On a Theorem of G. M. Bergman

L. Le Bruyn*

Dept. Wiskunde & Informatica Universiteit Antwerpen (UIA), Belgium

July 1991 – 91-26

Abstract

A short proof is presented of a result of G. Bergman [1] on rational identities of matrices.

AMS-Classification 16R50

KeywordsRational Identities

^{*} Research Associate of the NFWO

On a theorem of G.M. Bergman

Lieven Le Bruyn* Departement Wiskunde en Informatica Universiteit Antwerpen (UIA),Belgium

April 22, 1991

Abstract

A short proof is presented of a result of G. Bergman [1] on rational identities of matrices.

Example 1 (L.H. Rowen [3]) Consider the rational expression in noncommutative variables

$$f(x_1, x_2, x_3) = [[x_1, x_2]^2, x_3].[[x_1, x_2], x_3]^{-1}$$
(1)

If we specialize the x_i to generic 4×4 generic matrices X_i , then $F^2 = f(X_1, X_2, X_3)^2 \in UD(4)$ has degree 2 over the center K(4) of the generic division algebra UD(4).So,

$$c_5(1, F^2, F^4, X_4, X_5) = 0 \in UD(4)$$
(2)

where c_j is the j-th Capelli polynomial [3, p.12]. On the other hand, if we specialize the x_i to generic 3×3 matrices, then F^2 can be shown to be noncentral in UD(3) whence it has to be of degree 3 over the center. But then

$$c_5(1, F^2, F^4, X_4, X_5) \neq 0 \in UD(3)$$
 (3)

^{*}Research associate of the NFWO

Hence, rational identities holding in UD(n) do not have to hold in UD(m) when m < n. This situation was studied by G. Bergman [1] who proved the following fundamental result:

Theorem 1 (Bergman) Let n and $m_1, ..., m_k$ be positive integers. Then, there exists a rational identity for UD(n) not holding in any of the $UD(m_i)$ if and only if

$$n = \sum_{i=1}^{k} a_i . m_i \tag{4}$$

has no solution in integers $a_i \geq 0$.

In this note we aim to give a short elementary proof of this result.

Definition 1 An affine algebra Λ is called special if it has a presentation in terms of generators and relation as

$$\Lambda = k < x_1, ..., x_k; y_1, ..., y_l > /(y_i \cdot p_i - 1; 1 \le i \le l)$$
 (5)

where each p_i is a noncommutative polynomial in $x_1,...,x_k,y_1,...,y_{i-1}$. The inversion depth of Λ , $idt(\Lambda)$, is the minimal number l required for a special presentation of Λ .

From now on Λ will be special with a given minimal presentation as above. With $\operatorname{def}(\Lambda)$ we denote the set of positive integers n s.t. specializing x_i to a generic $n \times n$ matrix X_i induces a well defined algebra morphism $\pi_n : \Lambda \to UD(n)$. Equivalently, $\operatorname{def}(\Lambda)$ consists of those integers n s.t. none of the p_i occurring in the given presentation of Λ is a rational identity for UD(n) when viewed as a rational expression in the x_i .

Observation 1 $def(\Lambda)$ is an additive sub-semigroup of IN.

Proof: It is easy to see that $def(\Lambda)$ is precisely the set of integers n such that Λ has an n-dimensional representation.

With $gen(\Lambda)$ we will denote the set of semigroup generators of $def(\Lambda)$.

Observation 2 If $n \in gen(\Lambda)$ then $\pi_n(\Lambda) \subset UD(n)$ is an Azumaya algebra.

Proof: If $n \in gen(\Lambda)$, Λ has only irreducible *n*-dimensional representations. Now use the Artin-Procesi result.

Example 2 Let $g_n(x_1,...,x_k)$ be a central identity for $n \times n$ matrices and consider the special affine algebra

$$\Lambda = k < x_1, ..., x_k, z > /(z.g_n(x_1, ..., x_k) - 1)$$
(6)

Then, $def(\Lambda) = \{m \in IN : n \leq m\}$ and $gen(\Lambda) = \{m \in IN : n \leq m \leq 2n-1\}.$

Observation 3 Let $n \in gen(\Lambda)$ and $m_1 < ... < m_s \in def(\Lambda) - \{n\}$. Then, there exists $r \in \Lambda$ s.t. $\pi_n(r) = 0 \in UD(n)$ and $\pi_{m_j}(r) \neq 0 \in UD(m_j)$ for all $1 \leq j \leq s$.

Proof: As $\pi_n(\Lambda)$ is an azumaya algebra we can find $R_{ij}, S_i \in \pi_n(\Lambda)$ and central identities for $n \times n$ matrices g_i such that

$$1 = \sum_{i} g_i(R_{ij}) S_i \in UD(n) \tag{7}$$

see [2, Ch. 8]. Lifting R_{ij} (resp. S_i) to elements r_{ij} (resp. s_i) of Λ we can take

$$r_0 = 1 - \sum_{i} g_i(r_{ij}) s_i \in \Lambda \tag{8}$$

Then, $\pi_n(r_0) = 0 \in UD(n)$ and $\pi_{m_i}(r_o) = 1 \neq 0 \in UD(m_i)$ for all $m_i < n$. Let m_t be the smallest m_i such that $\pi_{m_t}(r_0) = 0 \in UD(m_t)$ then we can take $r_1 = r_0 + ci_t$ where ci_t is a central identity for $m_t \times m_t$ matrices. Repeat this process until one reaches m_s .

Observation 4 Let $n_1 < n_2 < ... < n_s$ be generators of a sub semigroup of IN_+ . For every $a \ge 1$ there exists a special affine algebra Λ with $idt(\Lambda) \le a$ such that $S \subset def(\Lambda)$ and $S \cup [0, an_1] = def(\Lambda) \cup [0, an_1]$.

Proof: We use induction on a, the case a=1 being accounted for by example 2 if $n=n_1$. Assume the statement holds for a-1 i.e. we have a special affine algebra Λ' with $idt(\Lambda') \leq a-1$ s.t. $S \subset def(\Lambda')$ and $def(\Lambda') \cup [0, (a-1)n_1] = S \cup [0, (a-1)n_1]$.

Let $\{m_1, ..., m_z\} = ([(a-1)n_1, an_1] \cup def(\Lambda)) - gen(S)$. Each m_i is seen to be in $gen(\Lambda)$ so by the trick of the foregoing proof we can find for each m_i an element $r_i \in \Lambda'$ s.t. $\pi_{m_i}(r_i) = 0$ and $\pi_{m_j}(r_i) \neq 0$ if $j \neq i$. Take

$$\Lambda = \Lambda < z > /(z.r_1...r_z - 1) \tag{9}$$

and check that this algebra has the properties required.

In particular, if S is a sub semigroup of IN_+ with gcd(S) = 1, then there is a special affine algebra Λ with $def(\Lambda) = S$.

We will now show that the bound given on the inversion depth of Λ is the best possible.

Observation 5 Let $idt(\Lambda) = a$, (a+1)m < n and $r \in \Lambda$ such that $\pi_n(r) = 0 \in UD(n)$. Then, either $m \notin def(\Lambda)$ or $\pi_m(r) = 0 \in UD(m)$.

Proof: We use induction on a, the case a = 0 is the classical result on polynomial identities. Hence assume the result holds for b < a.

Suppose we have $idt(\Lambda) = a, r \in \Lambda$ s.t. $\pi_n(r) = 0$, $m \in def(\Lambda)$ and $\pi_m(r) \neq 0$. We claim that $n - m \in def(\Lambda)$. If not, one of the p_i in the presentation of Λ would be a rational identity for UD(n-m) and $p_i \in \Lambda'$ where $idt(\Lambda) < a$. By induction, $\pi_m(p_i) = 0 \in UD(m)$ contradicting the assumption that $m \in def(\Lambda)$.

If m and $n-m \in def(\Lambda)$ we can specialize each x_i to a block matrix with top left corner a generic $m \times m$ matrix and bottom right corner a generic $n-m \times n-m$ matrix and the other entries zero. This algebra map from Λ factors through $\pi_n(\Lambda)$ so the image of r has to be zero. Looking at the top left corner this implies that $\pi_m(r) = 0$, a contradiction.

The last argument shows that if $n = \sum_i a_i m_i$ for integers $a_i \geq 0$ and $r \in \Lambda$ with $\{n, m_1, ..., m_s\} \subset def(\Lambda)$, then $\pi_n(r) = 0$ implies $\pi_{m_i}(r) = 0$ for all i.

As a consequence, we obtain the following extension of the classical p.i.result

Corollary 1 Let $r \in \Lambda$ with $idt(\Lambda) \leq a$ be a rational identity of UD(n). If (a+1).m < n, then r or one of its rational subexpressions is a rational identity for UD(m).

References

- [1] G. Bergman: Rational relations and rational identities in division rings I and II, J. Alg. 43 (1976) 252-266 and 267-297
- [2] C. Procesi: "Rings with Polynomial Identities", Marcel Dekker (1973)
- [3] L.H. Rowen: "Polynomial Identities in Ring Theory", Acad.Press (1980)