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Abstract

This note relates the lines on the pencil of quadrics which are the
conjugacy classes in sl(2,C ) to the line-modules in Artin’s projective
geometry [1] of the homogenization of the enveloping algebra U(sl(2, C')).

1 Level quadrics for sl(2,¢)

Throughout we will write g = C e® € f & € h and define a vector space isomor-
phism sl(2,C ) — g by

<0 0)‘“’ (1 0)_”’ (o _1)—’h
We transfer the Lie bracket on sl(2, @) to g giving
[e’f] = h, [h7e]=2e’ [h’f] =-2f.

The cone of nilpotent elements in s1(2,€') is the variety defined by the
quadratic relation det = 0 where det is the determinant function on sl(2,T').
The conjugacy classes of semi-simple elements in s1(2, €') are the level surfaces
det = A2 where A € €*; in particular this surface is the conjugacy class of the

0
element L
Transfering this to g via the above isomorphism it follows that the deter-
minant function on g is given by det = —h*? — e*f* where €*, f*,h* is the
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dual basis to e, f,h. Hence the nilpotent cone (resp. the conjugacy class of the
element \h) is given by the quadric surface —h*2 —e*f* =0 (resp. =A%) in g.

It is a good tradition though to identify g with ¢* under the Killing form
induced by the non-degenerate pairing

si(2,€) xsl(2,€) - C; (z,y) — Tr(z.y).

Transfering this to @, gives the identifications e = f*, f = €* and h = 2h".
Under this identification the nilpotent cone (resp. the conjugacy class of Ah) is
given by the equation det = —1h? — ef = 0 (resp. = A?).

We may homogenize the defining equations with respect to a new variable ¢
and hence thus consider the following pencil of quadrics in IP® :

Q(8) = V(det + 6%t?) for all § € IP™.

The base locus of this pencil is the conic V(¢2,~h? — 4def) in the plane at
infinity. The only singular quadrics in this pencil are Q(0) and Q(co) (the plane
at infinity twice). If we identify g with the affine open piece ¢ = 1, then the
intersection of Q(0) with g is the cone of nilpotent elements. If A # 0 then
Q(}\) is smooth and its intersection with ¢ is a conjugacy class of semi-simple
elements.

On each smooth quadric there are two families of lines. Our first objective
is to characterize the lines in the pencil of quadrics Q(6).

Any two-dimensional Lie subalgebra of g is a Borel subalgebra. A standard
basis for a Borel subalgebra is a basis E, H such that [H, E] = 2E. Any standard
basis for a Borel subalgebra may be extended to a standard triple E, F, H which
is a triple of linearly independent elements such that

[E,F]=H, [H,E]=2E and [H,F]=-2F

The standard triples form a single orbit under conjugation by GL(2). If bis a

Borel subalgebra with standard basis E, H then A € € determines f, € b by
requiring that fy(E) = 0 and fa(H) = A. Notice that f depends only on A
and not on the choice of the standard basis, since any other standard basis for
b is of the form vE, H + pE.

For each pair (b, \) we define a line in IP3 :

fb,x =V(E,H - Xt)
where E, H is a standard basis for b. If we identify the plane at infinity with

IP(9) and the affine open piece as before with g then the following two facts are
easily verified :

IIMHP@:ﬁﬂzCE

2. ﬂb ,ne= 1)\H + € E where E, H is a standard basis for b.




In particular, Zb is a line on the quadric Q( 1/\) (the factor 1 3 comes from the

identification via the Killing form). In fact,

Theorem 1 The lines which lie on the quadrics Q(6) = V(det + 6%¢%) for é €
IP! are
1. the lines at infinity, and

2. lines Zb)\ for a Borel subalgebra b and A€ €.

Proof : The first case corresponds to lines on Q(o0). Suppose § # 0.

Then Q(¢) is the conjugacy class of (g —?6 . If £ is a line lying on Q(6)
then we can choose a basis for sl(2,C) such that £ = {z + vy|v € € } where
?) —06) and y is some other element of sl(2, €'). Write y = (3 Z

Since det(z + vy) = det(z) for all v, a calculation shows that det(y) = 0 and

a = 0. Thus y is (up to scalar multiples) either (0 1) or (O O) . In the first

r =

0 0 1 0
case £ = Kb 25 with b having standard basis y,z. In the second case £ = Zb 25

with b having standard basis y, —z.
Suppose that § = 0, so that Q(§) is the nilpotent cone. We can choose

a basis for sl(2,€') such that £ = {z + vy|v € €'} where z = (8 3) and

y= (Z 3) . Since det(z+vy) = 0 for all v, a calculation shows that det(y) = 0

and ¢ = 0 (whence a = 0 also). Thus y is a scalar multiple of z, so the line
isl=Cz = Eb having standard basis ¢, H where H satisfies [H z] = 2z

(such an H does exist since every non-zero nilpotent element belongs to some
standard triple).
Conversely, we have already seen that Zb,)\ lies on the quadric Q(%)\)” ad

If 6 # 0,00 then the two rulings on Q(8) are given by {4 2 | bis a Borel}
and {£( 25 | bis a Borel}.

2 The quantum space of sl(2,¢')

Let A denote the homogenization of the enveloping algebra of g with respect to
a central variable ¢t. That is,

Azm[e,fahat]




with defining equations
ef —fe=ht, he—eh=2t, hf—fh=-2ft

el—te=ft—tf=ht—-th=0

Note that A/A(t — 1) ~ U(g) and A/At ~ Cle, f,h] = grU(g). From these
facts one deduces that A has Hilbert series (1 — ¢)~%, is a positively graded
Noetherian domain, a maximal order, Auslander-regular of dimension 4 and
satisfies the Cohen-Macaulay property, see e.g. [6],[4] and [5]. Moreover, the
center of A is € [Q,t] where Q = h? + 2ef + 2fe is the ‘Casimir’ element.

M. Artin [1] associates to any regular algebra R its quantum space Proj(R)
which is by definition the quotient-category of all finitely generated graded left
R-modules by the full Serre subcategory of the finite length modules. We will
denote the quantum space associated to A by Q(g). We want to characterize
the linear subspaces in Q(g). There are three types to consider :

1. A plane module S is a cyclic module with Hilbert series (1 —¢)~3.
2. A line module £ is a cyclic module with Hilbert series (1 —t)~2.

3. A point module P is a cyclic module with Hilbert series (1 —t)~1.

As in [5] one can characterize these modules (up to shifts) as the Cohen-
Macaulay modules with multiplicity one (there are two other obvious such mod-
ules, namely A and the trivial module A/Ae+ Af+ Ah+ At). We will associate
to each of them a linear subspace in ordinary IP3.

As dim(A;) = 4 and the homogeneous degree 1 component of a plane (resp.
line, point) module is 3 (resp. 2, 1) one can find a € A; (resp. a,b € Ay, resp.
a,b,c € A;) and surjections

AfAa— S resp. A/(Aa+ Ab) — L, resp. A/(Aa+ Ab+ Ac) — P

(in fact we will see shortly that these maps have to be isomorphisms). Hence
to each plane (resp. line, point) module we can associate a plane (resp. line,
point) in IP® = IP(A%) namely V(a) (resp. V(a,b), resp. V(a,b,c)). We will
now determine which linear subspaces of IP? arise in this way.

We observe that there is a dichotomy in the problem. As a linear subspace
module is critical (because it is of multiplicity 1) it follows from [5] that ¢ either
kills the module or acts faithfully. The first case gives a linear subspace module
over the commutative polynomial ring A/At ~ C'e, f,h] i.e. we get a linear
subspace in IP2 = V(t). In the latter case we can form M = M/(t — 1)M which
is a filtered U(g)-module Mo C My C ... where dim(M;) is equal to 1 (if M is
a point module), i +1 (if M is a line module) or (i + 1)(i + 2) (if M is a plane
module). Moreover, this process can be reversed, namely M ~ @ M;t* (see [3]

or [6]).




Proposition 1 1. Every plane V(a) in IP? determines a plane module S.

2. The points at infinity and the origin (0,0,0,1) are the only poinis in P?
which determine a point module P.

Proof : Since A is a domain, A/Aa has Hilbert series (1 —¢)~2 for
every non-zero @ € A;. Hence the surjection A/Aa — S given above is an
isomorphism.

(From the dichotomy remark it follows that point-modules either correspond
to points on the plane at infinity or to the one-dimensional representation of ¢
which corresponds to the origin in g which is being identified with the comple-
ment to the plane at infinity. In the first case we can take a =t and let b, ¢ deter-
mine the point in Proj(A/At) = IP?. Hence the Hilbert series of A/At+ Ab+ Ac
is (1 —1t)"1so P = A/At+ Ab+ Ac. In the later case A/Ae+ Af + Ah ~ € [t]
which also has the right Hilbert series. a

Still, the situation concerning point-modules is slightly more subtle. To
describe the point-variety we will use the multilinearization trick as in {2] or [7].
That is, the point-variety is the zero set of the 4 X 4 minors of either of the
following two matrices :

or
f —h-2t 0 t 0 0
—e 0 —-h+2t 0 t 0
~1 e i 0 0 t
0 0 0 —e —f —h

Proposition 2 The ideal determining the point-modules of A in IP® is
t((h? + 4ef)(e, £, b), te, 11, th)

Hence the conic at infinity V(t,h? + 4ef) is an embedded component of the
point-variety.

So the base locus of the pencil of quadrics described in Section 1 appears
here as the embedded component of the point-variety for A. Let us now describe
the line-modules of Q(9) :

Theorem 2 The lines in IP? determining line modules are precisely the lines
in the pencil of quadrics Q(8) = V(det + §%t%) for § € IPL.




Proof : As in the case of point-modules, the lines in the plane at infinity
are already accounted for. Hence we have to prove that any line module of A is
of the form

L~A[(AE + A(H - \t))
where E, H is a standard basis for a Borel subalgebra band A € €.

There is a surjection A/Aa+ Ab — L for some a,b € A; since dimLy = 2.
Clearly, we can change a, b if necessary so that a =y , b = z+ A with y, 2 €
g. Let z,y,2z be a basis of g. Then, the following seven linearly independent
elements in A, belong to Aa+ Ab:

zy, yy, ty = yt, z(z + At), y(z + At), 2(z + At), t(z + At) = (2 + At)t

As dimL,y = 3 and dim(A2) = 10 these elements must be a basis for (Aa - Ab);.
Note that both yz = y(z+ At) — Ayt and zy belong to this space. Hence yz — 2y
can be written as a linear combination of the seven elements. If A # 0 then
only ty can occur with non-zero coefficient and if A = 0 so might tz. At any
rate b= C y® € z is a two dimensional Lie subalgebra of g and hence is a Borel
subalgebra.

But then A/(Aa + Ab) is the homogenization of U(g) ®U(B)

f € ¢* such that f |[b b= 0 and hence has as its Hilbert series (1 —t)~2.
Therefore, A/Aa + Ab = £ and V(a,b) = Zb , s claimed. O

a b for some

3 Some Cbmments

The line module associated to Zb}\ will be denoted by M (b,1). By Theorem

2 M(b,)) = A/AE + A(H — M), and hence M (b, }) is the homogenization of
the Verma module M (A) = U(g) ®, ) C » of highest weight A. The (n + 1)-

dImensional simple U(sl(2, € ))-modules will be denoted V(n). For each Borel
b there is a short exact sequence 0 — My(—n —2) — My(n) — V(n) — 0.
Taking homogenized modules, there is a corresponding short exact sequence
0 — M(b,—n — 2) — M(b,n) — F(n) — 0 where F(n) is a certain fat point
module of multiplicity n + 1.

This is reminiscent of some of the results on the Sklyanin algebra in [8].
Homogenized sl(2, ') shares some other common features with the Sklyanin
algebra: for example annihilators of line modules behave in a similar way. We
leave the details to the interested reader.

The quantum space of any 3-dimensional Lie algebra has similar properties.
Let us briefly scetch the case of the 3-dimensional Lie algebra b = € 29 C yoC 2
with z central and [z,y] = z. The corresponding algebra H(b) is € [z,y, 2, 1]
with relations

2y — yx = zt and z and ¢ centra;




The point variety in Q(b) = Proj(H(b)) is determined by the ideal
tz(z,t)

that is, it consists of the plane V(z), the plane at infinity V(t) and their inter-
section is an embedded component.
The line-modules of H ([)) are precisely the lines in the pencil of planes

P(6) = V(2 + 6t) for 6 € IP!

which has as its base locus the embedded component (z,t).
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