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A short proof is presented of a result of G. Bergman [1] on rational
identities of matrices.
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Abstract

A short proof is presented of a result of G. Bergman [1] on rational
identities of matrices.

Example 1 (L.H. Rowen [3]) Consider the rational ezpression in non-
commutative variables '

f@1, @2, 23) = [[w1, T2]?, T3).[%1, 23], 23] (1)

If we specialize the x; to generic 4 X 4 generic matrices X;, then F? =
f(X1, X2, X5)? € UD(4) has degree 2 over the center K(4) of the generic
division algebra U D(4).So,

C5(1,F2,F4,X4,X5) =0¢€ UD(4) (2)

where c; is the j-th Capelli polynomial [8, p.12]. On the other hand, if
we specialize the z; to generic 3 X 3 matrices, then F? can be shown to be
noncentral in UD(3) whence it has to be of degree 3 over the center. But
then :
cs(L, F?, F* Xy, X5) #£ 0 € UD(3) (3)
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Hence, rational identities holding in UD(n) do not have to hold in UD(m)
when m < n. This situation was studied by G. Bergman [1] who proved the
following fundamental result :

Theorem 1 (Bergman) Let n and my,...,mi, be positive integers. Then,
there ezists a rational identity for UD(n) not holding in any of the UD(m;)
tf-and only if

n = Zai.mi (4)

i=1

has no solution in integers a; > 0.
In this note we aim to give a short elementary proof of this result.

Definition 1 An affine algebra A is called special if it has a presentation
in terms of generators and relation as

A=k <zy,eni5y, 00> [(Yipi —1;1 < <) (5)

where each p; is a noncommutative polynomial in Ty, ..., Tk, Y1, .., Yic1. The
inversion depth of A, idi(A) , is the minimal number | required for a
spectal presentation of A.

From now on A will be special with a given minimal presentation as
above. With def(A) we denote the set of positive integers n s.t. specializing
z; to a generic n X n matrix X; induces a well defined algebra morphism
Tt A — UD(n). Equivalently, def(A) consists of those integers n s.t. none
of the p; occuring in the given presentation of A is a rational identity for
UD(n) when viewed as a rational expression in the z;.

Observation 1 def(A) is an additive sub-semigroup of IN.

Proof : It is easy to see that de F(A) is precisely the set of integers n
such that A has an n-dimensional representation. o

With gen(A) we will denote the set of semigroup generators of def(A).

Observation 2 Ifn € gen(A) then m,(A) C UD(n) is an Azumaya algebra.




Proof : If n € gen(A), A has only irreducible n-dimensional represen-
tations. Now use the Artin-Procesi result. O

Example 2 Let g,(x1,...,2x) be a central identity for n X n matrices and
consider the special affine algebra

A=Fk<azy,.,252> [(2.9:(21,...,2k) — 1) (6)

Then, def(A) = {m € IN : n < m} and gen(A) = {m € IN : n < m <
2n —1}.

Observation 3 Let n € gen(A) and my < ... < m, € def(A) — {n}.
Then,there ezists r € A s.t. mwo(r) = 0 € UD(n) and 7, (r) # 0 € UD(m;)
Joralll <j<s.

Proof :  As m,(A) is an azumaya algebra we can find R;;, S; € 7,(A)
and central identities for n X n matrices g; such that

1= Zgi(R,‘j)S,‘ € UD(n) (7)

see [2, Ch. 8]. Lifting R;; (resp. S;) to elements r;; (resp. s;) of A we can
take

T = 1— Zgi(rﬁ)si € A (8)

Then, 7,(ro) =0 € UD(n) and mp;(ro) = 1 # 0 € UD(m;) for all m; < n.
Let m¢ be the smallest m; such that m,,,(ro) = 0 € UD(m;) then we can take
r1 = ro + ci; where ci; is a central identity for m; X m; matrices. Repeat this
process until one reaches m,. a

Observation 4 Let ny < ny < ... < n, be generators of a sub semigroup of
IN,.. For every a > 1 there exists a special affine algebra A with idt(A) < a
such that S C def(A) and SU[0,any] = def(A) U [0, an,].

Proof : We use induction on a,the case a = 1 being accounted for
by example 2 if n = n;. Assume the statement holds for ¢ — 1 ie. we
have a special affine algebra A’ with idt(A') < a — 1 st. S C def(A’) and
def(A)U[0,(a—1)m] =S U0, (a - 1)ny].




Let {my,....,m,} = ([(¢ — )nq, any] U def(A)) — gen(S). Each m; is seen
to be in gen(A) so by the trick of the foregoing proof we can find for each
m; an element r; € A’ s.t. T, (ri) = 0 and 7, (r;) # 0 if j # i. Take

A=A<z>/(zry.r, —1) (9)
and check that this algebra has the properties required. O

In particular, if S is a sub semigroup of IN, with ged(S) = 1,then there
is a special affine algebra A with def(A) = S.

We will now show that the bound given on the inversion depth of A is
the best possible.

Observation 5 Let idt(A) =a, (a+1)m <n andr € A such that m,(r) =
0 € UD(n). Then, either m ¢ def(A) or mn(r) = 0 € UD(m).

Proof :  We use induction on a, the case a = 0 is the classical result
on polynomial identities. Hence assume the result holds for b < a.

Suppose we have idt(A) = a,r € A sit. mo(r) = 0, m € def(A) and
Tm(r) # 0. We claim that n — m € def(A). If not, one of the p; in the
presentation of A would be a rational identity for UD(n — m) and p; € A’
where idt(A) < a. By induction, 7, (p;) = 0 € UD(m) contradicting the
assumption that m € def(A).

If m and n—m € def(A) we can specialize each z; to a block matrix with
top left corner a generic m X m matrix and bottom right corner a generic
n —m X n —m matrix and the other entries zero. This algebra map from A
factors through ,(A) so the image of r has to be zero. Looking at the top
left corner this implies that 7,,(r) = 0, a contradiction. ]

The last argument shows that if n = 3, a;m; for integers a; > 0 and
r € A with {n,my,...,m,} C def(A), then m,(r) = 0 implies m,,,(r) = 0 for
all 7.

As a consequence, we obtain the following extension of the classical p.i.-
result

Corollary 1 Let r € A with idt(A) < a be a rational identity of UD(n).
If (a +1).m < n, then r or one of its rational subexpressions is a rational
identity for UD(m).
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