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Abstract
A Hilbert parametrization is given for the norm one elements of a
genericfield-extension of prime degree. It is also shown that these
norm one tori are seldom k-rational.

Keywords

Norm one elements, Rationality problems

AMS-classification
14M20

* Supported by an NFWO-grant




Generic Norm One Tori

Lieven Le Bruyn*
Department Mathematics
Universitaire Instelling Antwerpen

March 6, 1990

1 Introduction

In this note we aim to study the norm-one torus R}, /Gm of a finite separable
fieldextension K/k of degree n. If K/k is a cyclic Galois extension one can
show that R} .Gy, is a k-rational variety. Moreover, the archetype version of
Hilbert 90 tells us that all its k-rational points can be written as % where
o € K* and o a generator of Gal(K/k). If K/k is Galois but no longer
(meta)cyclic, finding parametrizations of all k-rational points in R}(/ka
usually is a rather hopeless task as the following example due to Colliot-
Théléne and Sansuc [3,p.207] shows : let K = @ (v/2, \/P1.--P2nt+1) Where the
p; are distinct prime numbers congruent to 3 modulo 8,then K/@ is Galois
with group V; but there are 227+ different classes of @-rational points on
Ry /g Gm under Manin’s R-equivalence,see [5] or [3].

The situation becomes even more complicated in case K/k is no longer
Galois, see [3.p.209-212] for some of the rare manageable cases. In this note
we will study the generic case i.e. K/k is separable of degree n such that
the Galois closure L has group S,. Let us give an easy example : take
K = Q(v/2) over @, then L = @(/2,1y/3) and Gal(L/Q) = S;. Then
R} /g G is determined by the equation

2+ 22 +42° —6zyz =1 (1)

*supported by an NFWO- grant




As S3 is a dihedral group we can apply [4,I1.1.c] and obtain that R}qQ G,
is @)-rational and that there exists a Hilbert-like parametrization of the @ -
rational points. To be precise, { € K* has norm one iff { = Np/x(«a) for
some o € L* where Nk is the norm-map.

We will show that the situation becomes more complicated if n increases
: Rk Gm is no longer k-rational if n = [K : k] > 4 (at least for prime and
non-squarefree vallues of n). Still, for prime degree extensions it is possible
to determine all k-rational points of R}(/ka by a Hilbert-like procedure, i.e.
they are all of the form Nk, K(?l_;ﬁ) where K' = L%-2. However this result
does not generalize to composite degrees if k is a global field.

As some of these results are sort of dual to some of [1] we will merely
sketch the main ideas and refer the reader to loc.cit. for more details.
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2 Non-rationality of Ry, Gr,

Let K/k be a finite separable extension and X a (quasi-projective) K-
variety,then with Rg/x X we denote the Weil descent k-variety obtained from
X. It is characterized as the representable functor which assigns to a com-
mutative k-algebra A :

Ry X(A) = X(A @ K) 2)

Let & i be the multiplicative group over k, then an algebraic k-torus T is an
algebraic k-group such that T'x k, ~ &, ;. where £, is the separable closure
of k. A typical example is the torus Rg/;, &, whose underlying variety is the
open subvariety of Ry, A" = M} consisting of the points = s.t. Ng/x(z) # 0.
We say that an algebraic k-torus T is split by a Galois extension L/k iff
T Xr L ~ G, ;. For example Ry G, and R}(/ka (which is the kernel of
the norm-map Rg/t Gm — Gm) are split by the Galois closure L of K/k.
There is a natural anti-equivalence of categories between the algebraic k-tori
split by L and the ZG-lattices of finite rank where G = Gal(L/k) obtained




by associating to a torus T' its lattice of characters T'. Under this equivalence
G, corresponds to the trivial G-lattice ZZ, Rkx Gm to the permutation
lattice ZZG/H where H is the subgroup of G s.t. L¥ = K and Ry ;G to
Je/m which is determined by the sequence

the first map being the norm map 1 — Y ¢gH. Brylinski [2] obtained an
algorithmic procedure to construct a smooth proper equivariant k-model Xr
of a given algebraic k-torus 7. The embedding T' — X7 gives rise to an
exact sequence of ZG-lattices

0— T — Divyka(XT Xk K) — PZC(XT Xk I{) — 0 (4:)

where Y is the closed subvariety complementary to T'. Further, it is easy to
see that the middle term is a permutation ZZG-lattice and that the Picard
group is a flasque ZZG-lattice meaning that H~1(G’, Pic(Xy xi K)) = 0 for
all subgroups G’ of G.

Voskresenskii [7] proved that if the torus T is k-rational then the ZG-
lattice Pic(Xr xi K) is a stable permutation ZG- lattice i.e. there exist
permutation lattices P; and P, such that

Pic(Xr Xy K)® P, ~ P, (5)
We are now in a position to state and prove :

Theorem 1 If K/k is a finite separable fieldeztension of prime degree p
with Galois closure L with group S,, then the norm-one torus R}qum s not
k-rational unless p < 3.

Proof: (compare with [1,Cor 1]) Let X be a smooth model of R} 1xGm,
then we have to show that Pic(X X, K) cannot be a stable permutation
2 Sp-lattice. We have an exact sequence of ZZS,-lattices

0— Js,18,., = ZSp/Sp-2 — M, — 0 (6)

where the lefthand map is induced from the ZZS,/S,_1 — ZS,/Sp—2 sending
z; to 3;(yi; — yji) where the z; (resp y;;) are the canonical basevectors of
the permutation lattices ZZS,/Sp—1 (resp. Z2S,/Sp—2). We claim that M, is
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a flasque lattice, in fact even an invertible one (i.e. a direct summand of a
permutation lattice). This is verified locally : over primes ¢ # p the above
sequence as well as the one defining Jgs,/s,_, splits and for the prime p we

have . -

Z,® M, ~ QO *Z,) ® IP (7)
where IP is projective (hence invertible) and as the Sylow p-subgroup of
S, is cyclic 972(ZZ,) in invertible too,proving our claim (using duality and
Shapiro’s lemma). Now, using flasque-ness of M, and Pic(X X K) one easily
sees that

M, & Divyy,x (X x% K) = Pic(X x K) ® ZS,/Sp-2 (8)

whence we have to show that A, cannot be stable permutation. This can be
tested locally. Now, p-locally we can use Green-correspondence to reduce the
problem to a finite representation-type setting (over the p-hypoelementary
subgroup N, = N, (Syl,(Sp))) which enables us to show that

d (©¥Z) 607 (9)

i=1,(4,p~1)=1

is stable permutation and no proper subsum is. This, combined with the fact
that projectives Z7,S5,-lattices are stable permutation finishes the proof. O

A cohomological argument due to Snider and Saltman shows that a sim-
ilar statement holds for all non-squarefree degrees. Of course, one may con-
jecture that R} /kGm can never be k-rational provided the degree is larger
than 4 (with the possible exception of 6).

3 Rational points of Ry, Gy,

The foregoing result may suggest that it is rather hard to find an explicit
Hilbert-like parametrization of all k-rational points on R} /kGm. However,
a result of Colliot-Théléne and Sansuc [8,Prop.9.1] offers some hope. They
show that Pic(X x K) is a direct factor of a permutation lattice. As in the
proof of the next result this essentially shows that a Hilbert-like parametriza-
tion of the norm one elements is possible. However, their general principle
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usually gives a too large permutation middle term on which the following
result improves drastically :

Theorem 2 Let K[k be a separable fieldeztension of prime degree p with
Galois closure L with group Sp. Then,all k- rational points on Ri;Gnm
(or,alternatively,all norm one elements of K*) can be written as

Nicx(; = (10)

12...p).cx
where o € K* and K' = L52,

Proof: (compare with [1,Prop.3]) Let T}, be the k-torus corresponding
to the invertible ZZS,-lattice M,. Then we have an exact sequence of tori

1 — T, — Rgiji G — RyppGr — 1 (11)

Taking global sections (over k) gives us an exact sequence
K™ — R}{/kl}’m(k) — HY(G,Tp(ks)) — H (G, Ri' j1Grm(ks)) (12)
where G = Gal(k;/k). Now, for any fieldextension ¥ C M C k, we have that
HY(Gal(ky/k), Ragsi Gr(ks)) = H*(Gal(k,/M), k) = 0 by Hilbert 90. So,

the last term vanishes and also the next to last as we have a torus Sy s.t.
Tp Xk Sp = X,“RK../k Gm (13)

Hence, the map K* — R}(/ka(k) is surjective which proves the result
taking into account that this map comes from the dual map between the
character lattices which was induced from ZS,/S,.1 — ZS,/Sp_2 sending

z; to 30, (yis — yji)- o

Clearly, for any degree n, elements of K of the form Nk, K(ZT%'&) are of
norm one. However, if n is composite there may be others :

Theorem 3 Let K[k be a finite separable fieldextension of degree n of num-
berfields, s.t. the Galois closure L has group S,. If n is composite, then the

cokernel of the map
127 £ J

where K' = L2 is infinite.




Proof : The Tate-Nakayama exact sequence gives us
0 — TSYT,) — H (Sn, Tu(L)) = ®H (S, Tn(Ly)) = H(Sn, M,)* (15)

where the sum is taken over all places v and where S, , is the decompo-
sition group at vlace v. As the first Tate-Shafarevic group is finite for
every torus and as H'(S,,M,) is finite, the result will follow if we can
prove that ®@H(S, ,,T..(L,)) is infinite. By local duality we know that
HY(Snw, Tn(Ly)) =~ H*(Sp0, My,)*. By Tchebotarev’s density theorem (e.g.
[6,p.132]) we know that there are infinitely many places v s.t. Sy, is conju-
gated to the cyclic subgroup C generated by the permutation (1...m)(m +
1..n) where n = m.k is a nontrivial factorization of n. Using the defining
sequence of M, and using duality for cyclic groups it is then easy to verify
that

HY(C,M,) ~ Z|mZ (16)

finishing the proof. =
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