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Abstract

In this paper we give constructive proofs of Bergman’s funda-
mental results on rational identities of matrices. We give an explicit
method to find rational identities holding in M,(€ ) not holding in
any Mm,(@') where the m; are integers s.t. the equation n = ¥ a;m;
has no solution in positive integers a;. Moreover, our examples are
minimal with respect to the distortion number which is a measure of
the complexity of rational expressions.

1 Introduction

One of the historic roots of p.i. theory is the foundations of geometry, in par-
ticular the problem of constructing Desarguian projective planes which do
not satisfy the Pappus theorem, see e.g. [2, p.342-359], [3] or [14, Ch.8]. Some
attempts in this direction have been made in the first half of this century
by a.0. Dehn (1922) [10] who actually introduced polynomial identities and
Wagner (1937) [16] who introduced generic matrices, proved the first polyno-
mial identity for n X n matrices and introduced the symbolic method (which
he attributes to Magnus) rediscovered later by several people. Wagner was
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“also able to prove the first structural result in p.i.-theory : an ordered ring
which satisfies a polynomial identity is commutative. This was a first step
in proving that ordered Desarguian geometry satisfies the Pappus theorem
in the presence of any other intersection theorem which does not follow from
the Desargue theorem, a result which was finally proved in 1966 by Amitsur
[2].

It is well known that the presence of the Desargue theorem enables the
introduction of homogeneous coordinates from a division algebra D and that
universal theorems of intersection involving constructible configurations cor-
respond to rational identities in D (and not just polynomial identities). The
theory of rational identities has some striking differences compared to that of
polynomial identities. It was shown in [2] that a rational identity which holds
for all M,,(C@') are precisely those which hold for all division algebras contain-
ing ¢ and there are such non-trivial identities e.g. Hua’s identity (compare
this to the fact that there is no polynomial identity holding in all M, (@)).
In fact A. Schofield showed that one can bound the size of the matrices n (in
function of the complexity of the expression) in order to verify whether it is a
universal rational identity for division algebras, [15]. Another (more surpris-
ing) difference between polynomial and rational identities is that whereas all
polynomial identities of M,(C") also hold in M,,(C ) for all m < n, a similar
statement for rational identities only holds when m | n, a theorem proved
in 1976 by Bergman [7] thereby correcting an erroneous statement in [2,
Th.12], see [7, p.259,footnote] for more details. This fact raises the question
of constructing such ’exotic’ rational identities (or,equivalently,intersection
theorems which do not follow from Desargue nor the S,-intersection theorem
of [2]) holding in M,(@ ) but not holding in certain M,,(€ ). My motivation
for studying this problem arose because of similar divisibility results in the
study of the rationality problem of the centers of universal division algebras.

Bergman’s proof [7, Th.4.1] gives no clue for the construction and, in
fact, only a few published examples are known to the author. In [7, §6]
Bergman gave the following (n,m) = (3,2) example : let f' = f.x — z.f and

12\

6(f) = &=y then

B(z,y) =1-6(y).0(y").0(y"").0(y" ") (1)

represents 0 in Dy 3 and 1in D,,. Here, Dy, is the universal division algebra
on k generic n X n matrices (see §2 below for the definition) to which any
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division algebra D of degree n is rationally equivalent (i.e. satisfy the same set
of rational identities). In [14, §8.3] Rowen gave a more instructive example
when (n,m) = (4,3) : Dgg is a crossed-product with group Vi, Klein’s
Vierergruppe. This can be proved from the fact that

f(xla L9, $3) = [[$17 12]2) ;l:;;][[:l)l, 172]7 ‘773]—1 (2)
is such that f(X;, Xs, X3)? has degree 2 over the center of Dy 4.But then,
C’5(17 f(xla$2a$3)2af(x17$2>x3)47$47 51:5) (3)

where Cj is the 5-th Capelli polynomial (see e.g. [14, p.12]) represents 0 in
Ds 4 but is not an identity in D53 due to the fact that f(zy, zy, z3)? does not
lie in the center of Dj3 and hence must have degree 3 over it. Unfortunately,
we have no pleasant description for the corresponding element in Dj 3.

The Rowen example seems to indicate that one requires insight in the
more delicate structure of finite dimensional division algebras in order to
construct ’exotic’ (rn, m)-examples for general m not dividing n. While this
is indeed the case we are able to constrain the difficulty to the following
black-box problem : given an affine Azumaya-algebra, write the identity as
a linear combination of evaluations of central polynomials. Provided one can
effectively solve this problem, we will present an inductive procedure in this
paper to construct rational identities holding in M, (@ ) not holding in any
M,,(@) where the equation n = 3 a;n; has no solution in positive integers
a;. Moreover, our examples combine the good properties of the Bergman and
Rowen examples : they are minimal with respect to a complexity measure
called the distortion number of an expression (as is the case for the Rowen
example) and they represent 1 in Dg,, for all n; < n (as is the case in
Bergman’s example). Knowledge on the minimal distortion number A(m, n)
of a rational identity holding in M, (€ ) not holding in M,,(C) (which we
prove to be the integer a s.t. a.m < n < (a + 1).m) enables us to prove
a natural extension of the classical result on polynomial identities : if r
is a rational identity holding in M, (C') with distortion number < A(m,n)
then r holds (possibly degenerately) in M,,(C) (meaning roughly that r or
a subexpression of r is a rational identity for M,,(C).

This paper is organized as follows : in section two we recall the definition
of rational identities and introduce the distortion number of expressions. In
section three we give a short proof of a version of Bergman-Small needed
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for the rest of this paper. We introduce the Bergman-Small diagrams of an
affine p.i.-algebra as a conceptual tool in our constructions. In section 4 we
single out two tricks which we use frequently.

The main idea to construct the desired ’exotic’ rational identities is as
follows : adjoin to the ring of k generic n X n matrices Gy, suitable inverses
of expressions which are well defined in all Dy . s.t. the large algebra is
Azumaya. Then, write the identity as a combination of evaluations of central
identities. The resulting expression (as a rational relation among z, ..., 25 will
then represent 0 in Dy, and 1 in all Dy, s.t. n; < n and we can slightly
alter it to be non-zero for all n; > n, too.

In section 5 we carry out this program of embedding Gy, into Azumaya
algebras which is based on killing off all Bergman-Small diagrams except
(rn) by tossing in inverses of rational Azumaya identities for suitable degrees
m < n. In section 6 we show that orie can considerably shorten this inductive
procedure if one is willing to use some geometrical results from [11] on n-
dimensional representations and their degenerations. In section 7 we give
a constructive proof of the main result of Bergman on rational identities of
matrices [7, Th.9.1 and Cor.9.3]. The final section gives a pun connection
with the game of Sylver coinage.

Finally, note that our insistence on @ as the base field is merely a bad
habit of the author which is nowhere crucial for the construction in view of
[6] (with the possible exception of the shortening section 6). Also it should
be acknowledged that the seminal idea of this paper is taken from [7, §5].

2 The distortion number

In this section we will recall and introduce some definitions. Throughout we
fix a number k£ and all expressions will involve the non-commutative variables
r1,..., k. Recall that any rational expression in the z; can be thought off as
an element of an affine algebra @ < zy,...,2%; 21, ..., 27 > modulo the ideal
generated by the elements 1—z;.p;(1, ..., Zx; 21, ...2;-1) (all 7) where the p; are
non-commutative polynomials in the appropriate number of indeterminates.
Sometimes, we will abbreviate this by denoting r = r(21, ..., 2k, pr ", ooy D ).
Our measure of the complexity of a rational identity will be the distortion
number to be defined below :




Definition 1 Let r be a rational expression in xy, ..., Tk, then we define the
distortion number of r (denoted 6(r)) inductively as follows :

6(r) =0 iff r is a non-commutative polynomial in the z; i.e. an element
of the free algebra ¢ < xy,...,z1 >

If r = r(@1, ., Zr, P17, oo i 1) where the p; are rational expressions of
distortion number 6(p;) < j, then §(r) < j+1.

Next, we recall the definition of rational identities of M, (€ ). For every
1 < ¢ < klet X; be the generic n X n matrix

11711(7:) see $1n(l)
X = : : (4)

Then, r = r(z1,...,2x) is said to be a polynomial identity of M,(C@) iff
r(X1,..., Xx) is the zero matrix in M, (@ (24(2) : 1 < u,v < n,1 <5 < k).
Note that the quotient algebra of € < zy,..,7; > modulo the ideal of all
polynomial identities of M,(C") is the ring of k generic n x n matrices, Gg
which is the subalgebra of M, (€' (24.(2);u,v,7)) generated by the matrices
X;,1<1¢<k. G, is known to be an Ore-domain [1] and hence has a clas-
sical division ring of fractions Dy, which is called the generic (or universal)
division algebra of k generic n X n matrices.

Now, let r = r(z1,...,zx; p7 ", .., p; *) then we say that r is well de-
fined on M,(@") iff every p;(Xi,..., Xx) represents an invertible matrix de-
noted P; in M,(C (zuw(?);u,v,2)). If r is well defined on M,(@), then
r(X1, o0y Xi, PTY, ., PTY) defines an element R in Dy,. Alternatively, R
is an element of the affine subalgebra Gy, {P;?, ..., P!} of Dy .

Definition 2 A rational expression v = 1(Zy, .., T DT, s Py ) 8
said to hold in Mp(C) iff either r is well defined on M,(C) and
P( X1, ooy Xis P, o, PY) s the zero matriz in Mo (G (240(3); 4, v, 1)) (in this
case we say that r is a rational identity of M,(C )) orr is not well-defined
on M,(C') i.e. one of the p; is a rational identity of M,(C) (in this case we
say that r holds degenerately in M, (C)).

Hence, r holds in M,,(C) iff r or one of its subexpressions p; is a rational
identity of M,(C). : e ,




3 Bergman-Small diagrams

" A proper study of rational identities seems to be impossible without relying
on the delicate Bergman-Small theorem which gives restrictions on the p.i.-
degrees of prime quotients of p.i.-rings, see [8] or [14, §1.10]. We will give
here a different formulation and an easy proof of it in the special (affine) case
needed here. Probably this proof is the one attributed to Procesi in [6, p.433
bottom).

Let R be a prime affine p.i.-algebra and let TR its trace algebra (see e.g.
[4]) which is a finite module over its center C which is an affine commutative
domain. Procesi [12, p.177-178] has shown that the maximal ideals of C
parametrize the isomorphism classes of semi-simple n-dimensional represen-
tations of R where n is the p.i.-degree of R.

To each maximal ideal m of C one can associate a Young diagram Y (m) =
(ni*, ..., ") with n boxes, where ny > n, > ... > n; and g; is the number
of n;-dimensional simple components (counting multiplicities if necessary)
ocuring in the n-dimensional semi-simple representation of R corresponding
to m.

Definition 3 The Bergman-Small diagrams of R form the set BS(R) of
all Young diagrams obtained from mazimal ideals of C = Z(TR).

Proposition 1 (Bergman-Small revisited) Let R be a prime affine p.i.-
algebra of p.i.-degree n. The set of p.i.-degrees of prime quotients of R is
precisely the set of row lengths ocuring among the Bergman-Small diagrams
BS(R).

Proof : Let P be a prime ideal of R then there is a maximal ideal
M of R containing P s.t. p.t.deg(R/P) = p.i.deg(R/M) (lift an Azumaya
point of R/P). As R/M is finite dimensional, M lifts to a maximal ideal
of TR and hence determines a maximal ideal m of C = Z(TR). Then,
R/M is the endomorphism ring of one of the simple components ocuring in
the representation corresponding to m. Thus, p.i.deg(R/P) occurs as a row
length in a Bergman-Small diagram of R. The converse is entirely trivial.
O

If G,» is the ring of k£ generic n X n matrices, then it is well known and
easy from the above mentioned result) that BS(Gk,,) is the set of all Young
diagrams having n boxes.




Also note that R is an Azumaya algebra of p.i.-degree n iff BS(R) = {(n)}
by the Artin-Procesi result, see [5, Th.8.3] or [14, §1.8].

4 Two tricks

In order to shorten the proofs below we single out the two main tricks here

4.1 Surgery on expressions

Proposition 2 Let s; < ... < § < n < ) < ... < t,,, be an ascending chain
of integers and let r be a rational expression in xy, ...,z with §(r) = a which
is well-defined on M, (@) for 1 < j <1 and on M,(C). Then, there is a
rational expression ' with 6(r') = a which is well-defined on Mn(C@ ), M,;(C')
1<j<land My(C)1<j<m suchthat R = R in Dy,; (all j) and in
Dy and R' # 0 in Dy, (all 5).

Proof :  Let r = r(@y,..,zk;pi", .., o *). Let j be minimal s.t. either
r is not well-defined on MM,,(¢) (meaning that some P, = 0 in Dy,;) or that
R = 0 in Dy;;. Then, we can cure this difficulty by modifying r into r + p
or p; into p; + p where p is a polynomial identity for ¢; — 1 X ¢; — 1 matrices
not holding in M;;(@ ). Now, iterate this process. O

Corollary 1 Let s; < ... < 5 <n <t < ..<t, be an ascending chain
of integers. Assume there is a rational identity holding in M,(C) but not in
any of the M, (€) 1 <4 < 1. Then, there is a rational identity (with equal
distortion number) holding in M,(C) but not in any of the M,,(¢)1<i <1
nor in any of the My;(Q') for1 <j <m.

4.2 Azumaya’s black box

Proposition 3 Let p, ..., p; be rational ezpressions with §(p;) < a which are
well defined and do not hold in M,(C) nor in M, (@) where m < n. If
the affine algebra Gy {P; Y, ..., P} is an Azumaya algebra, then there is a
rational expression r with §(r) < r such that R = 0 in Dy, (and hence is o
rational identity) and R = 1 in Dy, (and hence r does not hold in M,,(C)).




Proof : By [14, Th.1.8.48] we can find elements A4;;,B; €
Grn{P?, ..., P71} such that

t
Zgn(Aila ...,Aid).B,' =1 (5)

=1

where gn(y1,...,4a) is the central polynomial for M, (€ ) coming from the
Capelli polynomial [14, p.26].But then it is clear that

t
T(xla ooy T3 P1, "'7pl) =1- Zgn(aila sevy aid)-bi (6)
=1

has the required properties. a

A rational expression r as in the above proof will be called a rational
Azumaya identity of degree n.

5 Fifty ways to get an Azumaya algebra

In view of the foregoing proposition, we have to find sensible ways to obtain
an Azumaya algebra by adjoining to Gy, inverses of suitable rational expres-
sions (everything inside Dy,,). Usually, one embeds Gy, into an Azumaya
algebra by adjoining to it the inverse of a central element (i.e. a central iden-
tity of M,(C )). However, this procedure is not suitable for our purposes as
a central identity for M, (€' ) is a polynomial identity of M,,(C ) and hence
its inverse is not well defined on M,,(@'). Still, there are plenty of ways to
get an Azumaya algebra (see also [8, Prop.8.1 and p.458 bottom]):

Proposition 4 Letd be the largest integer < 2 and p(24, ..., 2x) a polynomial
wdentity for Ma(@') not holding for Mar1(@), then G {P~'} C Dy, is an
Azumaya algedra.

Proof : The image of P has to remain a unit in every quotient of
Grn{P~'} so none of its Bergman-Small diagrams can have a row of length
< d. But then we have killed off all diagrams of Gy, except (n) finishing the
proof. O

At this point we can ask the following :
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Question 1 What is the minimal degree of a homogeneous element P € Gy,
s.t. G {P~'} is an Azumaya algebra ? In particular, is it equal to the
manimal degree of a polynomial identity of degree d in k variables where d is
the largest integer < 2 ¢

For any pair of integers m < n with m not dividing n let us denote by
A(m,n) the minimal distortion number of a rational identity of M,(C ) not
holding in M,,,(¢ ). Knowledge of A(m, n) has two applications : first, it gives
us a measure of the difficulty to produce explicit rational identities of M, (€ )
not holding in M,,(€ ). Secondly, it allows us to extend the classical result
on polynomial identities as follows : let r be a rational identity of M,(C)
with §(r) < A(m,n), then r holds (possibly degenerately) in M,,(@).

Corollary 2 If 2 < m < n then A(m,n) = 1. Moreover, there is a rational
ezpression v with §(r) =1 s.t. R=10 on M,(€) and R =1 on M, (C).

Proof : The black box result gives a required rational identity of
distortion < 1 for all m s.t. p~' is well-defined on M,,(€ ). Clearly, this
holds precisely for the indicated m. O

Note that Bergman’s rational identity has distortion number 3 whereas
A(2,3) = 1 and that Rowen’s example has distortion number 1 = A(3,4).

Before we treat the general case we need a universal property of the over-
rings Gr{P;,..., P;'} which can be considered as universal localizations
in the category of rings embedable in n X n matrices over a commutative
algebra. To this end, we give the following description of their trace rings
and centers.

Let R = Gy ,{P!,..., P!} and assume as above that each p; 1s a poly-
nomial in #y,..., 2k, p1,...,pi—1. Then, R can be viewed as the quotient of
Gryin = k{ X1, ..., Xi, Z4, ..., Z} modulo the ideal generated by the relations
Zipi( X1y ey X, Pl_l, ey P;_ll) =1.

These relations give rise to l.n? relations among the entries of the
generic matrices T,,(t),24,(¢) and we will denote by I the ideal in P =
Clru(i), 2uw(f) | 1 Suv <1 <i<kl1<j< I] and let A be the
quotient algebra P/I.

It follows from [13, Th.2.6] that there is a natural action of PGL,, an A
and M,(A) such that TR = M, (A)F¢" and C = Z(TR) = APGI», From
this description we deduce the following universal property of R :
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Proposition 5 Let B be a commutative @ -algebra and 8; € M, (B) such
that pi(By, ..., Br) s an invertible matriz in M,(B) for all1 < i < I. Then,
there is o well-defined morphism R = Gy o{P?,..., P} — M,(B) sending
Xi to ﬂi.

Proof : The entries of the matrices 8; and p;(fy,..., Br) satisfy all
relations defining A, so we get @' -algebra morphisms A — B and M, (4) —
M, (B) which map X; € M,(A) to B;. The required morphism is then the
composition

R— TR~ M,(A) — M,(B) (7)
finishing the proof. O

This result allows us to find a lower bound for A(m,n) :

Proposition 6 If a.m < n then every rational identity r of M,(C) with
6(r) < a holds (possibly degenerately) in M,,(€ ). Equivalently, a < A(m,n).

Proof :  We use induction on a. If @ = 1 it is the classical result on
polynomial identities. So, let ¢ > 1 and assume the result holds for a — 1.
Let r = r(@1, ..., T3 P75 ey pi 1) with 8(ps) < a — 1.

If one of the p; holds (possibly degenerately) in M,, (€ ), then so does r
and there is nothing to prove. Hence we may assume that none of the p;
holds in M,,(@') so we can form the algebra Gy {P{",..., 7'} C Dim.
Now, as (¢ — 1)m < n — m we may assume by induction that none
of the p; holds in M, (€ ) and so we can similarly form the algebra
Grn—mi{Prt, .., P} C Dy (somewhat misusing notation). From the
universal property we obtain a well defined morphism

-1 -1 _ Gk,m{Pl-lw")‘Pl._l} 0 )
Gen{P, . P, }—+( 0 Grnm{PTY, . P71 ®)

(mapping to the diagonal). But then if R(Xy, ..., Xs; P, .., P7Y) = 0 in
Dy, it has to be zero in Dy, (and in Dy ) too. |

We can now state and prove our first main result :

Theorem 1 Let m,n and a be positive integers determined by a.m < n <
(a+1).m. Then, there exist rational ezpressions p; with 6(p;) < a not holding
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in Mp(C) nor in M, (@) s.t. py is a polynomial identity of M,,_1(C€ ) and p;
for 2 < <1 are rational Azumaya identities of rank d for some m < d < n

s.t.
Gk,n{Pl—la“'aPl_l} (9)

is an Azumaya algebra. Hence we can find a rational Azumaya identity r of
degree n s.t. 6(r) < a and R =1 in Dy . In particular, A(m,n) = a.

Proof: Again, the proof goes by induction on a. If a = 1 the statement
follows from proposition 4 above. Hence, assume a > 1 and that the theorem
holds for all ¢’ < a.

By tossing in the inverse of a polynomial identity p; holding in M,,_1(C@)
not holding in M,,(C€) we have killed off all Bergman-Small diagrams con-
taining a row of length < m. Consider one of the remaining diagrams
Y = (nf,...,n3*) where Y a;n; = n and ny > ... > np > m. As m does
not divide n there is a maximal ¢ s.t. m does not divide n;. For this n;
we have m < n; < n — m < a.m but then there is an integer ¢’ < a s.t.
am< n; < (a+1).m.

By induction we have rational Azumaya identities py(Y), ..., p,(Y) of cer-
tain degree d s.t. m < d < n; < n which do not hold in M,,(C€) nor in
M, (€) and with §(pi) < @’ < as.t. G {PI(Y) Y, ..., Py(Y) ™} is an Azu-
maya algebra giving rise to a rational Azumaya identity p(Y) of degree n;
s.t. P(Y) =11in Dy, and with §(p(Y)) < d' < a.

We do not have to perform surgery on the expressions p;(Y) or p(Y) to
make them not holding in A, (@ ) as this is a consequence of the foregoing
result.

Therefore, tossing in Pj(Y) € Dy, for all 1 < j < y and the inverse
of P(Y) we have killed off the Bergman-Small diagram Y. Clearly, one
can iterate this argument to get rid of all diagrams different from (n). So,
ultimately we get an algebra Gy, { P, ..., P!} which is Azumaya and with
all 8(p;) < a. The black box result and the foregoing result now finish the
proof. a

Note that the above proof provides us with an inductive procedure to find
explicit rational expressions r of minimal distortion number such that R = 0
in Dy, and R =1 in Dy, for m not dividing n.
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6 Rationalizing the argument

If one is willing to use an extra bit of information, one can shorten the
foregoing argument drastically. Recall from [11, §II.1] that the space
Xin = M,(C)® of n-dimensional representations of Gr,» and its quotient
variety Vi, under the group action of PGL,, mentioned before, admit a nice
stratification according to representation type. Moreover, one can define a
notion of refinement among representation types [11, p.155] such that one
stratum belongs to the Zariski closure of another one if and only if the first
representation type is a refinement of the second.

Translating these facts to the language of Bergman-Small diagrams we
see that any n-dimensional representation of G, with associated diagram
(ny*,...,np"*) is a degeneration of a representation with associated diagram
(n — np,np).

Further, note that the process of tossing in extra elements Py, ..., P
of Dy, translates on the level of n-dimensional representations to restricting
to a Zariski open subset determined by the invariant elements Det(P;) for
1<:<1.

Concluding, we see that it suffices to kill off the diagrams (n,n —n;) with
ny > m to obtain an Azumaya algebra. Note that either ny or n — ny is not
divisible by m.

7 The main result

If m does not divide n we were able to embed Gy, into an Azumaya algebra
by tossing in inverses of elements which are well defined in D, ,,,. We want
to generalize this now to any finite set of integers o = (ny, ..., n;) with n; <
ng < ... < my. So, we are only allowed to adjoin inverses of elements to Gy, if
they represent well defined elements in Dy ,,, for all 5. Such expressions will
be called a-admissible.

Again, we are interested in finding a-admissible rational identities holding
for n X n matrices which do not hold for n; X n;-matrices for all s (if they
exist). The minimal distortion number of such an expression will be denoted
by A(a,n). By the corollary to the surgery trick we have :

Lemma 1 Let o = (ny,...,n) withny < ... < ng < n < Ngyy < ... < 1y then
Ao, n) = A(B,n) where B = (nq, ..., ng).
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Definition 4 An integer n is said to be a~reachable where a = (n4, ..., n;)
if there is a Young diagram with n bozes s.t. -all row lenghts belong to «.
- Equivalently, there is a solution in positive integers to the equation n =
Sty ain; (note that some of the a; may be zero).

This notion gives us a necessary condition for the existence of the required
expressions :

Proposition 7 Ifn is a-reachable where o = (ny, ..., n;), then every rational
identity holding in Dy, holds (possibly degenerately) in some Dy, .

Proof : Let r=r(zy,..., 2k, f{', ..., ') be a rational identity holding

in Dy, ,. We may assume that every f; is well defined in all Dy, for otherwise
r would hold degenerately in some Dy, ,,, and we are done. Hence we can form

the rings By = Grn{fit, ..., f2'} and B = Grn{fit, o f21}.

Assume that n = } a;n;, them we have by the universal property a
morphism
I,(Brn,) - 0
Bk,n — (10)
0 oo 14,(Br )
where I,,(R) represents R embedded diagonally in M,,(R). But then we
know that if r = 0 in By, it must be zero in every By, ;,t00. 0

Actually, the proof admits a slight strengthening of the formulation : if
n = 3 a;n; and r is a rational identity of Dy, which is defined in every Di
s.t. ¢ # 0, then r is a rational identity for all Dy, s.t. a; # 0.

We are now in a position to state and prove the main theorem of this

paper
Theorem 2 Let o = (ny,...n;) then the following statements are equivalent

1. There is a rational identity for Dy, which does not hold in any Dy,
(n; € o) and A{e,n) = A(ny,n)

2. n 1s not a-reachable

3. We can embed Gy, into an Azumaya algebra by tossing in inverses
of a-admissible elements (actually Azumaya rational identities) with
distortion number < A(ny,n)
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Proof : (1) implies (2) by the foregoing proposition.

(2) implies (3) : We use induction on n. This is allowed as the statement -
holds for all n < n; and if ny = 2 it holds for n = 3. So, the only case not
covered by the foregoing sections is when n; = 2 and n, = 3,but then every n
is a-reachable. So, we may assume that the statement holds for every m < n.
Now, take a Bergman-Small diagram for G, ,,. Then, by the assumption there
is at least one row-length m which does not belong to a. As m < n there
exists by induction a rational identity for D ,, which does not hold in any
Dy, (nor in Dy, eventually after performing surgery) and we may assume
that 6(r) < A(ny, m). So, we can kill off this diagram by tossing in the inverse
of this expression. The worst case possible will be the diagram (n — ny, n)
which requires an expression with distortion A(ny,n—n;) < A(ng,n). Hence
we can get rid of all diagrams except (n) as required.

(3) implies (1) : Take an Azumaya rational identity in the ring con-
structed. Then we have a rational expression r with §(r) < A(ng,n) s.t.
r=0in Dgy, and r = 1 in Dy, for all n; € a s.t. n; < n and we can
perform surgery on r if required to have r # 0 in Dy, for all n; € « s.t.
n < nj. O

Note that we actually proved the existence of a rational identity r in Dy,
s.b. 1 =1 1in Dy, for all n; € a s.t. n; < n. Unfortunately, we lose control
on the expression in Dy, for n < n;.

8 The Amitsur-Bergman game

The main result has an amusing interpretation in terms of the following two
person game : assume two players A(mitsur) and B(ergman) alternatively
name positive integers ny, n,... subject to the condition that there is a ra-
tional identity holding in n; X ny matrices not holding in n; X n; matrices for
all ¢ < k. Of course, the first player forced to name a commutative identity
is declared the loser.

In view of the theorem, this game coincides with Conway’s Sylver Coinage
game [9, Ch.18] from which we recall that Amitsur can win by starting with
any prime number ny = p > 5. Unfortunately, it is not clear whether there
is a natural ringtheoretic interpretation of a winning position.
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