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Abstract

Let V be a PG Ln-representation such that the stabilizer of a generic
point is trivial. We study the stable rationality problem of the quotient
variety V/PGL,. In particular, one gets a positive solution when n =
2,3,4,5 and 7. Moreover, fairly precise information is obtained when
n = p a prime number.

1 Introduction

In this paper we study the following problem : let V be a good PGL,- rep-
resentation, i.e. V is a finite dimensional vectorspace with PGL,,- action such
that the stabilizer of a generic point is trivial. Then, there is an affine PGL,-
invariant open set U of V such that generic orbits are closed. We now ask
whether the quotient variety U/PGL,, is stably rational, i.e. is a rational ex-
tension of the invariant field € (V)P%L» rational over € ?

Of course we can phrase the same problem for any reductive linear group G.
Then, Bogomolov [7] has shown that the answer is independent of the particular
choice of a good G-representation. In case of special groups (SL,,Sp, and
products of them) one gets a positive answer using the fact that all principal
G-bundles are locally trivial for the Zariski topology. For other groups (such
as Oy) one can construct a particular good G-representation and show (stable)
rationality of the quotient variety by some ad hoc argument and use Bogomolov’s
result for the general case.

However, these methods cannot be applied in the PGL,-case as it is well
known that principal PG L,-bundles cannot be trivial in the Zariski topology.

Geometers usually refer for this to the following argument by Haboush [21]:
the conjugation action of PGL, on M,(C) gives a morphism PGL, — GL,:
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and GL,2 embeds naturally in V = €™, The left -multiplication of G,
by PGL, extends to a linear action on V. Now, let P be the stabilizer of a
point in the action of PGL, on IP"~1 and consider the map « : GL,2/P —
GLp2/PGL,, the this is generically a universal Brauer-Severi scheme. Since
non-trivial Brauer-Severi schemes exist over function fields in any dimension,
it follows that o cannot be uniruled for else it would be generically trivial by
Chatelet’s result.

Ringtheorists will probably feel more at ease with the next argument : con-
sider the good PG Ly-representation X, = M,,(C) & M,(C ) with action given
by componentswise conjugation. Then € [X,/PGL,] is the center of the trace
ring of two n X n matrices [37] and taking U to be the inverse image un-
der the quotient map of any affine open set of Azumaya points determines
an element in HL(U/PGL,, PGL,) which is mapped to a nonzero element in
HZ,(U/PGL,,Gp) = Br(U/PGL,) — Br(C (U/PGL,)) as it corresponds to
the class of Amitsur’s generic division algebra [1].

For this reason it is perhaps not too surprising that most noteworthy results
on stable rationality of PG'L,-quotients were found by ringtheorists studying the
center of the generic division algebras in an attemp to prove what is now known
as the Merkurjev-Suslin result (Brauer group is generated by cyclic algebras
provided we have enough roots of unity) . Let us briefly recall some of these
contributions :

In 1972 Procesi [36] proved that quotients of good PGLs-representations
are stably rational although this result can be traced back at least to an 1883
‘paper by Sylvester [47]. In 1979 and 1980 Formanek [19],[20] proved a similar
result for PGL3s and PGLy-representations.As Bogomolov’s no-name lemma
was not known at that time, they actually proved more namely that X,,/PGL,,
is rational.

In view of the exponential growth in complexity of the proofs of these results
it was commonly believed that a similar approach was not feasible for n = 5, see
eg. [39],[2]. For this reason, attention shifted to general (but weaker) results.
In 1984 Saltman [40] proved that quotients of good PGL,-representations are
‘retract’ rational (i.e. birational to a retract of a rational variety) for n = p
a prime number. his result was refined by Colliot-Théléne and Sansuc in 1987
[10]. Moreover, Saltman [42] proved that the Brauer group of a smooth model of
good PG L,-quotients is trivial, killing the obvious approach to disprove stable
rationality,e.g. [38]. Later, Bogomolov [8] extended this result to good quotients
under any connected reductive algebraic group. Further, by 1980 it was common
knowledge among ringtheorists (e.g. [20] or [38]) that the natural approach
to prove rationality of € (X,)P%L» (i.e. extending the trancendence basis of
C (M, (€ ))PGL» given by the coefficients of the characteristic polynomial to
one of € (X,)P%Ln) fails for n not squarefree. This argument due to Snider
was unfortunately never published as it invalidates the ’proof’ of Maruyama
[31] for general n modulo the translations from moduli spaces of vectorbundles




to PGL,- representations as implicit in the work of Hulek [22], see also [27] or
[49]. In 1986, Saltman [44] provided a write up of a nice extension of Sniders
argument.

Let us run through the contents : In the next section we develop the general
strategy of attack. There is a general procedure [45] to pass from invariant
fields of good representations under reductive groups to fields of (twisted) lattice
invariants under the corresponding Weyl group . In our case, the Weyl group
is S, and the lattice in question G, is called the generic lattice (it is a sort
of permutation-syzygy of the root lattice A,_1). Then € (V)P%L» is stable
equivalent to the field of lattice invariants € (G,)°» reducing our problem to
* that of studying stable rationality of lattice invariants under finite groups. This
theory started off in the fifties by work of Masuda [32] and was led to its present
elegant form by work of a.0. Kuyk [26] Endo and Miyata [16], Voskresenskii [50],
Lenstra [29] and Colliot-Théléne and Sansuc [9]. It reduces our problem to that
of finding Sy-lattices of low rank having the same ¢-invariant as G,,. However,
computing ¢-invariants is not an easy task mainly because representation theory
of ZSy) is only partially developed. For this reason we had to find a large detour
via modular representation theory to obtain the local data, glue this information
together using the theory of Burnside rings to obtain genus data which allows
us finally to compute ¢-invariants using results on the classgroups of integral
grouprings. Finally, rationality of the lattice invariants of these low rank lattices
is then proved by an ad hoc method (at least for small values of n).

In' section three we begin our investigation of the .S,-lattice G,,. From the
observation that G, = A,_1 ® A,._1 it follows immediatly that G, is an in-
vertible lattice (i.e. a direct factor of a permutation lattice) for n = p a prime
number. Direct consequences are Saltman’s retract rationality result as well as
Colliot-Thélénes and Sansucs result. On the other hand, for composite values of
n the lattice structure of G, is not so nice. We show that is not even coflasque
and if n is not squarefree then even its ¢-invariant is not coflasque (a slight
extension of the Snider-Saltman argument). Further, we reduce the problem to
a Noether rationality problem. To be precise, € (V)P GLs is stable equivalent
to € (G)Y where G is a semidirect product of Sp with A = Homz(IF,A,_1, )
where g is the group of roots of unity.

In section four we prove stable rationality of quotients of good PGL,-
representations (for small n) using the above scetched method. The local ¢-
invariants are determined for all prime values of n from which we deduce in
particular that for p > 3 the ¢-invariant of G, cannot be trivial entailing that
one cannot extend the coefficients of the characteristic polynomial of the first
generic matrix to a rationality basis of € (X,,/PGL,).

In the final section we give some applications to seemingly unrelated areas.
Stable rationality of PG L,-quotients implies stable rationality of M(n;0, n) the
moduli space of stable vectorbundles of rank n over IP, having Chern-classes 0
and n as well as stable rationality of of the generic Jacobian variety of plane
curves of degree n, [30],(27],[49]. Moreover, if « is a Schur root for a quiver




@ (e.g. [24],[25]), then the variety parametrizing isoclasses of a-dimensional
representations is stable equivalent to U/PGL,, where n is the greatest common
divisor of the component-dimensions of ¢, [28]. In particular, our results entail -
stable rationality for many m-subspace problems cfr. [33].

Perhaps we should include a fairly pessimistic comment. As there does not
seem to emerge a common theme from the cases where we can prove stable
rationality, it may very well be that the answer is negative for large n. There
are some reasons to believe that things might already go wrong for n = 8.
It would be interesting to compute finer birational invariants than the Brauer
group for a smooth model of € (V)PGL~, The new invariants of Colliot-Théléne
and Ojanguren [11] may very well be the right ones to disprove stable rationality
of quotients of good PG Lg-representations.

Acknowledgement :  We like to thank Michel Van den Bergh (UIA)
for many discussions and some simplifications of the original arguments. The
calculations for the PG L+-case were done with CAYLEY (version 3.5) on the
IBM 4381 at the University of Essen (BRD).

2 The strategy

In this section we explain the overall strategy to prove (or disprove) stable
rationality of quotients of good PGL,-representations for a particular n.

First, Saltman [45] has indicated how to problem of checking stable ratio-
~+nality of invariant.fields of good representations of a reductive group G can be
reduced to that of certain fields of (twisted) lattice invariants under the corre-
sponding Weyl group. So, let T be a maximal torus in G with normalizer Ng (T)
then the Weyl group of G is the finite quotient W(G) = Ng(T)/T. Consider the
character group X (T') = Homy (T, C ") as a lattice over the integral groupring
ZW(G) and take a permutation-syzygy

0-M—>P—X(T)—0 (1)

where P is a permutation W(G)-lattice ie. a torsion free ZW(G)- module
with a finite basis which is permuted under the action of W(G). Using this
notation, Saltman [45,Cor.2.7] shows that the invariant field € (V)¢ of a good
G-representation V' is stable equivalent to the field of twisted lattice invariants
C &(M)W(G) where € (M) is the quotientfield of the groupalgebra of the Abelian
group having the induced W(G)-action by automorphisms and o is some exten-
sion of M by €*. In many cases (as the one we are interested in) the twisting
by & can be dispensed with.

Let us specialize to the PGLy-case : the Weyl-group is clearly S,, the
symmetric group on 7 letters and the character lattice of a maximal torus is
the classical root lattice A,_; consisting of all integral vectors (X1, .0y 2n) € Z™




such that Z?ﬂ z; = 0. A permutation S,-syzygy of A,y is-given by :
0—-G,—-V,—A,_1—0 (2)

~-where V,; is the ZS,-lattice on the .off-diagonal entries of an n x n. matrix
Vo = Zyi12 @ ... ® ZYn-1» which is a permutation lattice under the action
o(yi) = Yo(i)o(j)- Note that V, o ZS,/S,_s. The map V, — A,_; is given
by sending y;; to e; — e; where the e; are the standard basis of Z®". Consider
the groupalgebra € [G,] = € [e1, 27!, ..., 21,25 "] (where k = n2 — 2n+ 1) on
which S, acts as a group of automorphisms, whence also on the quotient field
€' (Gr). By Saltmans result we are now reduced to prove stable rationality
of the field of lattice invariants € (G,)°~. Readers familiar with the theory of
- generic division algebras will remember the Procesi-Formanek description of the
center [36],[19] as the field of lattice invariants of the lattice G, ® US? where
U, is the standard rank n permutation representation ZS,/S,_1.

The theory of lattice and tori-invariantsarising naturally from efforts to
solve Noethers rationality problem (for which finite groups G is the invariant
field € (G)¢ (stably) rational ?). ,was brought to its present elegant form by
contributions of a.0. Masuda [32], Kuyk [26] , Endo and Miyata [16] , Voskre-
senskii [50] and Colliot-Théléne and Sansuc [9]. Although these results are valid
for any finite group we will specialize here for convenience to S, and basefield
€ keeping in mind that the same results hold for any basefield.

Recall that a ZS,-lattice F is said to be flasque (resp. @ to be coflasque)
iff H=*(H,F) =0 (resp. H'(H,Q) = 0) for every subgroup H of S, (here, H'
is Tate cohomology). Every lattice M has a flasque resolution

0—-M—-P—-F—0 (3)

with P permutation and F' flasque. Moreover, end ternis of flasque resolution
are unique upto stable permutation. That is, let Fy and F, be end terms of
flasque resolutions of M then there exist permutation lattices Py and P, such
that Fy @ P; ~ Fy, ® P,. Hence, introducing the Abelian semigroup Flas(S,)
of stable permutation classes. of flasque . Z S,,-lattices gives a well defined map

é : Latt(S,) — Flas(S,) (4)

assigning to a lattice the class of an end term of a flasque resolution.

Let L be a € -field with faithful S,-action, then we can define as in the case
of lattice invariants for each ZZS,-lattice M the field of tori-invariants L(M)%.
The importance of ¢-invariants is evident from the following crucial result :

Theorem 1 (Colliot-Thélene,Sansuc 1977) For ZS,-lattices M and N we
have the following

o L(M)%~ is stable equivalent to L(N)5~ over LS~ if and only if $(M) =
$(N) in Flas(Sy)




o If M and N are faithful Sp-lattices with ¢(M) = $(N) in Flas(S,), then
€ (M) is stable equivalent to € (N)5» over €

“In view of this result, we are reduced to finding a ZS,-lattice M of small
rank (compared to rk(G,) = n? — 2n + 1) such that ¢(M) = ¢(Gy) and prove
stable rationality of the field of lattice invariants € (M)°». Though it is fairly
easy to write down a flasque resolution for a given lattice [9] it is more difficult
to determine whether two flasques determine the same class in Flas(S,) mainly
because integral representation theory of S, is a bit messy at this time.

To bypass this problem we will focuss on the three major obstructions that
can arise, each of which is tractable because the necessary machinary for the
subproblem (modular representation theory,Burnside rings,classgroups) is well
developed. ’

So, assume we have two ZS,-lattices M and N having as end terms of a
flasque resolution the flasque lattices Fis resp. Fn. How can we determine
whether or not ¢(M) = (V) i.e. whether [Fus] = [Fn] in Flas(S,) ?

A first test is to see whether they lie in the same class locally. For any domain
R we can define an RS, lattice F to be flasque iff Ezt} g (F, RS,/H) = 0 for all
subgroups H of S,,. With Flas(RS,) we can then denote the Abelian semigroup -
of stable permutation classes of flasque RS,-lattices. So, a first test whether
[Fa] = [Fn] in Flas(S,) is to verify whether they have the same image under
the localization map :

loc : Flas(S,) — || Flas(Z,S,) (5)
- psSn

a problem which can be settled by modular representation theory as for all n
and all primes p we have the canonical isomorphism

Flas(Z,S,) = Flas(Z,S,) (6)

which.follows immediately from descent and Flas(®S,) = F las(@;Sn) =0
(permutation characters generate all).

Assume we survived the local obstruction, i.e. [Fi ® Z\p] =[Fn® Z} in
Flas(Z,S,) for all p, ie. we can find S,-sets T, and Ty such that

(Fu ® Z) © Z,T, = (Fn © Z,) ® Z, T, (7

We now ask whether these S,,-sets can be taken independent of the prime p, i.e.
do there exist S,-sets T and 1" such that Fyr & ZT lies in the same genus as
Fy & ZT'7

The method to solve this problem is a slight variation on an idea of Dress
[15] and is based on the description of (S, ), the Burnside ring of S,. This is
the Grothendieck ring constructed from the isomorphism classes of finite S,-
sets with addition induced by disjoint union and multiplication by Cartesian




product with diagonal action, see a.o. [12], [13]. By means of Burnside marks,
b(S,) can be identified as the subring of Iaecis,) Z (the product being
taken over C(S,) the set of conjugacy classes of subgroups H of S, ) obtained
by rightmultiplication with the Burside matrix (ag, g )u,ur € M.(Z) where ¢
is the number of conjugacy classes of subgroups, H and H' are representants
of classes and ag g = #(S,/H)¥ ' the number of H'- fixed elements of the
transitive S,-set S, /H.
Starting from the local data ( 7) we can construct a partial function

X:H=Up<n Hypp(Sn) — Z (8)

Here, Hyp,(S,) is the set of conjugacy classes of p-hypoelementary subgroups
of Sy, (i.e. those subgroups H s.t. H/O,(H) is cyclic where O,(H) is the largest
normal p-subgroup of H). If H is a representant from Hyp,(S,) , we define
x(H) = #Tf - #ngH . This map is well defined as H is p and ¢-hypo iff H
is cyclic. But then, x(H) is just the difference of the character values of a
generator on Fjr @ @ and Fy ® @. The relevance of x is given by the next
result

Lemma 1 Starting from a setting as in. ( 7) we can find S, sets T and T’ s.1.
Far @ ZT lies in the same genus as Fy @® ZT' iff the partial function x can be
eztended to an element in the Burnside ring b(S,).

Proof :  Assume x extends to an element in 5(S,), then there are S,-sets
~T-and T' s.t.-for all H € Hyp,(S,) we have

x(H) = #T7] —#TH = 77 _ 7" (9)
which implies by a result of Dress [14] that
Z,T, ® Z,T' ~ Z,T, ® ZT (10)

Adding Z,T & Z\pT’ to both sides of ( 7) we obtain from the above by cancel-
lation that PN P
(Fu ® Z,) ® Z,T ~ (Fn ® Zy,) & Z,T' (11)

which is independent of the prime p,done. The converse implication is trivial.
O

Assume we also survived the Burnside obstruction, i.e. we have found S,-
sets T and 7" such that Fis & ZT and Fy @ ZT' lie in the same genus, does
this imply that [Fis] = [Fn] in Flas(S,) 7 For arbitrary groups this is far from
being true (large cyclic groups already produce counterexamples). However, in
the S,-case we do have :

Lemma 2 If Fy & ZT\ Fy & ZT then [Fyf] = [Fy] in Flas(Sy)




Proof: By Roiter’s replacement lemma there exists a projective left ideal
I of ZS,, such that

Fy ® ZT @ ZS, ~ Fy ® ZT' &1 (12)

By the results of Endo and Miyata on the projective classgroups of ZS,
[17,Th.3.3] (or work of Oliver [34],[35]) we know that there exists a finite S,-set
T” such that I @ ZT” = ZS,, & ZT”, yielding that

FyeoZT o ZT” ~Fn& ZT & ZT” (13)

and hence [Fy] = [Fy] in Flas(Sy). O

3 The prime case and Noethers problem

In this section we will study the S,-lattice structure of &, and reduce the
PGLy-problem to a Noether rationality setting,

Tensoring the defining sequence of 4,_1 (ie. 0 = A,y = U, = Z — 0
where U, = Z5,/S,-1 is the standard rank n-permutation representation)
with A,_; we obtain

0—4,410Q Apy — A1 U, — Ap_y1 — 0 (14)

We can identify V,, with-4,,_; ® U, by sending y;; to (e; —e;) ® e; and note that
the map to A, coincides with that of the defining sequence for G,,. Therefore,

Gpn~Adn 1 Q@A (15)

This easy observation has some direct consequences. ‘Recall that a ZS,-
lattice I is said to be invertible iff it is a direct factor of a permutation lattice.
- Note that invertible lattices are both flasque and coflasque and that there classes
[I] in Flas(S,) are precisely the invertible elements.

Proposition 1 For all prime numbers p, G, is an invertible ZSp-lattice

Proof : For all ¢ # p we have (4,1 ® Z, 7) @ Zq ~ Z, Up yielding
that Gy ® Z, is stable permutation. Further, Apo1® Zp ~ UZ,) (here Q
is the Heller operator) yielding that G, ® Z, ~ ~ 07, & Z, Sp/(Sz X Sp_2).
As Q2 operates on the set of trivial source modules, G, ® Z is an invertible
Z Sp-lattice. So, Gp is locally invertible whence invertible. o

As an immediate consequence we obtain :

Corollary 1 For all prime numbers p we have :




o (Saliman,1984) € (Gy)°* is retract rational over €
e (Colliot-Théléne,Sansuc,1987) ¢(G,) is invertible

The situation for composite n is totally different :
Proposition 2 Ifn is composite Gy, is not a coflasque ZS, -lattice.

Proof : Let » = m.k with m,k > 1 and consider the subgroup G =
Sm X Sk-1)ym of Sp acting in the natural way on the n elements. From the
defining sequence of G,, we get the exact sequence

G
V.85 AS | — HY(G,G,) — 0 (16)

Now, it is easy to see that

(b= 1,0k —1,~1,...,—1) € 4% | (17)
~—

m (k=1)m

-and that the image of V,¢ under 7€ consists of the vectors

Z(m(k —1),...,m(k — 1),:m, ...,—m) (18)
m ' (k--‘g)m
and therefore H1(G,G) # 0,done. o

Though we believe that ¢(G,) cannot be coflasque for n composite, this is
only known for non-squarefree n as the following cohomological argument due
to Saltman [44] shows :

Proposition 3 (Snider,Saltman) If n is not squarefree, then there does not
exist an exact Z Sy, -sequence

6 -G, —>P—-Q—0 (19)
with P permutation and Q coflasque.

Proof : If n = p%.m, then S, contains a subgroup G which is the direct
product of a cyclic group of order p-and one of order p.m such that the action
on n letters is the product action. Restricting any permutation ZZS,,-lattice P
down to G' we can write it as &; Z G/ H; for some subgroups H; of G. But then
by Shapiro’s lemma : H%(G, P) = @;Hom(H;, @ /Z). Thus from the existence
of the required sequence we would have

0 — H*(G,Gp) — @& Hom(H;, Q| Z) (20)




whence any element of H%(G,G,) must have order dividing pm < n. How-
ever, -using that V,, and U, are free ZG-lattices we have that H 2(G, Gp) =
HY(G,Ap-1) = Z/nZ , a contradiction. |

Recall that Noethers rationality problem asks for which finite groups G the
fixed field € (G)€ is (stably) rational, see [48],[29] or [41] for motivation and
counterexamples. In [43] Saltman developed a method to find counterexam-
ples starting from lattice invariants of a lattice which is of finite index in a
permutation lattice. As an easy variation on his idea we get :

Proposition 4 Let M be any ZSy-lattice. Then, € (M)°~ is stable equivalent
to a Noether setting € (G)® where G is a semidirect product of S, with a finite
Abelian group.

Proof : Apply [43,cor.3.3] noting that all @ S,-lattices are stable permu-
tation (which suffices for the proof of [43,3.3)). o

Barge [3] proved that for any finite group G the Brauer groups of smooth
models for all lattice-invariants € (M )¢ are trivial if and only if G has all its
Sylow subgroups Abelian bicyclic. Thus, for n > 4, the foregoing result gives
a vast resource of counterexamples to the Noether problem. It also shows that
lattice-invariants of ZS),-lattices are rarely (stable) rational. However, in view
of Saltmans result [42] that the Brauer group of a smooth model for the center
of the generic division algebra is trivial we cannot use this approach to disprove
(stable) rationality of € (G,)"~. Still, we have a very explicit description of the
group G-in case our lattice is G, for p a prime number :

Theorem 2 Forp prime, the field of lattice invarianis € (Gp)SP 1s stable equiv-
alent to the Noether setting € (G)® where G is the semidirect product of Sp with
A= Homzg(IF,Ap_1, p).

Proof : For any n we have the exact S,-sequence :
0 — Ar{,—l QA,_1 — A:L—l ®An_1 — Z/(n) ®An_1 — 0 (21)

On the other hand, consider the pullback-diagram :

0 0
! i)
/4 = v
1 1
0 — AL 1®4An1 — Upxa: A5, 0U, — U, — 0
I ) !
0 — A, 1®A4n1 — Ar_ 10U, — A, 4 — 0
i i
0 0

10




Now, An 1 ®Un = (Ano1 @ Up)* =V, whence Un Xa2_ (A5_1 @ Up) =
Vi ® Z, giving us a sequence

0— A 1 QAn_1 -V, ®@Z —U,—0 (22)

Now, let us restrict to » = p a prime number. Then, 4*_, ® A,_1 is invertible
by an argument similar to that of proposition 1 whence (4y_; ® Ap_1) ® U, =~
Vp®Z. Then, we can add U, to the first two terms in ( 21)-and apply [43,Th.3.1].
[}

4 Stable rationality for small primes

In this section we will prove stable rationality of quotients of good PGUL,-
quotients for small n using the method explained in section two. Let us concen-
trate on the case when n = p a prime number :

From the proof of proposition 1 we obtain that if ¢ # p we have

(G ®Z,) 0 Z,U, = Z,V; © Z, (23)
and at p we have locally
Gy ® Z, ~ 0*(Z,) ® Z,5,/(S2 x Sp-2) (24)

Our first task is to find a ZS,-lattice M having the same local ¢- invariants as
Gy ie. such that [Fayr ® Z,] = 0 in Flas(Z,S,) and [Fy @ Z, Y] = —[0%(Z,)]
in Flas(Z, Sp)

Now, Q2 (Z ) is an indecomposable Z\pSp—lattice with vertex equal to the
cyclic p-Sylow subgroup Cp =< 2 = (1, ...,p) > of 5,. The normalizer of C,, is
a p-hypoelementary subgroup

Np =N, (Cp) =<a,y:2P =y =1L yzyt=2°> (25)

where a is a generator of the cyclic group IFy.

Since the p-Sylow subgroup is cyclic of order P, non-projective indecompos-
able Z Sp-lattices and Z, N,-lattice behave very well with respect to Green
correspondence (see e.g. [18 III ENE

Lemma 3 There is a one-to-one correspondence between isomorphism classes
of zndecomposable non-projective Z, »Sp-latiices M and indecomposable non-

projective Z Np-lattices N such that
Min=N&P
N1=MeoP

where P’ (resp. P) is a projective ZpSy- (resp. ZyN,-) lattice.

11




In" particular, -the Green correspondent of -the Z S, -lattice Qz(Z ) is the -

ZpN -lattice Qz(Z ). Now, let X1(¢7) be the Z, » Np-lattice of rank one given
by the action  — 1 and y — ¢/ where ¢ is a primitive (p — 1)-th root of unity
reducing to @ mod p. Then, it is easy to see (e.g. using [5,p.189] that we have :

Lemma 4 The Z;Np-laitice 02(Z,) is of rank one determined by the action
¢ — 1 and y — (P~% where { is a primitive p — 1-th root of unity.

Hence, if Q?( p) is a factor of a permutation Z Sp-lattice, then by restric-
tion so is Q2(Z,) = X1(¢?~?) a direct summand of a permutation Z, » Np-lattice.

But then, all lattices of the form X1(¢%) = ch(i) with a a primitive p— 1-th
root of unity and ¢ = p — 1 — a are direct summands too. Inducing this infor-
mation to the S,-level a.nd taking into account that all projective Z Sp-lattices
are stable permutatlon (follows by induction on the dominance order from [23])
we obtain :

Proposition 5 E(Zp 1= Q%(Z,)) =0 in Flas(Z,S,)
Immediate consequences are :

Proposition 6 1. Forp=2,3 , G, is locally stable permutation.
2. Forp >3, ¢(Gp) # 0 in Flas(S,).

Proof : (1) : Follows from the general formula. (2) : For p > 5 there are
- at least two primitive p — 1-th roots of unity so by the argument given above
X1(¢?~?) cannot be stable permutation. |

Corollary 2 For p > 5 the coefficients of the characteristic polynomial of the
first generic matriz cannot be extended to a rationality basis for C (X,)PCLs,
giving a prime analogque to the Snider-Saliman result.

Proposition 7 1. Forp=135,7, G, has the same local classes as Ap_1-

2. Forp>T7, ¢(Gp) # ¢(A;_4) in Flas(S,).

Proof : (1) : By the above formula : —[%(Z,)] = [2~%(Z,)] yielding
that locally —[G,] = [G}]. Now, dualizing the deﬁmng sequence for G, yields
that ¢(4;_;) = [G*] done

(2) : There are more than two primitive p — 1-th roots of unity and any
proper subsum of X;(({?) cannot be stable permutation. ]

So, for p > 7 a lattice having the same ¢-invariant as Gy needs to have rank

at least p. Anyway, for p = 2 or 3 we can now quess that ¢(Gp) =0 (ie Gpis
stable permutation) and for p = 5 or 7 the quess is that ¢(G,) = $(45_ 1) (whlch
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‘would follow from the above if G, ® G, were stable permutation). The most
elegant way to prove these results (or-more generally, that the local invariants
separate) would be to show that there is no torsion in Flas(S,) (or even in
p— Flas(Sy,) consisting of those classes with all ¢ # p-classes trivial). However,
we were only able to show that Flas(Z,S,) has no torsion. So, there is no
escape from the cumbersome Burnside-computations.

For p = 2 there is nothing to prove as it is clear that G2 = Z(y12 + y21) so
let us consider the case p = 3 : information on conjugacy classes of subgroups
of Sz is summarized in the following table

class | representative | order | hypo
(1) 1 1 all
(2) (12) 2 all
(3) (123) 3 all
(4) S3 6 3

With respect to this ordering it is also easy to compute the Burnside matrix

In order to show that Gz lies in the same genus as a stable permutation lattice
we have to show that the x-function of G3 on the hypoelementary subgroups
(which are all) extends to (i.e. is) an element of (S3). x on the cyclics are just
the character values so

2 1 (1) @) (3
x(H)| 4 0 1

To compute x on the 3-hypoclass (4) we have to go to the Nz-level (here,of
course,this is trivial) and obtain 23[3] ~ Zs® 92(23) which combined with
(24) that G ® Zs ® Zs ~ Z3[3] ® Zs[2)] (in such expressions we denote [4] for
the Sy-set Sy, /(7)) allows us to compute that x([4]) = —1. This x is an element
of b(S3) as it is obtained from the vector (0,1, 1, —1) by rightmultiplication with
the Burnside matrix. Thus we obtain :

Gs o Z\/ Z[2] ® ZI[3] (26)

which by vanishing of the genus-obstruction does imply that ¢(G3) = 0.

Let us concentrate now on the case p = 5. We need to have fairly precise
information on the conjugacy classes of subgroups of S5 which we summarize in
the following table :
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class representative order | hypo

m 1 1 all
2) (12) 2 all
(3) (12)(34) 2 all
(4) (123) 3 all
(5) (12),(39) 4 2
(6) (1234) 4 all
(1) | (12)(34),(13)(24) | 4 2
(8) (12345) 5 all
(9) (12),(345) 6 | all
(10) (123),(12) 6 3
(11) | (123),(12)(45) 6 3
(12) | (1234),(12)(34) | 8 2

(13) | (12345),(25)(34) | 10 5

(14) S3%x Cy 12 | none
(15) Ay 12 2
(16] | (12345),(2354) | 20 5
(17) Sy 24 | none
(18) As 60 | none
(19) S 120 | none

Using this information one can now describe the Burnside ring of S5 as the
image of Z®!° under multiplication on the right by the matrix :

120
60
60
40
30
30
30
24
20
20
20
15
12
10
10
6

HFO WO OMOWOAMNOODONOO
RN RN WRE OO GN N O
RFNNORHOONININGO GO OO
HF O R OONOHOOODOO O W
HORIVNOOOHROOOO O N

MM R ONOO WO O

RO OOINOO OO
OO OO RO OO
HONOOROOON

H MO OO RO OGN

—O RN OO OO M

O - OO N

— 000 oM

=N R O N

—_ o O M

5
2
1

o

2
1 1

Next, we have to compute x of G5 & G on hypoelementary subgroups. If
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H is 2- or 3-hypoelementary we can use (-23) to-obtain that

X(H) =2+ 24V — 24U (27)
H D 2 3 @ 6 6 @
x(H) |32 8 0 23 0 0 0
H [(8) (9 (10 (1) (12) (15)
xE) | 2 2 2 2 0 0

Moreover, we have over the 5-adic integers that
0N Zs) & QX Zs) © Zs[13) ~ Zs[§) (28)
yielding the isomorphism
(Gs & G}) ® Zs © Zs[13] ~ Zs[8] © (Z5[14])** (29)
allowing us te compute y on 5-hypoelementary subgroups :
H (13) (16)
x(H) | -2 0

We can extend this partial function x by unknowns x((14)) = a1, x((17)) =
az, x((18)) = az and x((19)) = a4. Then, multiplying this x-vector by the
inverse of the Burnside matrix we get an integer valued vector (and hence the
Burnside obstruction vanishes) provided we have that a1 and az are even and
a3 = a4 modulo 2. Hence, we can take all a; to be zero and then we obtain from
the above computations :

Lemma 5 G5 ® Gt ® Z[4] ® Z[13] lies in the same genus as Z[8] & Z[9] &
Z[10] & Z[11].

Now, let us turn our attention to the case when p = 7 : Again, we need
precise information on the conjugacy classes of subgroups of S7. This informa-
tion was obtained using CAYLEY (version 3.5) running on the IBM 4381 of the
University of Essen. In the sequel we use the canonical Cayley-ordering of the
subgroups. We hope that the reader can guess the structure of these subgroups
from the Burnside matrix given in the appendix. More suspicious readers may
consult the full list of representatives given in the first preprint version [6] of
this paper. There are 96 conjugacy classes of subgroups of S7 out of which 55
are hypoelementary subgroups.

As mentioned before it is easy to compute x(H) of a ¢-hypoelementary
subgroup with ¢ # 7 using

x(H) =24 24VH _opU# (30)
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As Vi (vesp. U7) is the permutation representation corresponding to the sub-
group of class (88) (resp (94)) the values of x are easily deduced from the
Burnside matrix. We obtain :

T 10 O 0 @ 0 ©® O 0 a)
32 8 0 18 8 0 0 8

X(H) | 72 0
H | (13) (14 (15 (7)) (16) (17) (18) (19 (20) (21)
X(@) | 8 0 o0 2 2 0 0o 0 2 2

H 1(22) (23 (8 (30) (31) (32) (33) (34 (35) (36)
x@) [ 2 18 2 8 0 0 0 0 0 0

H | (24) (%) (26) (27) (37) (43) (44 (%) (47) (48)

X&) | o 2 2 2 2z 2 2 2 2 8

H | (49 (67) (50) (51) (52) (54) (55) (59) (64) (65)
0

Xx(H)| 0 0 0 6 2 2 2 0 0

T ] (69) (74)

x(H) | 0 0

Now, the more chalenging job to determine y(H) for the three 7- hypoele-
mentary subgroups (28),(29) and (56). The starting point is the description of
the stable permutation Zz(56)-lattice 9%56)(2\7) @ Q(_SZG)(Z}) = W induced up
to the Sy-level giving :

W 157 ©Z7[28] ® Z7[29] ~ Z+[8] & Z[56) (31)
By Green correspondence we know that

W 157= Q2(Z7) & Q~%(Z7) ® IP®? (32)

where IP is a projective Z7S7 lattice. By James’ result we know that IP is sta-
ble permutation with all transitive permutation factors corresponding to Young
subgroups. Hence, the description of IP as a stable permutation character co-
incides with the description of the corresponding character as a linear combi-
nation of the Young-subgroup permutation characters. We obtain the following
description of the projective IP as a stable permutation lattice

IP @ Z[32)9* @ Z[23) ® Zx[73) & Z1[91) & Z[88]
~ Z719) & Z[41)9? & Z1[58] ® Z=[81] & Z+[94]
Next, we use the fact that
(Gr @ G3) ® Zr ~ QX Zrn) & Q% Zr) @ Z4]92)°? (33)
So, V=(G0G%® 27 is stable permutation as :
V & Z:[9%? © Z-[41]%* © Z+[58]9% @ Z-[81192 @ Z7[94]°° @ Z-[28) ® Z7[29)]
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~ 77 (5616 Z1 (816 Z1[92)% @ Z7 [32)%* © Z1[28)°* 9 Z1 131  Z7[91]%* @ Z1[88]®?
This allows us to compute the values for x(H) for the three 7- hypoelementary
subgroups of S7 :

H (28) (29) (56)
x(H) | -2 -1 1

This partial function x can be shown to extend to an element in the Burnside
ring of Sy and we obtain :

Lemma 6 The lattice
Grd G Z[3)| D Z[6] & Z[18] & Z[28]
©Z[29] ® Z[31)%% @ Z[34] ® Z[52] ® Z[58]
lies in th same genus as the permutation Z Sy-lattices
Z4])® Z[5]| & Z[8) & Z[16] & Z[20] & Z[32]
SZ[56] © Z[60] & Z[63) ® Z[76]%? & Z[83]

And therefore ¢(G7) = ¢(A§). It is a bit surprising to note that in order to
prove that the rank 36 lattice G7 has the same ¢-invariant as the rank 6 lattice
Ag, we need to show that two lattices of rank 8092 lie in the same genus!

Concluding, we obtain the main result of this paper :

Theorem 3 Forp = 2,3,5 and 7 quotients of good PG L,-representations are
stably rational.

Proof : For p = 2 and 3 we have ¢(G,) = 0, so € (G,)% is stable
equivalent to € (U, )°» which is rational on the elementary symmetric functions.
For p =5 and 7 we have ¢(G,) = ¢(45_,), so € (G,)%* is stable equivalent to

¢ (A;_l)sp. From the exact sequence

0-Z—-Up— A, 1 —0 (34)
we know that € (4;_;) is the field of fractions of € [Uy]/(e1..e, — 1) with S,-
action induced by that on € (Up). Hence, €' (4;_;) is rational on the first p—1
elementary symmetric functions on the e;. O

5 Some applications

In this section we give a few applications of our main result to other ar-
eas. These connections between PGL,-representations and vector bundles,

17




* representation theory of quivers and Brauer groups are well documented (e.g.
'[22],[30],[27],[50],{28],[38]) and we refer to these papers for more details.

For [22],[30] or [27] we recall that X, /PGL, is birational to M(n;0,n) the
moduli space of stable rank n vectorbundles on IP, with Chernclasses ¢; = 0 and
. ¢3 = n. Barth [4] proved that stable vectorbundles on IP; are classified by their
curve of jumping lines in the dual plane IP; (i.e. those lines I s.t. £ |1 # OP")
and a theta divisor on this curve. If we fix a point z in IP, then all lines through
x forms a IP; in the dual plane. For a sufficiently general bundle € this line
intersects the curve of jumping lines in n distinct unordered points defining a

map
n

e
M(n;0,n) — IP; X ... x IP, /Sy, (35)

Maruyama [31] claims that this map induces a stable rational field exten-
sion. Unfortunately, his proof breaks down because of the false alleged PGL,-
invariance of the map in [31,p.87]. Translating this claim to lattice invariants
it says that € (U2? & G,,)°» is stable rational over € (Uy,)S* which by Colliot-
Thélhes and Sansucs theorem is equivalent to ¢(G,) = 0. So, it holds for n = 2, 3
but fails for n > 4 (at least for n non-squarefree or n prime but probably for all
n). On the positive side we do have :

Theorem 4 The moduli space M(n;0,n) of stable rank n vectorbundles on IP,
with Chern-classes ¢y = 0 and ¢co = n s rational for n < 4 and is stably rational
forn=5and 7

Now, let us turn to the representation theory of finite dimensional heredi-
tary algebras, or equivalently, of quivers [24],[25]. Kac [24] has proved that the
dimension vectors of indecomposable representations form the root system of
a certain infinite dimensional Lie algebra. If the representation space R(Q,«)
contains an open set of indecomposables, he calls & a Schur root Further, Kac
conjectures [25] that the scheme parametrizing isoclasses of indecomposable rep-
resentations admits a cellular decomposition (which would immediately imply
stable rationality of good PG L,,-representations). In [28] it was shown by using
Bernstein-Gelfand-Ponomarev reflection functors and Bogomolov’s lemma that
for o a Schur root, the field of quiver invariants € (R(Q, @))P¢L(®) is stable
equivalent to € (X,/PGLy) where n = ged(;). Several geometrical moduli
problems such as [33,4.4] or [33,p 163-167] can be translated into quiver-terms.
For example, for the m-subspace problem « is a Schur root iff R(Q, &) contains
a stable point,see [46].

Theorem 5 Let o be a Schur root of a quiver Q and let n = ged(er;). Then, if
n=2,3,4,5 or 7 the field of rational quiver invariants € (Q, a)FSL(®) is stably
rational

Finally, let us look at the original motivation for studying centers of generic
division algebras. Using a result of Bloch , Procesi proved that if the ceneters of
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the generic division algebras are stably rational, then the Brauer group of any
field containing enough roots of unity is generated by cyclic algebras. Of course
this result is now known to be true by the celebrated Merkurjev-Suslin result .

Our results do not contribute directly to this problem. However, we think
that they may be useful in investigating a major open problem in Brauer groups
: is every division algebra of prime degree cyclic ? Weddenburn proved that this
is the case when the degree is 2 or 3 but already for 5 it is still open. Clearly,
if one could show that the generic division algebra of prime degree is cyclic
then the result would follow. For this reason we phrase our main results in this
setting under minimal assumptions on the basefield :

Theorem 6 = 1. For any field k, the centers of the generic division algebras
over k of degree 5 and 7 are stably rational

2. If k contains a primitive p-th root of unity, then the center of the generic
division algebra over k of degree p is stable equivalent to the Noether setting
k(G)% where G is the semidirect product of S, and Homz(IFyAp_1, pp)
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