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0. Introduction.

Specific problems in defining a “scheme” structure on Proj(W), where W is the 4-
dimensional quantum space of the Rees ring of the Witten gauge algebras, may be
tackled by first introducing such a scheme structure on Proj(G(W)) where G(W) is
the associated graded ring of W and then trying to lift this structure to a scheme
structure on Proj(W). In [LB] the first author solved this lifting problem by using
quantum sections introduced by the second author in [VOS], [RVO] and this explains
why the development of the theory of gauge algebras here goes hand in hand with
that of quantum sections. In fact Noetherian gauge algebras are particular Zariski
rings in the sense of [LVO 1, 2, ..]. Now quantum sections arise in the sheaf of
filtration degree zero of a microstructure sheaf of a Zariski ring over the projective
scheme associated to the associated graded ring that is supposed to be commutative
in [VOS]. The commutativity of the associated graded ring is nowhere essential in
the structure theory of the rings of sections of those sheaves, except of course in the
definition of the topological space and the scheme structure of Proj. However, M.
Artin has recently introduced in [Art] the quantum projective space of a quantum
n-space given by its graded quadratic algebra @ as Proj(Q) = @-gr/F, where F is
the full subcategory of graded finite length modules, together with a suitable shift-
operator. From this point of view it is natural to try to combine the techniques
of Zariski filtered rings inherent in the study of quantum sections with the theory
of projective quantum spaces. This is done by introducing the class of positively
filtered rings having a non-commutative regular in the sense of Artin and Schelter
[AS] quadratic algebra in the sense of Manin, [Man], for the associated graded ring.
The restriction to positive filtrations is not essential because the definition of the

underlying projective scheme may easily be modified to deal with this; nevertheless

* This author is supported by an NFWO-grant
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we do restrict to the positive case here. The algebras roughly defined above are
called gauge algebras. Since the ingredients of the theory lay spread out over several
sources not all equally available, we have conceived this paper as a survey paper
introducing necessary basic definitions and properties as well as expanding a few
concrete examples. A more extensive study of gauge algebras is undertaken by the
first author in [LB]; for recent results on formal quantum sections over formal schemes

we refer to [RVO].
1. Filtered Rings and Associated Graded Rings.

All rings are associative with unit. A filtration F'R on a ring R is given by an ascend-
ing chain of additive subgoups F, R, n € Z, satistying 1 € Fy R, F, RFp, RC Foypm R
for m,n € Z. We always assume that the filtrations considered are exhaustive,
that is UyezF, R = R, and separated, that is N,ezF, R = 0. The obvious opera-
tions induced on the abelian additive group G(R) = @,ezFR/F,-1 R make G(R)
into a graded ring with G(R), = F,R/F,—1R, n € Z. The principal symbol map
o : R — G(R) is defined by putting ¢(z) = 2 mod F,_1R where n is such that
z € F,R—F,_1R. The Rees ring R= Prez Fn R may be identified with the subring
> nez FnRX™ of the polynomial ring R[X, X ~']. The notion of the Rees ring for a
Z-filtration extends in a natural way the notion of the blow-up ring for an I-adic
filtration used in singularity theory and commutative Zariski rings. ‘A filtration F'R

is complete when Cauchy-sequences converge in R, or equivalently R = lim R/ F, R;

when F,R = 0 for n < 0 then we say that F'R is positive or R is positivgly filtered
and it is clear that positive filtrations are complete. Complete filtered rings having a
Noetherian associated graded ring are an important class of Zariski rings in the sense
of [LVO1], in particular such a ring R has a Noetherian Rees ring R.

Example 1. The nth Weyl algebra A,(C) is the algebra generated by 2n inde-
terminates 1,...,%, and yi, ..., yn satisfying the commutator relations : [z;,z;] =
lvi,y;] = 0, [2s,y;] = 6;;. Historically, An(C ) has been introduced as the operator
algebra generated by the components z; of the position vector and the components
p; = thy; of the momentum vector of a quantum particle in n-dimensional space.
The non-vanishing of the commutator [Z;,p;] = ¢ expresses that one cannot have
simultaneous knowledge of position and momentum of a particle in the quantum case.
The associated graded ring G(A,(C')) is the polynomial ring €' [z1,...,Zn, Y1, -, Yn)
that is the operator algebra of the classical (i.e. non-quantum) situation. So in a
sense the filtered data may be viewed as quantizations of the associated graded data.
The Rees ring A, (C)~ is the positively graded algebra generated by the degree
one element X and z;X, y; X, 1 <1 < n satisfying the commutative relations :
[m,-,a:j]Xz = [yi,y‘j]Xz =0 and [xi,y,-]_X2 = ain2.




Quantum Sections and Gauge Algebras 3

Since X is central in 4,(C )~ we may substitute new indeterminates X = X, X, =
z;X,Y; = y; X satisfying homogeneous relations [X;, X;] = [V;,Y;] = 0and [X;,Y;] =
6;jX*. Therefore we may view A,(C )~ as a quadratic extension of the enveloping
algebra of the Heisenberg algebra (see below). Note that we may specialize X to 1
and we obtain 4,(C') a s a specialization of its Rees ring; moreover specializing X
to 0 yields G(An(C)) as a specialization.

1.1. Lemma. If we let X stand for the canonical homogeneous central regular

element of degree one in R then :
a. RI(1-X)R=R
b. R/XR = G(R)

The observations in the lemma express that R is a “deformation” of G(R) via the
Rees ring R. Note that for any graded ring with a central regular homogeneous
element the construction in a. in the lemma yields the dehomogenized filtration
corresponding to a gradation, ¢f. [LVO 2]. A special case of this dehomogenization
principle is well-known in projective algebraic geometry (affine models) and it is also
evident in the relation between determinental rings and Schubert cycles.

Example 2. Let g be a finite dimensional Lie algebra, say ¢ = C 21 +...+C zy with
defining relations [z;,z;] = Zafjxk satisfying the Jacobi identity. By definition all
commutators drop in filtration degree for the usual filtration defined on the universal
enveloping algebra U(g). One easily checks that G(U(g)) = C [z1,. .., zs] (Poincaré,
Birkhof, Witt). The Rees ring U(g¢)™ is generated by X, X; = o1 X,. .., X, = 2,.X,
satisfying = [X;, X;] = [z:,2;]X% = 3, af]‘XkX‘, Let us provide a more concrete
example and consider the 2-dimensional non-Abelian Lie algebra ¢ = C'2 + Cy
satisfying [z,y] = . Then U(g)™ is the regular algebra in the sense of Artin-Schelter
[AS] of [ATV 1-2] generated by X = 22, Y = yZ and Z (now Z plays the role of
the central element X before) satisfying the quadratic relations : XZ ~ ZX = 0,
YZ-2Y =0, XY -YX - XZ = 0. We point out that in the classification of [ATV
1] this algebra is of type 51, in particular it is not of generic, i.e. elliptic, type. The

~

latter property is one that U(g)™~ will share with all other gauge algebras defined
later in this paper. Similarly, when g = sl;, sl = C2 + Cy + € z with [z,y] = 2y,
[z, z] = =22, [y, 2] = z then the Rees algebras is the 4-dimensional quadratic algebra
(or quantum space) generated by X = 2T, Y = yT, Z = 2T and T (now playing the
role of the central element of degree one), satisfying : XT —~TX =0, YT -TY =0,
ZT -TZ =0, XY -YX -2YT=0,XZ2-2X+22T=0,YZ-2Y - XT =0.

But again u(sly)™ is not a Sklyanin algebra in the sense of [SS].

Most of the algebras we shall consider in this paper will be positively filtered however
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some localizations of these will be of interest too and so non-positive filtrations will
appear naturally, Extreme amongst the non-positive filtrations are the so-called
strongly filtered rings. The filtration FR 1s said to be strong if F,RF,,R = F,4, R
holds for every n,m € Z. It is easy to check that FR is strong if and only if
G(R) is a strongly graded ring, i.e. G(R),G(R)n = G(R)ptm for n,m € Z; or if
and only if R is a strongly graded ring. We say that G(R) is d-strongly graded if
G(R)naG(R)ma = G(R)(n+m)a for n,m € Z, and d and is minimal as such. For a
commutative positively graded ring A, Proj(4) is locally strongly graded in the sense
that for any Zariski open U C Proj(A) the graded ring of sections is d-strongly graded
for some d (depending on U); when A is generated over Ay by A; as a ring then it is
even locally strongly graded because every graded ring of sections will contain a unit
of degree one. Kashiwara’s ring of germs of micro-differential operators on holonomic

functions provides an interesting example of a strongly filtered ring.

Example 3. Let z = (z1,...,2,) be coordinates in C" and € = (£1,...,&,) the
coordinates for cotangent vectors. Put T (C"™) = {(2,£),€ # 0}, this is an open
subset of € %™ and zy,...,2,,¢1,...,&, are holomorphic functions on T3 (@ ™). Take
p=(2*,€*) € T{(C"). Let O, be the local ring of germs of holomorphic functions
(isomorphic to the local ring of convergent power series in zn variables. Following
J.E. Bjork (p. 136, [B]) we let O,(m) be the {-homogeneous elements of order m. If
U is an open set in Ty (C' ") then O(m)(U) is the set of holomorphic functions in U

which are {-homogeneous of order m.

The ring &, is consisting of the Ef,(z,£) such that f, € O(v)(U) for some open
neighbourhood U of p and satisfying the conditions.

i. f, =0 for all v > w, for a certain integer w.

1i. There exist constants A and s such that

|fulu = sup{lfu(2,€),(2,€) € U} < A(Jvh K
forall v. If F = Xf,, G = Xg, € &, then FG = E(a!)a‘;& aaazga“ in multi-index

notation.

Now, if F' = Xf, € &,, then the unique largest w € Z such that f,, # 0 is called
the order of F'; this defines the filtration of £, and o(F) = f, is then the principal
symbol. With respect to this filtration G(&,) = On—1[T, T is a strongly graded
ring which is moreover a regular Noetherian ring of pure dimension 2n. The fact that

&, is a Zariski ring (see Section 4) entails all the desired properties for £,.

Although we are mainly concerned with rings here it is useful to establish the cor-
responding module theory as well. An R-module M is filtered if there is an ascend-
ing chain of additive subgroups F,M,n € Z, satisfying F,RF,,M C Fp4+,,M for
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n,m € Z. The category R-filt is obtained by taking the filtered R-modules and
the R-linear maps preserving filtration degree for the objects and morphisms. We
write FM for the filtration of M and G(M) = @rezF,M/F,_1 M for the associ-
ated graded G(R)-module. The Grothendieck category of graded G(R)-modules will
be denoted by G(R)-gr. Similarly, we may define the Rees module M of FM by
M = BnezFnM and identify it with a submodule of M[X, X ~!]. Again we always
assume that FM is exhaustive, M = U, M and separated i.e. N, F;, M = 0. We may
extend Lemma 1.1. to : M/XM = G(M), M/(1 - X)M = M, M x) = M[X, X"
where (—)(x) stands for the object localized at the central multiplicative set of homo-
geneous elements {1, X, X? ...}. In R-gr we have a full subcategory Fx consisting

of the X -torsionfree graded R-modules.

1.2. Lemma. The functor ~: R-filt — }NZ-gr defines an equivalence of categories be-
tween R-filt and Fx. The filtered morphism in R-filt corresponding to the morphisms
in Fx are the strict morphisimns (recall that a filtered morphism f : M — N is strict
if FyN NImf = f(F,M)). The functor G : R-filt — G(R)-gr is not really exact but
it is exact on strict morphisms and sequences of strict morphisms; the functor D : R-
gr — R-ilt M — ﬁ/ (X — 1)1%, is exact. We may define a principal symbol map
om : M — G(M) by putting op(m) = m mod F,_.1 M when m € F, M — F,_1M.
For r € R such that op(c)op(m) # 0 we have or(r)oy(m) = oy (rm). In particu-
lar, when G(R) is a domain then ¢ = o is multiplicative.

A filtration F'M is said to be a good filtration if there exist my,...,m; € M and
di,...,dy € Z such that for all n € Z, F,M = Zle Fo_g,Rm;. The utility of
the Rees objects is that properties concerning the filtration F'M are translated to

properties in Fx concerning the X-adic filtration on M.

1.3. Proposition. With notation as before :
a. F'M is separated if and only if Mis X -adically separated
b. FM is good if and only if M is finitely generated

c. F4R C J(FyR) if and only if X € J9(R), where H9(—) stands for the graded
Jacobson radical, c¢f. [NVO].

d. FM is complete if and only if Mis X -adically complete
e. F'M is projective if and nly if M is projective (similar for flatness).

f. Amap f: M —» N is strict if and only if Cokerfe Fx i.e. when ]7 M — N is

a morphism in Fx.
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2. Quantum Sections as Deformations of Localizations.

In this section we restrict attention to positively filtered rings R having a commutative
Noetherian domain for the associated graded ring. The essential part of this section
can and will be considerably generalized in a further section (for Zariskian filtrations).

Consider a multiplicatively closed set Sin R, 1 € S, 0 & S, such that o(S) is
multiplicatively closed in G(R) (this holds automatically when G(R) is a domain be-
cause ¢ is multiplicative in that case). Since ¢(.S) consists of homogeneous elements,
o(S)"1G(R) is a graded ring. In general S is not an Ore set and so one cannot nec-
essarily form S™!R. This draw-back may be overcome by introducing the algebraic
microlocalization of R at ¢(5), we follow the ideas of [AVV].

To the set S we associate the multiplicatively closed set S in ]??,, S = {s,s=sX"¢€ R,
for s € S such that s € F,R— F,_;R}. Cleatly 1 € §, 0 ¢ S and S consists of
homogeneous elements of R. For n € IN there is a canonical epimorphism of graded
rings : 7o, R/X"R — R/XR = G(R). Let S(n) be the image of S in R/X"E.
Now ker¥, is nilpotent of index n and 7,(5(n)) = o(S) is an Ore set in G(R),
hence S(n) is an Ore set in R/X"R. Therefore we can define : B = @é(R) =
liin 15 (n)—l(fx; /X "ﬁ), where lim 9 stands for the graded inverse limit (the direct sum

of the inverse limits of the systems obtained in each degree for the gradation).

2.1. Lemxma. The canonical map 75 =R« Bisa graded ring morphism. We have
B € Fx and also B/js(R) € Fx, moreover B/XB = o(S)~1G(R), cf. [AVV].

After this lemma we may take the dehomogenization of B, QRL(R) = B /(1 —X )B
and we obtain a filtered ring Q%(R) such that js : R — Q%(R) is a strict filtered
morphism, that is the filtration of R is induced by the filtration of B = Q%5(R), and
G(B) = o(S)"'G(R). That Q%(R) is complete (but not positively filtered) is easily
veryfied. In fact QS(R) is nothing but the micro-localization at o(S) as defined by
T. Springer in [Spr]. This follows from the fact that B has the universal property

mentioned in the following.

2.2. Lemma. For s € S, jg(s) is invertible in B and if B’ is another filtered ring
such that F'B' is complete, js : R — B’ is a strict inclusion and for every s € S with
o(s) € G(R), we have s™! € B' with o(s™!) € G(B')~,, then there exists a strict
factorization h : B — B’ such that hyjs = jg (cf. [AVV]).

Since Q%(R) is complete and G(Q%(R)) = ¢(S) ' G(R) is a commutative Noetherian
domain, this ring will be in the class of rings we consider (though not positively fil-
tered. We may view Q%(R) as a “deformation” of o0(5)™* G(R) via the corresponding
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Rees ring.

When considering the structure of Proj(G(R)) we have to restrict attention to the
part of degree zero of 0(S)™*G(R), say G(R)(s(s)) = (¢(S)"*G(R))o. In particular
we have : FOQ“(R)/F_lQ"(R) G(R)s(s))- We define the quantum sections of R
at S to the ring FyQ%(R) = Q“ (R)o equiped with the induced filtration. We denote
this ring by R(s). The F-saturation of S is § = {e € R,o(r) € o(S)}. It is clear
that S is multiplicatively closed, 1 € S, 0 ¢ S, and o(S) = o(S).

2.3. Proposition. With notation and conventions as before we have : Q%(R) =
Q%(R) Moreover; S is an Ore set in R and for the localized filtration on (S)™'R
(being the one induced on it from Q%(R)) we have that Q%(R) = ((S)"'R)", i.e.
the microlocalization can always be obtained as a classical localization followed by a

completion.

Combining Proposition 2.3. with foregoing propertles and Proposition 1.3.d. we
know for a saturated S, i.e. S =35 Q%R)™: QS(R) is the graded X-adic completion
of (S) “1R. The definition of the graded completion yields that

Q5(R)o = im((5)™ R/ X™(S) ™ R)o)
- g;<(§>~lﬁ>o/<xn<§>-lﬁ>o>
= lim(($) ™" R)o/X"((5)"'R)-n)
= 1511 FyS™*R/F_,S7'R = (F,ST'R)"

n

where A stands for the completion with respect to the filtration induced FS™ 'R
(or by FQ%(R)) in Fy.S™'R. This provides a way to calculate quantum sections
effectively by first calculating (S™!'R)o and then allowing the suitable completion.

Example. 4. [RVO] Consider the first Weyl algebra R = A;(C ). From the fore-
going section we know that G(A1(C)) = C[X,y] and A;(C )~ =C [X,Y,Z]/(XY —
YX-X2YZ-2Y,XZ-7X), Where we have put X = 22,Y = yZ, Z being the reg-
ular central homogenous element of degree one. Consider S = {1,z,2?...}in C [z, y].
The saturation S of S consists of all elements f such that o(f) = X" for some n and
this is an Ore set. Note that all elements of the form A4z, A € € , are contained in S
The homogeneous Ore set is S = fZr, f=2"+> 1 i1cn apiz®y'} and we may write
fZ™ as a homogeneous form of degree n in the new variable : X =22,Y =yZ and
Z,eg z2+y+1islifted to X2+ Y Z+ 22 In (5 'R)o we find the elements ¥.X 2,
XY, ZX~1 X717 and these satisfy the relations : Y X! — X 71V = (ZX~1)?,
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ZX™1 - X~1Z = 0. So we have to complete the commuting relations of the genera-
torsp=YX tandg=ZX"1. Nowgp=ZX 'YX ' =Z(YX ' -Z22X"9)X" ! =
YZX2-2Z3X"3= XY 12X 1 -23X"3 = pg—¢* Hence we arrive at [p,q] = ¢°.
Note that Z € J¢ (]A%) hence Z € J 9(§ "1§) and therefore every element of the form
X"+ ZF, 4 (X,Y,Z), where F,_1(X,Y,Z) is homogeneous of degree n — 1, has
to yield an invertible 1 + ZX~}(X'~"F,_{(X,Y,Z)) in the completion of (5™ R)q
because ZX~! € Jg(g_lﬁ’.)g, X "F,_1(X,Y,2) € (g“lff%)o‘. Therefore we may
consider the algebra € (p, q)/(pg — gp = ¢*) as determining the quantum sections up

to completion.

Example 5. Consider the two-dimensional Lie algebra g = €2+ C'y with [z,y] = z.
Then U(g)™ is the quadratic algebra generated by XY, Z satisfying : XZ -ZX =0,
YZ-2Y =0, XY —YX = XZ. Let o(S) be {1,y,92,...} in C[z,y] = G(U(g))
The saturated Ore set in U(g) is S = {f = y" + Y11, @r1z*y'} and this lifts
to a homogeneous Ore set in U(g)™~,S = {fZ",f € S having o(f) = y"*}. Some
relations in degree zero of 5~ U (¢)~ derive from the defining relations above :
ZY ' =Y 1ZY1X - XY~! = Y~1XZY~!. Consider the canoncial generators
p=XY"!and ¢ = ZY !, then we calculate :
gp=2Y XYy}
=Z(XYy '4+vlxzyHy !
=XZY 4+ ZY ' Xy izy !

=pq +qpq
Yielding the rather odd relation [p,¢] = —¢pg. However, since Y — Z € S we must
invert 1 — ¢ in the quantum sections so we may rewrite the commutation relation
as gp = pT{—é— and so we may look at the skew polynomial ring € [[¢]] [p, 7] where v
is the automorphism defined by p — T—E—q— and see that C [[¢]] [p,7] determines the
quantum sections of U(g) (note that as in Example 4, it sufficed to invert one element,
here Y, in order to find up to completion the quantum-sections). One should not
conclude from the examples 4. and 5. that quantum-sections for some o(S) of the

type {1,a,a?,...} are always that easy to obtain.

Example 6. Let ¢ be the Lie algebra sl; and change the sl;-basis such that
Y,Z] = X, [Z,X] =Y and [X,Y] = Z. Consider the multiplicative set o(S) =
{1,X,X? ...}. The reader may check that the commutation formulas determining
the quantum sections of U(sly) at o(S) may be given as :

[A,B] = (A>+ B*+ 1)C

C? C?

A=A et i
: 2 2
[B,C] = BC ¢4 C

1+ C2 1+C2




Quantum Sections and Gauge Algebras 9
where A=YX"! B=ZX'and C =TXL.

Again it is useful to introduce the quantum section of filtered modules. First, in a way
formally similar to the way Q%(R) had been constructed we may define Q'c(M) for
any separated filtered R-module M with a o(S)-torsionfree G(M). Then FQ%(M) is
complete, G(Q%(M)) = o(S) " G(M). From [AVV] we recall the following exactness
properties of microlocalization with respect to good filtrations (note that the positive
case considered in the section is a particular case of the Zariskian case considered in

[AVV] and in the consequent section 4.).

2.4. Proposition. For every M with good filtration F'M we have that Q%(M) =
Q%(R) ®r M as filtered R-modules (and Q%(R)-modules) and Q%(R) is a flat right
R-module. The functor Q%(—) is exact on strict sequences.

When introducing quantum sections the reduction to degree zero presents minor
problems. By definition F,R(s) = R(g) for n > 0 and with respect to the filtration
of R(gy the inclusion fi(s) C @g(fx’) has the property (é(g))m = @g(ﬁ)m for m <0
and (ﬁ(s))n = (fi(s))o = Rs), for n > 0. Since the filtration of Q%(R) is complete,
the same is true for FyQ%(R) with the induced filtration. So for any M with good
filtration FF'M we define the quantum sections at S by Ms) = FoQ%5(M).

2.5. Proposition.
1. Mgy is complete for the filtration induced by FQs(M).
2. The functor M — M(g) is exact on strict sequences of good filtrations.

3. Suppose that o(S) N G(R); # ¢ (this is the case in all geometrical situations
usually encountered) then Mgy = R(sy ® FoM.

2.6. Note. It is possible that Mgy = 0 but M 3 0. This may be expressed in terms
of the characteristic variety of M, see later. As before we may facilitate notation by
putting G(M)(a(g)) = (O(S)_'IG(M)(), S0 M(S)/F—IM(S) = G(M)J(g))‘,

3. Quantum Sections and Coherent Sheaves over Projective Schemes.

Assumptions on R, G(R) are as in Section 2. We consider Proj(G(R)) = Y with
its Zariski topology. The graded structure sheaf OY is defined by associating to
a basic open set Y(f) in Y, f homogeneous in G(R), the graded ring of sections
Q¢(G(R)) = G(R)[f™"], the structure sheaf Oy is the part of degree zero sheaf,
Oy = (0% )o. The ringed space (Y,0Qy ) is a scheme. The ringed space (Y, 0% ) is a
coherent Noetherian sheaf of rings. To p € Proj(G(R)) we associate the multiplicative
set G(R)—p = S(p), to Y (f) we associate S(f) = {1, f, f%,...}. We define the micro-




Quantum Sections and Gauge Algebras 10

structuresheaf of R over Y by associating to Y'(f) the ring Q’é(‘f)(R). This defines a

sheaf O% and by applying the functor ~ (sectionwise) we obtain the Rees sheaf Q;
One should pay some attention when dealing with these sheaves stalk-wise :

3.1. Proposition. [SVO] O} and _éf;/ are sheaves and for each p € Y the stalk
0% , is a Zariski filtered ring in the sense of [LVO1] (see also Section 4). Moreover
the completion of OF  at its filtration yields exactly the microlocalization Qg(p)(R)"

For notational convenience we write R = O}, E = _5_;, GR) = _71/2(__72, where
X stands for the global section of ﬁ determined by X|Y(f) = XQ?( r)- Then ]z
and G(R) are graded sheaves and the sheaf R is filtered in the sense that there
are subsheaves of groups F,R given by FoR(Y(f)) = FnQ‘g(f)(R) on the basis
{(Y(f),f € G(R), for some n > 0}. Obviously we obtain a subsheaf of rings FoR
given by FoR(Y (f)) = FOQZ( f)(R) = R(s(y))- It is clear that FoR = (E)o as sheaves
over Y. For some notions concerning sheaves we may refer to P. Schapira [Schap].

3.2. Proposition. 73R is a Noetherian coherent sheaf of rings, the stalk at p € ¥V
is such that (.7:'03);\ = Rys(p)) where A stands for the completion at the filtration of
(FoR), defined by (FrR),, n < 0. ‘

3.3. Theorem. FyR is a sheaf of Zariski rings i.e. sections on basic open sets are
Zariski rings, having Zariski rings for the stalks too. F_;R is a Noetherian coherent

ideal of 7R and FyR/F_1R = Oy .

We call FyR the sheaf of quantum sections over Oy . Let us mention a few examples
of this.

Example 7. We reconsider the case R = A;(C'). First let us point out that it suffices
to describe a sheaf on the basis of the topology given by the Y(f), f homogeneous
of positive degree in € [z,y]. When checking the proof of the fact that Of is a sheaf
one sees that the real localizations at the corresponding Ore sets of R, that is the
:S’F)_, define a subsheaf 0% C 0% such that Q¥ is the sheaf-wise completion (this
is always calculated sectionwise, not stalk-wise !) completion of _O_Q at the filtration
.7-'Q§‘/ sectionwise defined by the localized filtrations in W—lR. We will describe
the quantum sections by describing _O_%‘/ i.e. up to a completion that does not interfere
with the commutation relations. Now Proj(G(R)) = IP! in this case and we cover
P! by Y(z) SpecC [£] and Y (y)
respectively. Of course Y (z) NY(y)

~ SpecC [3;—] corresponding to S(z) and S(y)
~ Spec@[i, 4] corresponds to S(ay). Over
S(z), S(y) and S(zy) we have to calculate the localizations at the corresponding Ore

sets in R, this yields the following cases :

S(z): We have seen before that we obtain a defining relation [p,q] = q® with
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p=YX"'land¢g=2X"1
S(y): Using the anti-symmetriy between z and y it is easy to obtain the defining
relation [p~!,v] = —v®, where p~! = XY ™! v = ZX~! Note that v =
gt
S(zy): We can glue the above rings together their embedding in the ring generated
by p,p~", ¢ (or p,p71,v)

This may be schematically picturized as follows :

Y(2y) = Y(2) N Y(y)

Example 8. We now let R be the enveloping algebra U(g) where ¢ is again the two-
dimensional non-Abelian Lie algebra considered before. Again Proj(G(R)) = IP!
and we consider the same covering as in foregoing example.

S(z): Since z is a normalizing element in U(g) it suffices to localize classically
at {1,z,2%,...} in order to describe the quantum sections at S(z) up to
completion. The canonical generators are p = Y X! and ¢ = ZX~! and
one calculates : pg =YX 1ZX 1 =ZYX? = Z(X" 'Y + X! = gp+ ¢,
hence [p,q] = ¢*, which defines the exceptional 2-dimensional quantum
plane.

S(y): It is easily seen that we obtain the quantum sections from € [[w]][p™*, 7]

where w = ZX ™! and v is the automorphism determined by w = (see

Example 5)
S(zy): Note that w = gp~!. The schematic picture obtained is :

Y(y)
y(z,y)

C {p.q}/(pq — qp — ¢*)

where ¢ maps ¢ to wp and 7 is clear.

So in constructing the quantum “scheme” of U(g) we glue a 2-dimensional quantum
space (see section 4) with a very “localized” algebra.
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Again we finish this section by providing the corresponding notions for modules with
good filtrations. If FM is good then there is a filtered sheaf of R-modules M = Of,
obtained by associating to Y'(f) the microlocalization Qg.(f)(l\/[). We also obtain a
sheaf of G(R)-modules G(M) = _QgG( M) Since the latter is coherent and M is locally
finite (because M 1is finitely generated) it follows that M is coherent. Therefore
we obtain a coherent sheaf Fo.M and a coherent FyR-submodule F_; M such that
FoM/FaM = Og(uy, the usual structure sheaf of G(M) over Proj(G(R)). We
refer to Fo M as the sheaf of quantum sections of Oy over Proj(G(R)). Quantum
sections of pure filtrations are under consideratrion at this moment.

3.3. Proposition. If M—f>N is a strict filtered morphism then the induced

FoM — Fo N is strict in the sense of sheaf filtrations. If FM is good then F is
©

good on FyM in the sheaf sense, [RVO]. |

For a given M € R-filt with good filtration F.M we define : A = Anng(r)(G(M)),
V(A) = V(M) C Proj(G(R)) the closed subscheme determined by the graded ideal
A. Tt is costumary to call V(M) the characteristic variety of M, so we define the
quantum sections over the characteristic variety as the restricted sheaf Fo M|V (M)

i.e. we associate Mgy to Y (f)NV(A). When Y (f)NV(A) # ¢ then Q’é(f)(M) # Q.

So the assumption that the sets Y'(f) with f € RG(R) of non-zero degree form a basis
for the Zariski topology leads to Fy Qgﬂ(f)(M) # 0 and hence the sheaf Fo M|V (M)
has non-vanishing sections everywhere. For more theory concering coherent sheaves
over micro-structuresheaves we refer to [RVO]; let us mention that the notion of a
good filtration is replaced in the sheaf theory by the notion “coherently filtered”.
In [RVO 2| quantum sections are viewed as a degenerate case of formal quantum
sections, here one is working with formal schemes obtained by formal completions
along closed subschemes and the non-commutative “formal” sheaves constructed over

them.
4. Zariski Rings to Gauge Algebras.

The theory of filtered rings, in particular microlocalization, may be extended to the
case of non-commutative associated graded rings. Of course, when constructing the
microlocalizations one has to start off with an Ore set ¢(.5) in the associated graded
ring that can be lifted to a saturated Ore set in the filtered ring as well as to an
homogeneous Ore set in the Rees ring. From then on all constructions may be carried
out without essential changes. This generality is allowed by the theory of Zariskian
filtrations and the consequent use of the Rees objects that has been the guiding
philosophy of Li Huishi, F. Van Oystaeyen in [LVO 6] and consequent publications.
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Since the important examples of enveloping algebras and rings of differential operators
have commutative associated graded rings it may be necessary to point out that
the generelization strived for is not as artificial as it may seen at first sight. Just
like the forementioned algebras may be viewed as deformations of polynomial rings
via the Rees ring, gauge algebras can be introduced as deformations of quantum
spaces, [LB]. An n-dimensional quantum space (or rather its function ring) is an
affine positively graded C-algebra @ =C & Q1 P ... 8 Qm B ... that is a quadratic
algebra in the sense of Manin, [Man], i.e. @ generates ) as a ring over €' and
the defining relations are quadratic, and @ is regular in the sense of Artin, Schelter,
[AS], ie. gldim@ = GKdim@Q = n and E*ct'Q(kQ) = 6;,C . Results of R. Irving,
[Irv], for n = 2 and M. Artin, W. Schelter, J. Tate, M. Van den Bergh [ATV 1-
2] for n = 3 establish a complete classification of quantum spaces for n < 3; for
n > 3 the classification is non-existing. A gauge algebra G is a positively filtered
algebra (of finite global dimension) such that its associated graded ring @ = G(G)
is a quantum space. Weyl algebras, eveloping algebras and the rings of differential

operators usually considered are gauge algebras, but there are many others.

Example 9. Let 4,(C,q) be the € -algebra generated by = and y satisfying
the relation 2y — gyz = 1. It is clear that G(A,(C,q)) = C[z]ly,7] = Cz,y]
where 7(z) = gz, this skew polynomial ring is the function ring of the quan-
tum plane. The algebra A;(C,q) is called the quantized Weyl algebra in [Good].
In C,[z,y] the set {1,z,z%,...} is an Ore set that yields a saturated Ore set
S(z) = {f = a" + > kti<n @kiz*y'} and a homogeneous Ore set : S =1{f =
X”+Zk+,<n ozkleleJ"_k"l} in the Rees ring of A;(C, ¢) The Reesring A;(C ,¢)~
is generated over € by X, Y, T satisfying [X,T] = [V,T] = 0 and XY — ¢Y X = T?.
The quantum sections of A;(C',¢) at S(z) is the completion of € -algebra generated
by A=Y X! and B = TX ! satisfying the commutation relation: AB—¢BA = B®
After a basechange 4 — A’ = (¢ — 1)A + B? this strange looking algebra becomes
the quantum plane €' ,[A’, B].

Example 10. Witten’s gauge algebras.

In [Wit], E. Witten provided a partial explanation for the existence of quantum
groups. He established that it is possible to summarize the data in Chern-Simons
gauge theory with gauge group G in terms of a Hopf-algebra deformation of the
universal enveloping algebra of G. When G = SU(2) this deformation is equivalent
to Woronowich representation of quantum SU(2), cf. [WOR]. The argument then
comes down to the statement that quantum Lie Algebras exist because 3-dimensional
Chern-Simons gauge therory exist, see also [LB] for more detail. The general form
of Witten’s gauge algebras W for SU(2) are the € -algebras generated by X,Y and
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Z satisfying the relations : YX +aXY 4+ Y = 0, YZ +~42Y + §X? +eX =
0, ZX +¢XZ +nZ = 0. For G(W) we obtain the following defining relations :
YX4+aXY =0,YZ4+~42Y +6X2=0,ZX +£(XZ =0. We see that G(W) is a
3-dimensional quantum space of type S in the sense of [ATV 1] ie. a line plus comic
situation. Note that 3-dimensional quantum spaces have a canonical normalizing
element of degree 3; in the above case this element is a product of two normalizing
elements, one of degree 1 (being X) and one of degree 2 having a physical explanation
as the deformation of the Casimir operator. This situation turns out to be typical for
3-dimensional gauge algebras, that they always have normalizing elements of degree
1 and degree 2 in the associated graded ring and one can microlocalize at these

normalizing elements because they generated Ore sets.

In the foregoing sections we focussed on positive filtrations but this is somewhat
unsatisfactory firstly because this class is not closed under the operations we consider
(localizations etc...) and secondly because several important examples, e.g. I-adic
filtrations, genus of microdifferential operators etc..., do not fit in the class. In
order to have a class of filtered rings allowing for non-positive filtrations as well
as non-commutative associated graded rings but still allowing the use of homological
algebra methods in order to deal with regularity of non-commutative rings and global

dimension it is necessary to have the following basic properties.

i. If M has good filtration F'M and N is a submodule of M equiped with the induced
filtration FN = N N FM then FN is again a good filtration.

ii. Every good filtration is separated.

It turns out that i. and ii. are equivalent to the following : R is Noetherian and
XelJd (E) (for several equivalent statements we refer to [LVO 1], and in this case the
filtration F'R is said to be Zariskian. Every complete filtered ring R such that G(R)
is Noetherian is a Zariskian ring and in particular the positive case with Noetherian
associated graded ring is also a particular case. The results of Section 1 and Section
2 remain valid for Zariski rings in general; even for Section 3 one can do a lot but
one has to define a suitable topological space first. Note that we will assume the
conditions i. and ii. bor both left and right modules, so the Zariski rings mentioned

here are left and right Zariski rings, as in [LVO, 1,2].
We mention some fundamental results stemming from [LVO 1, 2,...].

4.1. Theorem. Let R be a Zariski ring. If G(R) has finite global dimension then
i. gldimR = 1+ gldimG(R)

il. gldimR < grgldimG(R) = grgldimj% — 1, where grgldim stands for the gldim in
the graded category.
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iii. gldimR = gldimR

4.2. Theorem. Let R be a Zariski ring. If G(R) is a regular Noetherian (in
the sense of Auslander) then R and R are regular Noetherian. Recall that a non-
commutative ring is regular in the sense of Auslander if it has finite global dimension
and every finitely generated left or right module satisfies the Auslander condition;
recall that a finitely generated R-module M satisfies the Auslander condition if for
every 0 < k£ £ p = gldimR and any nonzero R-submodule N of Ext%(JM,R) we
have jp(N) > k, where jr(—) stands for the grade number, i.e. the smallest natural
numbet j such that Extl(—, R) # 0.

4.3. Corollary. If G is a Noetherian gauge algebra then G and G are Noetherian
regular algebras. If G(G) is an n-dimensional quantum space then : gldimG = 1+ n,

~

gldimG < n. Moreover, GG is an n + 1-dim quantumspace.

The “scheme”-theoretic treatment of gauge algebras has its roots in trying to un-
derstand the geometry of so-called innocent quantum spaces, i.e. quantum spaces
that are Noetherian and posessing a central element ¢ of degree one. The innocent
quantum space corresponding to a gauge algebra G is its Rees ring G. In [Art] the
quantum projective space of a quantum n-space ) is defined to be Proj(Q) = Q-gr F,
where F is the full subcategory of finite length modules, together with a shift opera-
tion [Art, Definition 1.2.]. For a commutative ring, or one that is a finite module over
its center, one may recover the underlying scheme structure from Serre’s theorem.
In general however the “scheme” structure of Proj(Q) as defined above is far from
being understood. A first feeling for the underlying problems can be obtained by
considering particular modules, i.e. the point- and line-modules, c¢f. [ATV 2], and
the fat point modules introduced in [Art]. If we restrict attention to the geometry of
innocent quantum spaces we can use the gauge algebra and its quantum sections to
put a “scheme” structure on Proj(g ) which reduces the study of (fat) point-modules
to that of finite dimensional representations of algebras, ¢f. [LB]. In fact, we may
view Proj(g) as an affine piece corresponding to the gauge algebra § and a piece at
infinity identified to Proj(g/tg) = Proj(G(G)). That is a lower dimensional projec-
tive quantum space. Assume by induction that we have been able to put a scheme
structure on Proj((G(G)) with affine open sets corresponding to some graded Ore sets
S1,-..,S5k and it is not restrictive to assume that each of these Ore sets may be gen-
erated by a single element. Then we may cover Proj(g) by open sets corresponding
to the quantum sections with respect to the S;,7 = 1,..., % plus the appropriate
glueing morphisms. Note that these quantum sections and their “glues” with G may

~

be viewed as a scheme structure on Proj(G). Let us provide some easy examples here.

Example 11. Reconsider the first Weyl algebra A;(C). We use the calculations
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made above to extend the schematic picture in Example 7 by glueing to the open set
corresponding to Y (Z) i.e. the affine piece corresponding to (A4;(C ). We obtain the
following diagram of glueing data :

C{XZ- Y21, 22X}« A)(C) = C{XZ2-1,YZ '} = C{XZ', Y2}, 2Y"}}
[Xz-1 Yz =1

N /
C{yx-1,zx-1} C{Xy~tzy-'}
[YX~1,ZX 1) = (2X"1)3 [XY=1,2Y " = (Z2Y~1)?
N v

C{zZX-\YX~!, Xy-4)
To find its point modules we have to study the one-dimensional representations and

their glueing data.

¢ = ¢ “ ¢
N /
V((ZX71)?) 4(C2
\ /

V((ZXT))nV((ZY )
corresponding to the fact that the associated degree 3 divisor of the quantum 3-space
A€~ is Z8.

This may be pictured in the usual IP?.

y(y)-points

where the circle means that the intersection point is missing and we have drawn a
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double copy of the same z = 0 locus.

Example 12. Reconsider the situation of Example 8. Using the computations and

notations of that Example 8, we obtain the following diagram of glueing data :

U(g)
C{XZ1,2X1YZ '} = C{XZ L, YZ 1} > C[Z2Y L, YZ XY ,4]
Xz 1, YZ Y =XZ"!

AN /

C{YX-!,zX"1} CZY XY 4]
VX~1 ZX"1 = (ZX~1)?

N\ v
CzY XYL YX! 4]

Only the top left corner (glueing the enveloping algebra to the exceptional quantum
space) resembles the commutative case. The other two corners have shrinked in
dimension. It may be helpful in understanding these phenomena to look at the

e

picture of point-modules in Proj(U(g)) pictured in the usual P? .

x=0 y=0

a z=0

7

where :
the y(z)-points are z = 0 without the point a,
the y(z)-points are x = 0 without the point a,

the y(y)-points are a.

Example 13. The quantized Weyl algebra A,(C',¢) as a Gauge Algebra. We use
notation and calculations as in Example 9. Put R = 4;(C,¢). Both X and 1" are .
normalizing in the quantum plane € ,[X,Y], so we may define a “scheme” structure

on Proj(.fi) by giving the following glueing data.
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C{XT1,TX"1, YT} = C{XT-1, YT~} & C{XT-}, YT~} , TY -1}
XT-1YT~' — gY T XT-' = 1

AN /
C{yx-1,Tx-1} C{XY-1,TY-'}
YX ITX- - qTX-1Y X! = (TX"1)? XYY~} - i1y -iXy =t = —L(Ty-1)
N v

C{YX-', Xy-',Tx-1}
and again one can visualize the point modules as points in IP®. The picture corre-

sponds to the fact that the associated degree 3 divisor is T(T? + (¢ — 1)XY') :

x=0 y=0

f==l

where C' is the conic defined by T? + (¢ - 1)XY.
Y (T) points are C — {a, b}
Y (X) points are C — {b} U(T = 0) - {b}

Y (Y) points are C — {a} U(T = 0) — {b}

The scheme structure of A;(C, q) described above is critical in defining the scheme
structure on PrOJ(W) where W is the 4-dimensional quantum space of the Rees
ring of the Witten gauge algebras. For, it is possible to change the polarization on
Proj(G(W)) as in [Art] to obtain Proj(A;(C,¢)~) and use the foregoing in order to
define a scheme structure on Proj(G/W)) that is then lifted via quantum sections
to Proj(W), see [LB]. In a similar way one can study the fat-point modules of mul-
tiplicity » (as in [Art]) in an innocent projective quantum space by glueing together

the n-dimensional representation of the scheme components.
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