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Abstract

In this paper we present an algebraic formalism for dealing with cellu-
lar automata whose local transition rule satisfies an additivity property.
We discuss the phenomen of self-replication; the connection with higher
order cellular automata and the state transition graph.

1 Introduction

Cellular automata are structures which evolve on a finite dimensional lattice
according to a deterministic local law. They were first introduced by J. Von
Neumann [4] and S. Ulam [7] as examples of simple structures presenting some
of the features of life. Recently, there is a strong impetus to reconsider these
automata coming from artificial intelligence and parallel computing on the one
hand and their suitability to simulate complex physical phenomena on the other
hand. For more details and motivation we refer the reader to [8].

Some cellular automata have a simplifying additivity property, that is, their
local transition function is linear. Some of the properties of these so called linear
cellular automata were investigated in a paper by Martin, Odlyzko and Wolfram
[5]. Although such cellular automata are rather special, they are expected to
provide useful models for the understanding of more complex, nonlinear cellular
automata

In this paper we provide the natural algebraic setting for studying more gen-
eral linear cellular automata. The main difference with the previous definition
is that we allow the cellprocessor memory to be a finite dimensional vectorspace
over a finite field I, (rather than restricting to the one-dimensional case stud-
ied before). Not only this new definition gives an abundancy of new examples
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and new phenomena of linear cellular automata, but they occur also naturally
in the study of higher order linear cellular automata as in [6]. This allows us
to explain in a natural way the construction of E. Fredkin and N. Margolus of
linear higher order reversible automata (and to create many new examples of
reversible cellular automata) as well as to describe the state transition graph of
these higher order cellular automata.

In section two we describe the formalism of linear cellular automata and
how they can be described algebraically. As an application we explain the self-
replication phenomen for linear cellular automata. In section three we prove that
the class of linear cellular automata is closed under taking higher order cellular
automata (i.e. the local transition rule depends not only on the present state,
but also on a set of previous states) and we give a classification of reversible
linear cellular automata. In section four we give a complete description of the
state transition graph of a linear cellular automaton. Most of the information
about it seems to be hidden in the characteristic polynomial of a matrix over a
Laurent field extension over the finite field associated to the local state transition
rule.

In this paper we have restricted attention to the case of infinite linear cellu-
lar automata. The particularly interesting case which occurs when we impose
boundary conditions (null or periodic) will be treated in a forthcoming paper.

2 The formalism of linear cellular automata

In this section we will outline the formalism which enables us to determine the
evolution of certain cellular automata satisfying superposition principles. Before
giving the formal definition of such ‘linear cellular automata’ let us give a few
easy examples which have attracted some interest :

Example 2.1 Consider the one-dimensional cellular automaton studied exten-
sively in [8] in which each cellprocessor has one bit of memory and which per-
forms the exclusive or operation on the previous state of its left and right neigh-
bor synchronously on each time step

...lxi_ll z; I;L'H_l l...

e;(t+1) = e () + zip1(t) mod 2

This cellular automaton corresponds to ‘rule 90° of the S, Wolfram classification
scheme, [8].

Example 2.2 E. Franklin devised a very simple system capable of selfrepro-
duction. He considered a two-dimensional cellular automaton such that each




cellprocessor has one bit of memory and performs the nim sum of its four or-
thogonal neighbors :

Ti-1j+1 | Tij+1 | Titl,i+1

Ti~1,j L, Zit1,5

Ti-1,5-1 Ti5—1 Tipl,j—1
.’L'iyj(t + 1) =Z 241+ Tipr,y + Tij-1+ 21 ; mod 2

These cellular automata are very special in that the logic rules are linear. Such
cellular automata are, however, expected to provide useful models for the un-
derstanding of more complex, nonlinear cellular automata.

Although the formal definition given below can be readily extended to cel-
lular automata defined over an arbitrary finite commutative ring, we restrict
ourselves in this paper to the case that this ring is a finite field F,ong=p"
elements where p is a prime number, the characteristic of the field. For more
details on finite fields, the reader is referred to [2].

Definition 2.3 A linear cellular automaton T of type (k,1,m,n,p) is a cellular
automaton such that =

1. k is the dimension of the cellular space, that is, each cell is uniquely de-
termined by a k-tuple of integers o = (ay,...,ar) € Z*.

2. lis the number of neighbors, that is, a choice A = {61,...,6} ofl elements
from Z* such that the neighborhood of a cella are the cells {a+61,...,a+

8}

8. Fy where ¢ = p™ is the field of definition, that is, an elementary unit of
information is an element from &, (which we will call a “git’)

4. n is the number of gits of cellprocessor memory, that is, the state of the
cellprocessor o at time t is an n-tuple of elements from F, which we will
represent by a column vector and denote by z4(t)

5. the local state transition function is linear, that is, there ewist | square n
by n matrices over Fy say A= {A;,..., A1} such that for each cell

Ta(t +1) = A1@ays, () + -+ - + A12ays,(t)

From now on, we will fix one linear cellular automaton X of type (k, 1, m,n,p)
(i-e. a particular choice of A and .4) and describe the formalism enabling us to
calculate its evolution. Consider the ring

FolXs, X714 . Xn, X7 Y = Fy [ Xi, X744




which is the localization of the ordinary polynomial ring F,[Xy,..., X;] at
the element X;...Xj. That is, it consists of all elements ¥ from the ratio-
nal function field in k variables [ (X3,..., X;) such that (X;..- X3)%Y €
F,[X1,..., Xx] for some natural number v € N.

For each cell @ = (ay,...,a;) € Z* we define a unique monic monomial

Xo=X{ - X3 e F X, X714

In the rest-of this section we aim to show -that-all information about the linear
cellular automaton X is contained in the n by n matrix

!
As =Y AX_s, € Ma(Fy[X:, X7254)

=1

Let V be the standard n-dimensional vectorspace over [, consisting of all 1 by
n column vectors, then any position can be described uniquely by an element in

VIXi, X7 i =V e, Fo[Xi, X7 4)

-which is the standard free module of rank n over [Fq (X X Y1, Namely, consider
the finitely many cells a,...,a, which are not in quiescent state (which we
assume to be the zero vector) at time ¢, then the position of £ at time ¢ is fully
described by the element

P(t) = imai(t)Xai € V[Xi,X{’l]

=1

Now, n by n matrices from My (F,[X;, X;']) act on V[X;, X 1] by left multipli-
cation. The crucial observation to make is that the next generation is described

by the element
P(t + 1) = Az.P(t) € V[Xi,Xi-I; 7]

or, more generally, after u clock pulses the configuration is described by the

element
P(t+ u) = A%.P(t) € V[X;, X711

Obviously, the formal simulation of the linear cellular automaton ¥ in the mod-
ule V[X;, X L i) reduces drastically the amount of computations required com-
pared to direct simulation.

Example 2.4 Consider a one-dimensional linear cellular automaton Y such
that each cellprocessor has two bits of memory with neighborhood A = {~1,1}
and the state transition function determined by the two 2 by 2 matrices

0 0 10
Al:(o 1) A'1=(1 0)




That is, ¥ is of type (1,2,1,2,2) and the corresponding matriz is

An = (§ X(')'l) € MZ([FZ[X’X—I])

For ezample, the position
-2 -1 0 1 2

o] I 6] ] (3]

corresponds to the element

X-1+1+ X c Fo X, X754
X'+ x F X, X714

Therefore, the newt generation is obtained by multiplication
X o0 X" t+14X\ [ 1+X+X2
X Xx-t X-14+X TAX P+ X+ X2
which corresponds to the position
-2 ~1 0 1 2
0 1 1
[x) (o [e] [3] [3]
As an application of the above formalism we give an explanation of the phe-
nomen of self-replication that has been observed by various authors. See e.g. [8].

N’

Theorem 2.5 Assume that T has one bit of cel processor memory. Then for
k> 0 the configuration of £-at t = 2¥ will consist of a number of (translated)
copies of the original configuration (t =0).

Proof Recall that in a commutative ring with p.1 = 0
(a+bP =af + b

Since ¥ has only one bit of cell processor memory 4; = 0,1. Therefore, by
reducing A if necessary, we may assume that A; = 1 for all ;. Hence Ay is the

polynomial
>
i

The configuration of ¥ at time ¢ will be given by a polynomial
Pt) e F[x;, X715 4)

Hence we obtain . X
P(2") = A% P(0) =) X% P(0)
i

Now clearly X ~8:2* P(0) corresponds to the sum of translated copies of the
original configuration. If 2* is large enough, these translated copies will have
no living cells in common. This proves the theorem. n




3 Higher order and reversible linear cellular
automata

Since the matrix Ay € M, (F,[X;, X7 %; 4]) satisfies its characteristic polynomial
det(tfn - Az)

* which is a monic polynomial of degree n in ¢-with coefficients in |Fq [Xi, X 1.4,
there is a fixed recursive relation between every n succesive generations. For .
example 2.4 this relation is P(t +2) -~ (X + X ~1)P(t+1)+ P(t) = 0. One of the
* main motivations for studying linear cellular automata in the general setting of
definition 2.3 rather than the special case when n = 1 is that this class is closed
under higher order cellular automaton rules.

Normally, the rules for cellular automaton evolution take configurations to
be determined solely from their immediate predecessors. One may, however, in
general consider higher order cellular automaton rules, which allow dependence
on say the s preceding configurations. The state transition rule for such linear
higher order cellular automata may be represented by the order s recurrence
relation

P =3 4z, Plt -

f=1
where all Ay, € M, (F/[X;, X7 %;4]). We then have the following

Proposition 3.1 A linear higher order cellular automaton can be simulated by
a linear cellular automaton.

Proof Let X be the linear higher order cellular automaton determined by
‘the above state transition function. - We claim that we can represent it by a
linear cellular automaton I' having n.s gits of cellprocessor memory (i.e. each
cell is capable of storing its s previous states). A typical higher order cellular
automaton configuration is therefore of the form

P(t-1)
PED | everrm, x4
P(t—s)
The state transition matrix Ap of the linear cellular automaton I is taken to be
A21 AE;, T AEs—l As,
I, i0 ... 0 0
Ar=]| 0 I, ... 0 0 | € My (F,[X:, X714))

0 0 ... I, 0

The linear cellular automaton I' simulates the linear higher order cellular au-
tomaton X. n




So, even if one is only interested in higher order linear cellular automata with
one qit of cellprocessor memory one is naturally led to study the linear cellular
automata as we defined them above.

Every configuration in a cellular automaton has a unique successor in time.
-If every configuration also has a unique predecessor,.the cellular automaton is
said to be reversible or invertible. Reversible systems are valuable models of

- computations-since. the information content of a patern of cells turns out to be -

a conserved quantity. In contrast to the linear cellular automata with one-qit
of cellprocessor memory which are irreversible except for trivial cases, there is
‘an abundancy of reversible automata within our more general setting.

Proposition 3.2 A linear cellular automaton T is reversible if and only if Ag is
an invertible matriz, that is Ay € GLn(F [X;, X7 4]) or equivalently det(As)
is a monomial in F,[X;, X %;4).

Proof If Ay € GL,(F,[X;,X;%;i]) then there is a matrix By such that
AsBs = BgAy = I,. Given any configuration determined by its element
P(t) € V[Xi, X;1; 4] one can find its direct predecessor by P(t—1) = Bg.P(t) €
VI[Xi, X715 d)

Conversely, suppose that X is a reversible linear cellular automaton. Let
F; be the configuration which is quiescent everywhere except for the zero cell
where the state is (0,...,0,1,0,...,0)” with 1 on place i. Then, by assumption
there exists a unique direct predecessor of P; say @;. Let Bs be the n by n
matrix whose i-th column is equal to @; for all i. Then AgBs = I,, that is,
Ay is invertible. =

Example 2.4 gives a onedimensional reversible linear cellular automaton. The
xX-1 0

Y X ) so the predecessor of the starting position

“matrix By is in'this case

can be found by

X1 0\ /X 14+1+X)_ (X 24+X141
X X X'+x )7 X

which corresponds to the position

-3 -2 -1 0 1 2

0 1 1 1 0 0

o] ol o] [o] (31 [d]
An immediate consequence of this proposition is that the only reversible linear
cellular automata with one bit of cellprocessor memory are the translations. A

combination of the two foregoing results explains also the construction of E.
Fredkin and N. Margolus of linear higher order reversible cellular automata as




described in [6, p 245]. Consider the second-order linear cellular automata with
state transition function

P(t) = F.P(t — 1) — P(t — 2) € F,[X;, X71;4]

where F' is an arbitrary element of [ X;, X t t]. By proposition 1 this second-
order cellular automaton can be simulated by the linear cellular automaton with
two qits of cellprocessor memory and with corresponding matrix

Ar = (f 01) € My(F,[X:, X745 4)
which is invertible and so I and hence the second-order linear cellular automaton
is reversible.

On the other hand it is possible to describe reversible linear cellular automata
which do not simulate higher-order linear cellular automata with one git of
cellprocessor memory.

4 The state transition graph

‘We will now describe the state transition graph of an arbitrary linear cellular
automaton. A connected component of this graph will be called a lifecycle. A
lifecycle is called a halfline if it is of the form

O — 00— .o

where the first configuration does not have a predecessor. Such configurations
are usually called ‘garden of Eden’ configurations. A lifecycle is called a line if
it is of the form

ce 3 O = O s O > e

-A lifecycle will be named senile if it is finite and repetitive, i.e. it goes in circles. . .
First we will consider the relatively easy case of linear cellular automata
having just one qit of cellprocessor memory :

Proposition 4.1 Let & be a non-reversible linear cellular automaton with one
git of cellprocessor memory, then the state transition graph consists of infinitely
many halflines indezed by the garden of Eden configurations which are precisely
those elements F € Fy[X;, X1 4] such that the defining polynomial As, does
not divide F.

Proof Since F,[X;, X;';4] is a unique factorization domain and Ay is not
a unit, every element F € [,[X;, X 1, i} can be written uniquely in the form
F = A§.G where @ > 0 and Ag does not divide G. Therefore, F corresponds
to the configuration on place a of the halfline lifecycle starting in the garden of
Eden configuration corresponding to the polynomial G. -




In order to handle the reversible case, we define the X;-degree of an element
F € F[X;, X;1; 4] to be the highest power of X; occuring in a monomial of F'. If
¥ is a reversible linear cellular automaton with one qit of cellprocessor memory,
we know that its defining polynomial is a single monomial Ay = f.X7* ... X*
where f € Fq. Consider first the case that all a; = 0, then the state transition
graph consists of infinitely many senile lifecycles of a fixed period which must
“be a divisor of ¢ — 1 (the group of-units of a finite field is a cyclic group of order -
g = 1) the period-is the:minimal- value a such that f*.= 1. If at least one of -
the a; # 0, two configurations P and @ belong to the same lifecycle provided
P = A%.Q for some a € Z. But then X;-deg(P) = X;-deg(Q)-+a.a;. This
finishes the proof of :

Proposition 4.2 Let ¥ be a reversible linear cellular automaton with one git
of cellprocessor memory, i.e. Ag = f.X{* - X2 where f € F, then

1. If all a; = 0 the state transition graph consists of infinitely many senile
lifecycles with fized period equal to the least a such that f@ = 1 which is
always a divisor of ¢ — 1

2. If there is a k such that ap # O then the siate transition graph consists of
infinitely many line lifecycles indezed by those elements P € F,[X;, X1, 1]
5.t 0 < Xj-deg(P) < ay,

For more qits of cellprocessor memory the situation is more complicated (and
interesting). We will first handle the case that the determinant of the associated
matrix Ay is not equal to zero.
In this case the predecessor of a position P € V[X;, X~ 1, i] must be unique
(if it exists). Hence there are three possible types of lifecycles : halflines, lines
and seniles. Below will be concerned wih parametrizing these type of lifecycles.
In order to get some grip on the various order of infinity that will occur, we will
“make the following definition.

Definition 4.3 Assume that N is a F,[X;, X[ "; d]-submodule of VIXi, X714
of rank v then we say that there are oo™ configurations in N.

It is clear that a configuration, whose lifecycle is a line or senile will lie in

Ny =) 43.V[X;, X7 4]
n

Furthermore, configurations whose lifecycle is senile will belong to
Ne={m e V[X;, X714 |3n > 0: AZ.m = 0}

It is clear that both Ny and Ng are submodules of V[X;, X;1;1]. Below we will
determine the ranks of Ny and N§.




To this end we will need some elementary commutative algebra. In par-
ticular we have to recall the definition of the characteristic polynomial of an
endomorphism of a module.

Let R be a commutative Noetherian integrally closed domain with quotient
field K and let. M be a finitely generated R-module equipped with an endo-
morphism f. Then the characteristic polynomial F;(A) of f is defined as the
characteristic polynomial of 1® f acting on K @ M.

Lemma 4.4 Suppose that we have a commuiative diagram of R-modules with
exact rows
0 = M —- M & M" - 0
lf lf’ lf“
0 - M - M 5 M - o

Then
Fpi(X) = Fy (M) Fyn(A)

Proof Tensor this commutative diagram with K. Then 1 ® p will split and
hence we may write 1 ® f/ in matrix form as

A" =
(v 2)
where A, A” are the matrices corresponding to 1 ® f and 1® f”. This proves
what we want. ]

Lemma 4.5 F¢()) has coefficients in R.

Proof Write M as a quotient of a free module B”®. Then we may lift f to
an endomorphism g of R® and hence we may construct a commutative diagram
with exact rows

0 - N - R* - M — 0
L ly Ly
6 - N — R — M — 0

Clearly Fy(A) = Fy(A)Fy(X) has coefficients in R, but then by Gauss’s lemma
[3], F¢(X) will also have coefficients in R. ]

Lemma 4.6 Assume that
F(3) = UV
where U(X) and V(X) are monic polynomials. Define
N =kerU(f) ={m e M |U(f)m = 0}
and f' = f | N. Then Fs:(X) = U(X) and hence tk N = deg U(N).

10




Proof Using the definition of the characteristic polynomial, it suffices to prove
this for a field and there the assertion is standard. n

According to Gaus’s lemma, the monic irreducible factors of Fy(A) will have
coeffients in R. Let G;()) be the product of all irreducible factors of Fy(})
whose constant term is a unit in R (we put Gy(X) = 1 if there are no such
factors).

Lemma 4.7 Let N =) f*(M). Then
n
rk N = deg G4(A)

Proof According to lemma 4.6 it is sufficient to show that N = ker G4 (f).
Let m € M such that Gy (f)m = 0. Write out G () as

AT gro1 X4 4 go
and define for n > 0
mp, = [ {4 g1 T4 )] m

Then f"(m;) = m and hence m € f*(M) for all n. Therefore ker G;(f) C N.
Now let f' = f | N. f’is an isomorphism and hence Fy(A) | G;(X). We

obtain
ker G;(f) C N C ker Fy(f) C ker G4(f)

which proves what we want. =
Lemma 4.8 Define

N={meM|3In>0: f*(m)=m}
Then tk N is equal to the number of roots of Fj(X) that are roots of unity.

Proof We may assume that K = R. Recall that a cyclotomic polynomial is a
polynomial whose only roots are roots of unity.

Let G}(A) be the product of monic irreducible factors of Fy()) that are
cyclotomic polynomials with the restriction that we take every such factor only
once. Then according to lemma 4.6 it is sufficient to show that N’ = ker &, " ()

Let m € N’. Then (f* — 1)m = 0 for some n > 0. Hence by Bezout
(f* =L, Fs(f))m=0. But (A" — 1, F;(\)) | G %(1) and hence m € ker G (f).

Conversely let m e M : &, (f)m = 0. Smce Gi(f) | f* —1for some n > 0
we find that m € N’. L

We may summarize the above results in the case of a linear cellular automaton.

11




Theorem 4.9 Let Fs, be the characteristic polynomial of As. Let r be the
degree of the monic factor of Fs of highest degree, whose constani term is a
monomial. Let v’ be the number of eigenvalues of As, that are roots of unity.
Then

1. There are oo" configurations that are senile or have a line-as a lifecyle.

! 13 .
2.. There are co” sentle configurations.

Example 4.10 Let X be a onedimensional linear cellular automaton with three
bits of cellprocessor memory, A = {~1,1} and the state transition function is
determined by the matrices

O D
- O o
[en T o B e

1 00
A__]_ = 0 0 1 Al fonesd
0 0 0

Then, every configuration P = (Fy, F3, F3)" with F; € Fy[X,X] s.t. Fy # 0
lies on a halfline lifecycle starting from a garden of Eden configuration which
are determined by the fact that their first component is a nonzero element Gy €
Fa[X, X~ not divisible by X~ + X. Every configuration P = (0, Fa, F3) is
senile with period 2 except for the zero configuration.

So, we are left to consider the remaining case : L is a linear cellular automaton
such that the associated matrix Ay has zero determinant. In this case 0 will
be an eigenvalue of As. So, let us first consider the case that 0 is the only
eigenvalue of Ay;. Over the algebraic closure K of Fq(X 1y..+yX3) the matrix
Ay is similar to a direct sum of Jordan matrices J; of size u; s.t. Ef=1 U; = 7.
Recall that J; is a square matrix of size u; of the form

6106 ... 00
601 ... 00

0060 ... 01
0 00 ... 00

The state transition graph of such a linear cellular automaton is a rooted tree
(having the quiescent state as graveyard state) such that in each node there
are oo® direct predecessors and all lifecycles have length smaller or equal to
Y i=1(u; — 1) which is always smaller than n. In particular after at most n clock
pulses every cell will be in the quiescent state. This is another property of linear
cellular automata : mercifull dead (if something dies, it dies quickly).

In the general case we may consider the submodule of V[X;, X, 1.4] given
by ;

Ng={PeV[X;,X; i |In>0: AL.P =0}

12




Again the configurations in N¢ form a connected component of the state tran-
sition graph of ¥. The rank »” of N{ is the number of zero eigenvalues of Ayx.
Furthermore, as above, we show that the number n, occuring in the definition
of N¢ may be taken to be less than or equal to 7",

We-may now construct a commutative diagram with exact rows

0 — N{ — V[Xi, X744 & My — 0
1 4z | 4 ! As (l)
0 — N{ — VIX,X7 %) & My — o

Below we will show that p splits in a way that is compatible with the action of
As (but not with the F,[X;, X;1; {]-module structure).
Denote this splitting by . Then we have

VIXs, X7 Y i) = N @ ¢(My)

We obtain that the state transition graph of ¥ is the product of the state
transition graphs of configurations in N and of configurations in ¥(M3).

The state transition graph of configurations in (M) is a union of lines
halflines and seniles. From this we obtain the following

Theorem 4.11 In general, the connected components of the state transition
graph of a linear cellular automaton & are either lines, halflines or seniles, with
in every node a fized rooted tree attached. If v is the number of zero eigenvalues
of Az then there are oo™ nodes in this rooted tree. The length of the braches is
at most "' — 1. The number of components that correspond to lines or seniles
may be determined ezactly as in Theorem 4.9

Theorem 4.12 A linear cellular automaton can never be a universal Turing
machine

Proof If it were, the halting problem would be decidable since a configuration
dies if and only if it is dead after n clock pulses. n

By combining this fact with the observation that higher order linear cellular
automata can always be simulated by linear ones we also have proved that
higher order linear cellular automata cannot be universal Turing machines.

Now we are left with proving the splitting of (1). This follows from the
lemma below if we let k& = Fq, and the action of Y corresponds to the action of
As.

Lemma 4.13 Let k be a field and let
0—-N—-M%E M —0 (2)

be a short exact sequence of k[Y]-modules. Assume that Y"N = 0 and M, is
Y -torsion free. Then this sequence is split as k[Y]-modules.

13




Proof The problem is that we do not require M; to be finitely generated as a
k[Y]-module. Otherwise M; would be projective and (2) would be trivially split.
In our more general situation we only know that M is flat. Nevertheless we can
circumvent this difficulty in the following way : My/Y" M, is a flat k[Y]/(Y")-
module and for k[Y]/(Y™) it is true that every flat module is projective by a
“result of Bass [1].-Furthermore, using the fact that M is Y-torsionfree we deduce
that
Ext,%[y](M, N) = Exti[}/]/(yn)(Ml/Yan, N)

These two fact together show that Ext,ﬁ[Y](M , N) = 0 and hence (2) splits. m
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