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0. Introduction

Ever since Hamilton and Hilbert, people have tried to construct new examples of division
algebras. The most frantic examples known today are the genenic division algebras UD(n)
introduced in 1966 by Amitsur and Procesi and the generic crossed products, discovered
in the late seventies by Snider and Rosset, independently.
Although these two constructions are totally different, their centers can be described in
terms of lattice invariants. As the representation theory of finite groups recently has
led to some remarkable results about these fields, it is our hope that a representation
theoretic deseription of the division algebras themselves may shed some new light on such
old problems as: when are division algebras crossed products ? are division algebras of
prime degree evelic 7 ete. This paper can be seen as a first step in this program.
In this paper we introduce and study generic Brauer algebras, generalizing the generic
examples described above. Roughly speaking generic Brauer algebras are division algebras
generic w.r.t. having a maximal subfield which is the fixed field under H of its Galois
splitting with Galois group &, where H is a subgroup of G.
Its construction is a relative version of Hosset's and Soider’s. Consider a presentation of
the group &

12K +FsH—=G—1 {1)

where F is a free group. Then its abelianized sequence
l=R=K/[K,K]=E=F«H/[K.K]|=G=1
is such that B usually is a ZG-lattice and E is a group containing no finite normal
subgroups and whose maximal finite subgroups are conjugated to H. But then, by Moody's
result the groupalgebra kE is prime pi. having quotientring
QIKE) = Myn(A)

for some division algebra A having as center the ficld of lattice invariants (kR)%. This A
then is our generic Brauer algebra corresponding to the couple (G, H}.
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Instead of studying this problem using group extensions, one can also study it using rep-
resentation theory of ZG. For, there is a unique exact sequence of ZG-lattices

0=R—+M—lgu—0 (2)

corresponding to (1) where Iz, is the kernel of the augmentation map on the permutation
lattice Z&/H. The free ZG-lattice M can be given a ring theoretical interpretation by
showing that its field of lattice invariants is the function field of the Brauer-Severi vanety
corresponding to A.

In the first section we will recall this natural equivalence of categories between relative
group extensions and module extensions which is due to Kimmerle, We will interprete
everything in terms of division algebras. It will turn out that we recover the known
correspondence between division algebras and Brauer-Severni varnieties.

In the second section we introduce and study the genenc Braner algebras in the same vein
as Rosset's study in [8]. Moreover, it turns out that there are more such algebras deserving
to be called “generic” than the ones coming from a sequence (1). We might start from a
sequence (2) with M only an invertible lattice (i.e. a direct summand of a penmutation
lattice) and make a similar construction. Then, these algebras have an analoguous generic
property. The centers of all these algebras turn out to be retract equivalent to one another,
In the final section we illustrate the above by giving a representation theoretic description
of the genenic division algebras, The starting point is the Procesi-Formanek description of
the center :

0~ Z50/Snat BCGn— BSnfSn_1 O ESnfSn-2— Is ys5,., =0
Ta this sequence corresponds a relative group extension
1=K Fe8§, ;55 -1
whose abelianized sequence is
1= Z5uf8n 1 3Gy E—25,—1
The group algebra bE has a quotient ring
QIRE) = Mia_yn (UD (n)).
Moreover, in this monstrous simple algebra one can embed all Rosset-Snider generic crossed
products w.r.t. finite groups of order n.

The relationship between these algebras deserves closer attention m:l.d we Lterminate this
paper with a few remaining problems.
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1. The Noether-Brauer-Severi equivalence

In this section we will show that the relativized Kimmere equivalence of the Griinberg-
Roggenkamp equivalence between group extensions and module extensions contains the
classical equivalence between central simple algebras of degree n and their Braner-Sever
varieties of dimension n = 1. Usually the later equivalence follows from the fact that boih
objects are classified by the Galois cohomology group BHYGal(k/k), PGI,). Our integral
representation theoretic interpretation has the advantage that it extends to relative crossed
products having coefficients in lattices leading naturally to the generic objects treated in
the next section.

{1.1) The Noether-Brauer category

In general, division algebras are neither eyelic nor crossed products. The only positive
property they have is that a certain matrixring over it becomes a crossed product. This
classical fact due to Noether and Brauer is proved as follows, Take a division algebra A
of dimension n? over its center K, then A contains a maximal commutative subfield L
which is separable of dimension n over K. Let M be the splitting ficld of L which is Galois
over i with Galois group G = Gal{M/K) and let H = Gal{M/L) then |G : H] = n and
MY = L, ie we have a situation

A M
"“\." I,_,.-"F

Then, M is a subfield of Mg i(A) and is clearly a maximal subfield. As M is Galois over
K we can write My p{A) as the crossed product represented by the group extension

1l M S EaG=1 (3)

and the fact that L is a maximal subfield of A, where L = MY can be interpreted as
follows : consider the pullback diagram of (3) over H

1= " —l-E‘—l-H—l]_

| I
1= E &=l

then the lower sequence splits or, equivalently, E has a subgroup U isomorphic to H, We
will now formalize this situation in the following

{1.2) Definition

Let G be any finite group and M a subgroup of index n. Then, the Noether-Brauver
eategory (G H) of G relative to H has as objects exact sequences of groups

l=d=F=G=1
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with 4 an Abelian group such that the pullback

1t A e [ et [ =4 1

N 1 1
1—A—=E—=G—1

splits, i.e. E has a subgroup isomorphic to H. Morphisms are morphisms of group exten-
sions such that the following diagram is commutative

V—H
s

|l

I—lHl—tj‘-!-—ié—ll
l—l..'li:—lé‘:ﬂ il

{1.3) The Brauer-Severi category
Let ZG[H be the permutation lattice over ZG on the cosets of H in G\, then there is

Bl B.I.IFIJ.EII'.H.IiUIl SE METLCE

O=lgiu—ZEG|H—=Z =0
g w1

S0, Izpy can be viewed as a relative augmentation ideal of &G wr.t. H. Now, consider a
Galois extension M of K with Gal{ M/K) = G and view M* as a ZG-module in the usual
way, Then any extension

u—rﬁ'f'—lE—:IGIIrH—lﬂ I:-'l]

of ZG-modules determines an element of
ker (H*(M",G)— H*(M", H))

i.e. a Brauer class split by MY, The function ficld of the Brauer-Severi variety of this
class can be described as the field of invarants of a twisted-tord situation: consider a fixed
Z-splitting of (4) :

B =~ A" = Iﬂf i

After fixing an embedding I;y <+ B we can define an isomorphism

exp: B — M[Igiu| = M*Igin

where M[fwn] is the groupalgebra over M of the abelian torsion free group of rank n—1:
_fﬂ”;. For each g € G we let it act on an r € IE,.I'H via its embedding in B and then each
7 € & mves an algebra morphism

wg: MIgu] = M[lgu]
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Thus, & acts as a group of automorphisms on the group nlg_#bra M [Ig;u] and on its field
of fractions M (Igsu). Denote the twisted action by M, I.;; H] It follows from work of
Rogquette and Saltman that the function ficld of the Brauer- EF"-’E:I.'I variety of the Braver
class corresponding to the extension (4) is the field of invariants of the twisted tori field

My(Ign)®. Again, let us formalize this situstion in
(1.4) Definition

Let G be any finite group and H a subgroup of index n. Then, the Braver-Severi category
(I pu) of G relative to H has as objects exact sequences of ZG-modules

ﬂ—tA—tE—iIGIIrH—dU

Morphisms in the category are simply morphisms of exact sequences with the identity map
between the last terms.

{1.5) The equivalence

We will now recall the following fundamental result of Kimmerle [5] extending previous
work of Roggenkamp [?i and Griinberg |4] in the absolute case (i.e. when H =1}.

{1.8) Theorem [Kimmerle)

There exisla an equivalence of categories between (G H) and (Lerym)-

For a proof see [5].
For later use we recall the construction of this equivalence, Given an object in (GJH)

U~H
1 1
l-A—=E—=G—1

we consider E as being generated by A and symbols uy. 7 € G so that veu, = flo, viug,
with flo,r) = 1forall ;7 € H. An element e = 37, [Eieﬂ vFa) u, belongs to kerw,
r: ZE/U — ZGJ/H if and only if e belongs to [4.EfU, with Iy the augmentation ideal
of 4. We then obtain

1] 4]
l 1

0 = [LLE/U — Iggpy = Igggp — 0
Il ! !

0 = [LE/U — ZE/U = ZGIH = 0

= i —
]
= — Bl
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From the top row we deduce

0~ (In.E[U)/ g, = Tepo) (1,.14) = Torn = 0

dgu)

and thus
0D— A— “E‘WIEH{IE;L-'JA} — Igiy — 0.

Conversely, given a sequence
0=+ A=+ M- lgy—0

we form the pullback diagram

E 5 @
T 3 i
M = Igmn

j being given by g+ gH —H. Asasct E consists of pairs {m, g) such that ¢y(m) = gH=H.
¢r and 4 are the obvious projections. E is made into a greup by

(rm,g).(m’,g") = (m + gr’, 9g").

As M 15 a ZG/H-module (the action of g only df;pcnds on the coset to which it belongs)
one has (m A}{m', k') = (m + m' hl') for all b,k € H entailing that I = {{0, )|k € H}
15 a subgroup of E isomorphic to H.

From these functors Kimmerle esstablishes the equivalence of (GfH) and (fg5;4). In
the special case when the kernel of an object is M™ for a G-Galois Exlrnsiu;.:\?}k the
foregoing equivalence gives the well known one-to-one correspondence between eentral
simple algebras of degree n and their Braver-Seven varieties,
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2. Generic Brauer Algebras

In this section we use te previously described relativized Kimmerle equivalence to construct
generic Braner algebras, not only starting from free objects, but also from objects in (Ig; )
with invertible middle term, called “almost genenie Brauver algebras™. [t will be shown that
such Brauer algebras, coming from objects with a coflasque left term in addition, can be
considered as munimal. The importance of these constructions lies in the fact that the
centers of almost genenc Brauver nlgﬁ:br.&s are retract I'."ql.l.i‘l"-ulf-'ﬂt.. whereaz the centers of the
“orcdinary™ generic Brauwer algebras are stably equivalent. Finally, we deduce resulis for
Brauer-Severi varieties,

We would like to spot free objects in both categories and study their relationship under
the equivalence,

(2.1) Definition
An object in {G J H) is called free if there exists a set 5 C E such that E is generated by
5 and I and so that every application u: § — F, making the following diagram exact

§ = G

ul |
1 = B = F = G — 1

extends to a morphism of objects of (G H).

The existence of free objects is guaranteed by the following construction. Let ¥ be an
arbitrary set and let v : ¥ — G be an application satisfying < Imv, i >= G. Then we can
form a unique homomorphism A : F(Y)» H — G (with F{Y') the free group on the set ¥
and F(Y') = H the free product of both groups) so that Aly = v and A g is the canonical
imjection of H in G,
Denoting by R the kernel of this homomorphism, we obtain, after division by R’ = [R, R :

H.R'[R - H

l 1
1 - R/R - (F{Y)«H)/R' - G — 1

We denote this object by B{Y, v).

(2.2) Proposition
Every free object in (G H) is isomorphic to & certain B(Y, v).

For a proof see Kimmerle !5]

{2.3) Definition
An object in {[5,y) is ealled free if there exists a set § € M for which M =< § > so
that for every object M, and every application p : § — M, with

§ = Igmn

l |
My, — g
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comimutative, extends unique’!;.r to A marphjn'n of objects.

{2.4) Proposition
Every free object in (Igyp) ia isomorphic to en object C(X,w) :

0 — kerw — F{X) = Igiu — 0.
F{X) denotes the free ZG-madule on X
For a proof see Kimmerle [3].
(2.5) Lemma
Let B(Y,v) be a free abject in (G H). Then
12 R=(FesH)JR' =G =1 (3)

ts a generafor for
HYaG Ry = Z/dZE
where d = #(G/H) and R denotes R/ R'.

Proof. From (ZG/H)® — Z® — H'(G,Ism) — 0 and taking into account that
(ZG/H)E = Z(3, zH), where r runs through a transversal for H in G, as G acts
transversally, we obtain

HY G, Igu) = ZZ.
The equivalence for B{Y, v) entails the sequence

0—=R—F—Igu—0
with F' a free module. Thus
HYG, Ie;u) = H*G,R).
Let & be an arbitrary generator for H2(G, R}, Then we get a commntative diagram

1 = R = (FY)eH)/R = G =

l |
- E - G = 1

i

As fua) = # we obtain that the order of a is equal to 4. implying that o generates
H*(G,R), thus finishing the proof.

The category (G H ) can also_be used to deseribe division algebras. Contrary to Rosset's
construction, it will no longer be possible to get crossed products that are division algebras.
The crossed products anising from objects in (G JH) usually only are simple algebras.
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Let {,..ng be an object in (GJH), corresponding to o € ker (H*(G,A) — HY(H, A)).
Again A is a free abelian normal subgroup of E and A is assumed to be a faithful Zé-
lattice.

Let (# }1.;.F be a Z-basis for A, then we define the group algebra k[A] as l'[tl. i
12T, with function field M = k{A). Define [ = k{A)7, K = k(A)%. The

exp-mmnua] map exp : A — M" sends o to f = expoa, an element of ker {HE{G,M'} —

HYH, M*)).

As G = Gal(M/K) we can form a crossed product C, = ZaEG My,, unambiguously

defined by . As M is a Galois elosure of L/K | we can form a division algebra A over K,

containing I as a maximal subfield, so that C, is a full matrx ring over A. The order of

this matrix ring over A is given by Moody's Theorem.

It also follows that C, is the quotient field of kE. We collect these results in the following

(2.6) Proposition
1. kE i3 a prime p.1. ring.
2. exp as defined above induces exp, : H*(G,A) = H*(G,M*), a part of Br(K), such
that the clasa of K[ G) tn Br{K) is determined by exp_[a).
3. The index of [E‘{E}] in Br{K) cquals the order of o in HII:-G',A}.

We will only give a sketch of the proof, as this resembles Rosset’s argument in {8], As the
set {v, o € G} generates a subring of C, which is isomorphic with EE, one easily deduces
the first and the second asssertion,

To prove 3. we only have to show that exp, is order-preserving. Consider the diagram

exp, is injective, so we merely have to show that

io: HNG, ARy = HY (G, M*)
is injective. This can be done by the classical Lenstra argument, asserting that

HYWG, M*/(AX™)) =0,

thus finishing the proaof.
Consider the free object
" 1 s R (FeH)/[RR—C—1
We know o to be a generator for H* (G R) = Z/eZ where e = #G/H. We thus get ©,,

a crossed product of order ¢ and degreee d, which is a full matrix fng over a division ring
of degree e. Counting degrees, we get &, = Mgapu{A)
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This situation can be considered generic in the following sense. For an arbitrary object
in {GJ H} (with the usual hypotheses upon the kernel) we can form a free covering, i.e. a
commutative diagram

HRER — H

o B
r o —“.J H |
| L. F W
1—=R —;:{F‘-H:,l'ﬁ’ —_— (sl
l—l-.il‘:-f—l-ij —f - 1

Denote (F « H)/R' by F. The homomorphism ¢ : F — E extends to a homomorphism
é o .I.[-F] . l:[.E'], which in turn gives rse to C, — C3 where a (3) denotes the first
(second) object.
We can extend the foregoing generic construction by starting from module extensions
having middle term an invertible module, i.e. a direct summand of a permutation module,
Consider an extension

0= BRI = Iy — O

with I an invertible module. This gives rise to a group extension in (G H)
l=-R—=Er—=G—=1

If we now take an object
1=+ Q<+ E—+G—=1

with @ coflasque(*) (e.g. @ = M* when & = Gal(M/K)) then we can form a map
EEy — EE. This can be shown as follows,

(2.7) Lemma

Forobjects 1 = R =+ Ey = G = 1and 1 = Q@ = FE —= G —= 1 with @ coflasgue, there
exists @ map kE; — kE.

Proof. By the equivalence of categories the second sequence is transformed into a sequence
0=Q = Mg — Igjy =0 As Qs coflasque we have that 0 — QH =+ {.HE}H =
(Igsu)® — 0 is exact for alle subgronps K of G. Arnold shows in (1] that in this case the
map I — Igyy lifts to Mg, giving the following commutative diagram

0 = @ = Mg — Iggg = 0

1 T A2
ﬂ—nﬂ—rf—-fgﬂ;—rﬂ

(*} A ZG-module Q is called coflasque if THY(K, Q) = 0 for every subgroup K of G. A
Z G-module is called fosque if TH'(K, F) = 0 for every subgroup K of G. TH" denotes
the n-th Tate cohomology group.
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Again by the equivalence of categories the middle map is transformed into a map between
the corresponding modules, 5o we get the desired map.

This means that objects in (G fH), coming from objects in (g i) with invertible middle
term can also be considered generic. Let us formalize this in the following definition.
(2.8) Definition

An algebra, coming from a free object in (G H) is called a generic Brouer algebra. An
algebrn, constructed from an object in {GJH) with invertible middle term, is called an
almost generic Orauer algebra. When an almost generic Braner algebra is given by an
ohject which also has a coflasque left term, we call it & minimal Braver algebra.

The minimality can be seen as follows. Consider a coflasque resolution(**} for Iy, We

now have a diagram
0 = l_';a:l R — ey IE?-J"H =+ 0

1 T /7 |
ﬂ—rR--lf—lIGl.rH_—'rﬂ

This leads to mappings
kE; = kEp — kE.

We are now interested in the relation between all these generic Brauer algebras. Let us
first relate the centers of the “truly” generic Brauer algebras.

(2.9) Definition
The kernel B = R/[R, R] of a free object B(Y,v) is called relative relation module.

Relative relation modules are closely related to each other.

(2.10) Proposition
Let B(Y;,vi} (i=1,2) be free objects in (G H). Then

& ZC*: T 6 ZGH*Y,

Proof. Under the equivalence 8(Y;, v;) goes to
0 — R = ZGY| = Igjyr — 0.

(**) We call an exact sequence of modules 0 —+ @ — P — M — 0 a coflasque resolution
for the module M if P is a permutation module and @ is a coflasque module. Remark that
0 =@ = F — Igiy — 0fori = 1,2 are two coflasque resclutions then one has that
G @ Py = @y & Py and thus we may say that a coflasque resolution is esentially unique,
An exact sequence 0 — M — P — F — 0 with P permutation and F flasque is called a
Hasque resolution for M. There is an analoguous statement about essential uniqueness of
flasque resolutions.
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This implies that R; is a ZG-lattice. We now can apply Schanuel's Lemma, from which
the result follows.

Remark

In the classical case (i.e. when H = 1) generic Braver algebras are also minimal. By
proposition 2,10 it suffices to prove coflasqueness of the left term for only one object.
Now, I is generated by the elements g — 1 for all g € & — 1. Consider a free ZG-
lattice F = @ 0.1 ZGa, where a, is sent to g — 1. An easy computation shows that
FH — (Is)" is surjective for all subgroups H of G. This is equivalent to the coflasqueness
of the kernel.

Before continuing our investigation we need to recall some definitions and terminology,

(2.11) Definition

A field extension I/k is called rational if there exists an isomorphism of k-algebras [ =

E{yy..Zn)-
Two field extensions Iy /k and I;/k are called stably equivalent over k if there exists a

k-algebra isomorphisms iz, ..., 20) = lolyy, .- o ¥m b

A field extension .fl,n"l: is said to be refract ralional if there exists an affine l.'-n]gebra R with
field of fractions I, together with nonzero elements f € k[xy,...,z,] and r € R such that
we can form a commutative diagram

e, zalld]

Sy
R s R[L]
The definition of retract rationality does not depend upon the particular choice of the
affine algebra R.

If two Z-lattices M, and M, have got essentially the same flasque resolution (we denote
this fact by &(My) = &(Ms)), then (kM;)% and (kM;)" are stably equivalent (see e.g.
[6]). We thus immediately deduce from proposition 2.10 :

(2.12) Proposition

The centers of generic Brauer ufg:lrms are stably equivalent fo one another.

Now, let us study the more general construction. We also have an important relationship
between the kernels.

(2.13) Propoesition
If we have fwo exact aequences
H—FR—F.F-'IG!H-.D

and i
ﬂ-—rR;-—*f"-*IGIfH =
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with I invertible and P permutation {in particular, we may choose P o be a free ZG.
module), then (kR;)® and kRY are retract equivalent.

Proof. There exists an invertible module .J such that [ & J = F; a permutation module,
The second sequence then transforms into

0=Rr@aJ =P —Igp—0

As Igpu is invertible, it is both flasque and coflasque. So, the modules By & J and R
essentially have the same flasque resolution. Saltman [10] proved this to be equivalent
with the stated retract equivalence.

Remarks

1. Even in the classical case of Rosset's (i.e. when H = 1), definition 2.8 provides us with
an extended class of crossed products with a genernic property.

2. From work of Saltman’s it follows that the cenira do not have to be (stably) rational
aver the basefield, even in the special case of crossed products.

Similarly one may study rationality of the Braver-Seven variety over the basefield. Recall
that Noether's problem asks for which groups G the field k(zy,...,2m }¥ is (stably) rational
over k, where GG acts faithfully on x1,...,2m.

(2.14) Proposition

1. The funchon field of almost generic Brauer algebras, coming from an object in {Ig]r il
with middle term permutation, is stably rational if and only if the Noether problem 12
satisfied for 7.

2. If the condition in I. is satisfied, all Braver-Severi varieties are retract rational over
the baasefield.

Proof. Saltman proves in [9] that the function field K{A) of the Brauver-Seven variety of
the Brauer class corresponding to the extension (4) is the field of invariants of the twisted
tori field My(Igsy ). Now, (4) corresponds to (3) under the equivalence and the middle
term E of (3) is permutation in this case. To prove stable rationality, we may replace the
field of invariants by the field occuring in Noether's problem. This yields the first assertion.
The second statement then easily follows from the definition of retract rationality.
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3. A monstrous simple algebra

Let us illustrate the foregoing by considering the main motivating example : the generic
division algebra ' D{n). Let &, be the ring of 2 generic n by n matrices over a field k, i.e.
the snbring of

Jun{_kl-ru'ry'rj 1€ £ n]]

generated by the two generic n by n matnices
X =(zihgiogn and Y ={yijhgijcn

This ring is a domain and its classical ring of fractions is U'D(n). It is well known that
properties of UD(n) (e.g. being a crossed product, being cyelic, being similar to a tensor
product of cyclic algebras in the Brauver group etc.) are inherited by all division algebras
over a field containing & as a subfield. All major results concerning the centers were
obtained using the representation theoretical descniption which we will briefly recall.

Let Z8, /8,1 = Ez; ®...5 Zz, be the standard rank n permutation representation of
the symmetric group S, with o.z; = z,;). Similarly Z5,/5, 2 = Zy12G... 8 Byia_1)n
is the permutation representation of rank n{n — 1) given by o4 = Yarivep for all 7 € 5.
There is a canonical sequence

0 = GHLESHIS“_JI-EES";SH_lE.E — 0 (8)

where o is the angmeotation map defined by alz;) = 1 for all i. 7 is determined by
Hyi;) = zi —z; for all § and j. &, is the kernel of v and is of Z.rank n? —n + 1. Then,
Procesi and Formanek proved that the center of IV [} n) can be written as a field of lattice
invariants

Z(UD(n)) = k(G ® ZB5u/Su-1)"

[t would be useful to have a similar representation theoretic deserplion of I'D{n). From
[6) we deduce

0 — G @ BSy/Su-1 "= BSySn—z ® BSyfSa1 15 5, , =0

This is an object in (Ig;y) with middle term a permutation lattice. We can form the
corresponding ohject in (G H) : i
U = S
| |
0 = @ ESfSn-y — E — Sn - 0

and we know that the group algebra kE is a prime Azumaya algebra having classical ring
of fractions My, _1y{4) where A is a division algebra of degree n having center

(G @ ZSuf5n-1)".
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It is easy to verify that :

(3.1} Proposition
kE = M, _1n(UD(n))

Giving the desired representation theoretic deseription of UD(n). In fact, more is true

(3.2) Proposition

If G 12 a finile group of order n, then there ezisfs a Rosset-Snider generic crossed product
with group G, C(G) say, embedded in kE. More precisely

C(G) = centralizery g (K{Gn ® ZSn/Sa-1)%)

where 7 18 represented as a subgroup of 5, via its natural permulation representafion on
Zry&...0 Zr,.

Proof. Let G = {id = =y.....7z4}. G acts by left translation on this set. Then & — &,
such that &GN §,_; = id. Now, we can restrict the 5,-sequence

0 — Gl‘l £ Esﬂfsn—l — Esnillsn—l & Esﬂn'isn-—l = 'rsn.l"sn-s. —+ 0

to . Note that

1. (ZSp/Sa1 @ ZSyfSn-2) | G.is a frec ZG-lattice;

2. Usapsaa) L g = Ia
3. (Gn® Z54/Sa-1) | o = Gn & ZG.

So this sequence gives rise to & group extension
l=G, B EZG=F=G=1

and the group ring kF = C, is a Rosset-Snider generic crossed product with group G
having center k{ G, & ZG)Y. But kF « kE and can be interpreted as the centralizer of
k(Gn© ZG)Y in kE. Le. we have the following situation :

QKE) = Min-an (U D(w)

QUEF) s
in=1)1¥ ) kG, & Z5,/50-1)
kG, @ EG}IE
UD(n) . v
N

" (G @ ESu)Sno1)5
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Now, consider the problem of when UD{n) is a crossed produet with group . The generie
property would then imply the following k-algebra maps

kF — UD(n) = Mu_1y:(UD(n)) = Q(kE)
and we always have the inclusion maps
kF < kE — M1y (UD(n))
It would be interesting to compute the behaviour of various invariants of the group algebras,

such as cyclic cchomology groups, in order to get restrictions on the groups & for which
UD{r) can be a crossed product. We will come back to this problem in part II of this

paper.
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