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Abstract

In this note we investigate a connection, suggested by E. For-
manek in [7], between the crossed product problem of Amitsur’s uni-
versal division algebras UD(n) of degree n and the generic crossed
products introduced by Rosset and Snider. Further, we introduce and
study a relative version of generic crossed products which enables us
to give a representation theoretic description of UD(n).

1 Introduction

In 1980, E. Formanek [7] suggested a possible connection between the crossed-
product problem for division algebras of dimension n? over their centers and
representation theoretic properties of a certain lattice F,.

This lattice occurs naturally in the study of the rationality problem of
the center C, of Amitsur’s universal division algebra of degree n, UD(n),
see e.g. [6],[7] or [3] for details. Recall that UD(n) is the classical division
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algebra of fractions of the ring G, of 2 generic n X n matrices (which is an
Ore domain) see e.g. [14, p.15 and p.175]. Its center can best be studied as
a field of lattice invariants C, = k(L,)" where L, is a free Abelian group
of rank n? 4+ 1 equipped with an action of the symmetric group S,, which
extends to an action by automorphisms on the group algebra kL, and its
field of fractions k(L,) see [6],[3] or section 4 below for more details.

Now, if one has an exact sequence of S,-lattices 0 - A — B — P — 0
where P is a permutation lattice (i.e. P has a ZZ-basis which is permuted
under the action of S,) then k(B,)*" is purely trancendental over k(A)S5~.
For this reason, one is interested in establishing such sequences with B = L,
and A of minimal rank possible. The best general result known today takes
A = F,, the Formanek lattice, which has rank n® — 3n + 1 (but note that for
small values of n better choices have been found).

If G is a finite group of order n we can embed G into S, (via the transla-
tions) such that GN S,_; = id. So, we can restrict every S,-lattice M to G
and denote this G-lattice by M |g. The essence of Formanek’s observation
is that for n = 4 and G =V, the Klein Vierergruppe, the restriction Fy |y,
is a (minimal) relation lattice for V.

Recall that for any finite group G relation lattices are introduced as fol-
lows (see [8] or [11] for more details) : take a finite free presentation of G

l1-R—-F->G-—>1 (1)

where F is a f.g. free group (on at least two generators), then the Abelian-
ization of the group of relations R is called a relation lattice for G, Ag =
Ru = R/[R, R]. Note that A¢ is afree Abelian group of finite rank equipped
with a faithful G-action. If the number of generators for F' is as minimal as
possible (or equals 2 if @ is cyclic), then Ag is called a minimal relation
lattice. It turns out that minimal relation lattices often are independent on
the particular choice of a (minimal) free presentation,cfr. [8].

Relation lattices turn up in the work of S. Rosset [12],[13] and R. Snider
[15] on generic crossed products. For this reason, Formanek explains his
observation as ”probably a reflection of the fact that UD(4) is a crossed
product with group V,”, thereby suggesting that UD(n) might be a crossed
product with group G if(f) F, |¢ is a (minimal) relation lattice.

However, we will show in this note that whenever G is a group of order
n then both L, |g and F, |g are relation lattices for G provided G is non-
cyclic of order n > 4 or cyclic of order n > 5. Therefore, by Amitsur’s
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non crossed-product result [1] we get a lot of non crossed-product examples
satisfying Formanek’s phenomena. If we stress minimality of the relation
lattice F,, |¢ we will show that G has to be Vj, thereby excluding known
crossed-product situations such as UD(12).

The upshot of the observation that L, |g is a relation lattice for G is
that we can embed canonically a generic crossed-product with group G in
Mn—1):((UD(n)) in such a way that it coincides with the centralizer of the
field of lattice invariants k(L,)¢. In order to prove these facts we extend
the Rosset-Snider construction (which we recall in section 2) to a relative
setting in section 3. Section 4 contains the above mentioned embedding
result whereas the final section is concerned with Formanek’s observation.

2 Rosset-Snider generic crossed products

In [12] S. Rosset presented a large class of division algebras of degree n and
order m in the Brauer group where m | n and every prime dividing n divides
m. Independently, R. Snider [15] used the same construction to study the
problem whether the Brauer group is generated by cyclic algebras.

Let us briefly recall their construction : given any finite group G of order
n, form a free presentation of it

1 R—->F—->G-—1 (2)

where F is a free group. If we divide out the commutator R’ = [R, R] we get
a free Abelian extension

l-A—-E=F/R—-G—1 (3)

where A = R/R' is a free Abelian group of finite rank equipped with a G-
action (a G-lattice). If F is free on at least 2 elements this G-action is faithful
8, p-8]. The ZG-lattice A is usually called a relation module of the group
G, see [8]. The middle group F is then a torsion free Abelian-by finite group
and hence its group algebra kE has a classical division ring of fractions k(E)
(which one calls a generic crossed product with group @) which has degree
n [12, Th.1 and lemma 5].

Snider studied the center of k(E) which coincides with the field of lattice
invariants k(A)® which is the fixed field under the induced action of G on




the group ring kA of the free Abelian group A, [15, p.283]. If one can show
that this field is (stably) rational over the basefield k£ then by Bloch’s result
[4] one would have that k(E) (and hence by its generic nature any crossed
product with group @) is similar to a product of cyclic algebras in the Brauer
group [15, Th.2] (provided k has enough roots of unity). Snider was able to
prove rationality of a certain k(A4)¢ provided G = Vj,the Klein Vierergruppe
or GG is dihedral.

However, free presentations of groups are not uniquely determined,so let
us consider another free Abelian extension

1A —>EF ->G—1 (4)

then by [8, Prop.24] A ® ZG® ~ A' @ ZG® as ZG-lattices . One
way to prove this is to note that a sequence [3] determines an element of
H?*(G, A) = H'(Ig, A) where Ig is the kernel of the augmentation morphism
ZG — Z, i.e. it determines an exact sequence of ZZG-lattices

0>A—->M-—1Ig—0 (5)

and as the sequence [?] comes from a free presentation one can show that M
is a free ZZG-lattice. Similarly one has a sequence 0 — A’ — M’ — Iz — 0
with M’ a free ZZG-lattice and then by Schanuel’s lemma we have that
ADM ~A M.

From this we deduce by [5, Prop.6 and lemme 8] that the respective cen-
ters k(A)% and k(A')¢ are stably equivalent over k (i.e. k(A)%(z1, ..., Ty) ~
k(A")%(y1, ..., yo) for some u,v). Therefore, the property of being stably ratio-
nal over k is preserved among all possible choices of generic crossed products
with group G.

In order to obtain a more canonical definition of the Rosset-Snider generic
crossed products one might restrict attention to minimal free resolutions of
G i.e. sequences 1 - R — F — G — 1 where the number of generators
of F' is minimal possible. In the Abelianization of such a presentation 0 —
Anmin = Epin — Ig — 0, we call A,,;, a minimal relation module and
k(Emin) & minimal generic crossed product with group G. No examples are
known of groups with different (i.e. non-isomorphic as ZG-lattice) minimal
relation modules, giving that at least the centers of the minimal generic
crossed products are isomorphic. See [8, Cor.5.20] for conditions s.t. all
minimal relation modules must be isomorphic.
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3 Relative generic crossed products

In this section we aim to extend the setting by allowing torsion in the middle
group E, i.e. there is a subgroup H of G such that the sequence

1-A—->F—o>G-—1 (6)

determines an element in the kernel of the restriction map H?*(G,A4) —
H?(H,A). Fixing a subgroup H, the corresponding free group extensions
are determined as follows.

Let F be a free group and let F x H be the free amalgamated product of
groups then a free representation of G relative to H is an exact sequence of
groups

l1-R—-F+«xH—->G—1 (7)

and again we can Abelianize it by dividing out the commutator R’ = [R, R]
to obtain a sequence

15 A—E=(F+xH) /R -G—1 (8)

Again, A is a ZZG-lattice, E is a free Abelian by finite group,containing no
finite normal subgroups and whose maximal finite subgroups are all conju-
gated to H [13]. Then, kE is a prime p.i. group ring with classical ring of
quotients

k(E) ~ Mp(A) (9)

where h is the order of H by Moody’s theorem [10] (proving a conjecture of
Rosset,[13]) and A is some division algebra with center the field of lattice
invariants k(A)%. At least if the relative relation module A is a faithful G-
lattice. This is always the case unless Ig/y (to be defined below) is locally
cyclic and the normalizer of H in G is a proper normal subgroup, cfr. [9,
Satz 1.21].

Definition 1 With notations as above, A is called a generic relative crossed
product with group G relative to the subgroup H.

As in [12] we know that the degree of A in the Brauer group is equal to
the order of the element in H?(G, A) corresponding to the sequence 8. We
can compute this order :




Proposition 1 Letl - A— E=(Fx H)/R — G — 1 be the Abelianiza-
tion of a relative free representation of G relative to H, then this sequence
determines a generator in H*(G, A) = ZZ/dZZ where d = #(G/H), hence any
generic relative crossed product has degree d in the Brauer group of k(A)C.

Proof :  Again, we can translate everything in terms of ZZG-lattices.
Let ZZG/H be the permutation ZZG-lattice on the cosets G/H and let Ig/z
be the kernel of the augmentation map ZG/H — Z7, then Ker(H*(G, A) —
H?*(H, A)) = H'(Ig/x, A) and hence to any sequence 8 corresponds an exact
sequence of ZZG-lattices

0>A—->M-—Igyyg—0 (10)

and as we started off with a relative free presentation, we can show that M
has to be a free ZG-lattice by [9, Satz 1.8].

Now, H*(G, A) ~ HY (G, Ig/g) = Z|dZ where the last equality follows
from the sequence Z(G/H)® = Z(T,zH) —» Z° — HYG,Igg) — 0
where z runs through a transversal for Hin G. Let 1 - A —- B — G — 1
be an arbitrary generator of H?(G, A) then we get by relative freeness of
sequence 8 a commutative diagram

1 - 4 - F —- G — 1

! ! I (11)
1 — A —- B —»- G — 1

Hence the order of 8 is also equal to d finishing the proof. a

As before, we have to investigate the extend to which this construction
is unique and generic. f we would have started from another relative free

presentation
1R —-FxH—-G-—1 (12)

then we would also obtain a sequence of ZG-lattices 0 — A’ — M' —
Ig/mr — 0 with M’ free, hence by Schanuel

ADZG® ~ A @ ZG (13)

and therefore the centers of all (G, H)-generic relative crossed products are
stably equivalent to one another.




Next, let us turn to the generic nature of these objects. Take a division
algebra D of dimension d? over its center K (here, d = #(G/H)), then D
contains a maximal commutative subfield L which is separable of dimension
d over K. Suppose that the splitting field F' of L over K is Galois with
group G s.t. L = FH. Then, F is a subfield of Myy (D) which in turn can
be written as a crossed product represented by a group extension

l1-F*—-B—-G-—1 (14)

and the fact that L is a maximal subfield of D with L = F¥ can be interpreted
as follows : consider the pullback diagram of the above sequence over H

1 - F* - B - H — 1

I i ! (15)
1 - F* - B —- G — 1

then the upper sequence splits or equivalently, B contains a subgroup isomor-
phic to H i.e. the sequence 1 —» F* — E — G — 1 determines an element
in Ker(H*(@, F*) — H*(H, F*)) = H'(Ig/u, F*) i.e. we have a sequence of
Z G-modules

0 F* =V —Igy—0 (16)

But then it follows from the sequence 0 — A — M — Ig/g — 0 (coming
from a relative free representation 1 — A — E — G — 1) with M a free
Z G-module that there is a ZZG-morphism M — V s.t. the diagram below
is commutative :

0 - 4 - M — Igg — O

! l I (17)
0 - F* - V — Igyyg — 0

But translating this back to groupextensions, there is a groupmorphism
E — B giving rise to an algebra morphism kE — My (D) i.e. we can
get Myp(D) as a specialization of k(E) = Mug(A) where A is the generic
relative crossed product.

We can summarize the above facts is the following :

Theorem 1 Letl - R — Fx H — G — 1 be a free representation of G
relative to H and let 1 — A — E — G — 1 be its Abelianization. Then,
kE is a prime p.i.-algebra with ring of quotients k(E) = Myr(A) where

7




A is a division algebra over k(A)® of order #(G/H) in the Brauer group.
Moreover, kE is generic with respect to division algebras D over K which are
relative crossed products w.r.t. (G,H), i.e. D contains a mazimal separable
subfield L which is the field of H-invariants of its splitting field which has
Galois group G over K.

In fact, one can extend the foregoing construction in the folowing way :
let P be a permutation G-lattice (i.e. P has a basis which is permuted by
the action of G) and consider an exact sequence of Z G-lattices

0—>A—P—Igy—0 (18)

Then, this sequence determines again an element in Ker(H?(G,4) —
H*(H,A) sayl - A - E — G — 1 and we can again consider the
groupalgebra kE. This algebra has a similar generic property as the rel-
ative crossed products defined above. The crucial observation in the proof
was the existence of a commutative diagram of ZZG-modules

0 - A —- P — Igyg — O

| ! I (19)
0 - F* - B — Igyg — 0

where the lower exact sequence determines a relative crossed product D. If
P is a permutation lattice, such a diagram can be constructed by using the
fact that H'(U, F*) = 0 for all subgroups U of G (Hilbert 90) and applying
[2, ...]. From the morphism P — B we then construct again a morphism
EE — Mygyp(D) proving the required generic property. Also, it should be
noted that the centers of these more general generic relative crossed products
are still stably equivalent to the previously defined ones.

4 The universal division algebras

Let U, = Z8,/Sn-1 = Zuy & ...Zu, be the usual permutation represen-
tation of rank n of the symmetric group S, and let V,, = ZS,/Sn_2 =
Zv12 @ ... © Zvn_1n be the permutation lattice of rank n(n — 1) given by
o(v;;) = Vo(i)o(;) for all o € S,,. Then, there exists a sequence of ZZ5,-lattices

0—-G,—-V,—-U,—»Z—0 (20)
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where the rightmost map is the augmentation and the map V,, — U, sends
v;j to u; — u;. G, is the kernel which has rank n? — 2n + 1. Procesi [16] and
Formanek [6] proved that the center of UD(n) can be obtained as the field
of lattice invariants k(L, )" where L, = G, @ U, ® U,. It would be useful
to have a similar representation theoretic description of UD(n).

From the sequence of ZZS,,-lattices

0—)Ln—)%@Un€9Un——>Ign/Sn_l — 0 (21)

we obtain an Abelian groupextension
1-L,—-FE—=S,—1 (22)
defining an element in Ker(H?*(S,,L,) — H%*(S,_1,L,)). Then, kE is a
prime ring with ring of quotients k(E) = M,_1y(A) where A is a division
algebra of degree n having center k(L,)%" and it is easy to verify that
Proposition 2 k(E) = M_1)(UD(n))
Giving the desired desription of U D(n). In fact, more is true :

Theorem 2 Let G be a finite group of order n, then there exists a Rosset-
Snider generic crossed product with group G , say RS(G) embedded in kE. In
particular, RS(G) is the centrlizer in k(E) of k(L)® where G is represented
as a subgroup of S, via its natural permutation representation on U,.

Proof : Let G = {id = uy,...,u,} act by translation on this set,
then G — S, s.t. GNS,_; = id. Now, we can restrict the sequence of
Z S, -lattices

0— Ln — V;z D Un @ Un — ISn/Sn_l — 0 (23)

to G and observe the following facts :
1. (Va @ U, ®U,) lg is a free ZG-lattice
2. (Is,/8._1) Lo~ Ig as ZZG-lattices

3. (Ln) le~ (Gn) le 8ZG & ZG
So this sequence gives rise to an Abelian group extension
1-G,0ZGCOZG—F—-G—1 (24)

and the division ring of fractions of kF is a Rosset-Snider generic crossed
product RS(G) with group G and having as its center k(L)%. Clearly, kF «—
kE and RS(G) can be interpreted as the centralizer of k(L)% in k(E). O

9




5 Formanek’s observation

We continue to use the notation of the previous section. Note that the lattice
G, is generated (but not freely) by all elements of the form

Vitip T Vigig T oo + Vigsy (25)

where iy # i3 # ... # ¢4 # t1. One can define a morphism of ZS,-lattices
7 : G, — U, by

ﬂ-(yili2 + Yigis + oo T+ yiqii) = Uy +up + .+ Ui, (26)

and one can check that 7 is surjective provided n > 4. Hence, we obtain an

exact sequence
0—-F, -G, —-U,—0 (27)

of ZZS,-lattices, where F,, is the Formanek lattice which has rank n? —3n+1.

If n = 4, then E. Formanek (7] observed that F,, considered as a Vj-lattice
is isomorphic to a minimal relation module for V; and hence that k(F,)"* is
the center of a minimal generic crossed product with group V,. Formanek
explains this as "probably a reflection of the fact that the universal division
algebra U D(4) is a crossed product with group V,”. Unfortunately,this seems
to be merely ”un accident de parcours” :

Theorem 3 Let G be a non-cyclic group of order n > 4 (or cyclic of order
> 5). Then, F, lg is always a relation module for G (thus, there is a generic
crossed product with group G having center k(F,)®). Moreover, F, la is a
minimal relation module if and only if G = V.

Proof: We will always embed G into S, s.t. GNS,_; = id where S,_;
is the subgroup fixing 1. Then (U,,) lg~~ ZZG, then the sequence defining F,
splits when restricted to G i.e.

G, lexF, lc ®ZG (28)

Further, note that G, g~ Ig ® Ig as ZG-lattices and by [8, Prop.5.21] we
know that
I @ Ig ~ Apin ® ZGOR#G-1-d(G)) (29)
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where Api, is a minimal relation module for G and d(G) is the minimal
number of generators of G. Therefore, we have

F, le ®ZG ~ (Amin ® ZG#-2-9O)) ¢ G (30)

As G is assumed to be non-cyclic, Ap;r is a faithful G-lattice and hence we can
apply Swan’s cancellation theorem (e.g. [8, Th.5.17]) at least if #G —d(G) >
3 to obtain that

Fo o™ Apin ® ZGE#G-1-40) (31)

implying that F, |¢ is a relation module in this case,cfr. [8]. Note that
F, |l is never a minimal relation module if #G — d(G) > 3.

Now, #G —d(G) < 2 iff G is cyclicof order 2or3 or G = V,. For G =V}
the statement is Formanek’s observation and it is therefore the only case for
which F, |¢ is a minimal relation module.

The only place in the proof where we used non-cyclicity of G is to ensure
that minimal relation modules are cyclic. If we define minimality of relation
modules for cyclic groups to be those for which the ambient free group has
two generators, faithfulness follows and we can repeat the foregoing proof for
all cyclic groups of order > 5. i

Note that while UD(12) is a crossed product with group Vj x Zs, the
above result gives us that Fy |v,xz, is not a minimal relation module.

Still, it seems plausible that some representation theoretic conditions may
be imposed if UD(n) is a crossed product with group G. For, a generic crossed
product with group G can be embedded in M,_1)(UD(n)) and we have
specializations kE — UD(n) and UD(n) — kE. It would be interesting to
compute the behaviour of various invariants of the groupalgebras (e.g. cyclic
cohomology) in order to obtain restrictions on possible groups G.
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