Some algebras associated to automorphisms of elliptic curves, The Grothendieck Festschrift Vol I ,Birkhauser (1990) 33-85
- [3] V. Ginsburg, Characteristic varieties and vanishing cycles, Inv. Math 84 (1986) 327-402
- [4] T. Levasseur, Some properties of non-commutative regular graded rings, Proc. Edinburgh Math. Soc. (to appear)
- [5] T. Levasseur, S.P. Smith, Modules over the 4-dimensional Sklyanin algebra, Preprint Seattle (1991)
- [6] Li Huishi, F. Van Oystaeyen, Dehomogenization of gradings to Zariskian filtrations and applications to invertible ideals, Proc. AMS (to appear)
- [7] S.P. Smith, J.T. Stafford, Regularity of the four dimensional Sklyanin algebra, Compos. Math. (to appear)
- [8] S.P. Smith, J. Staniszkis, Representations of the four dimensional Sklyanin algebra at points of infinite order, Preprint (1991).