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1 Introduction

- Let ¢’ be an algebraically closed field of characteristic zero and G a reductive
~linear algebraic group. Let X be a finite dimensional vectorspace on which
-G acts almost freely, i.e. the stabilizer of a generic point is-trivial. We want -
" to investigate stable rationality of the quotient variety X/G i.e.-whether the
- fixed field @' (X)€ is stable-rational over (. Bogomolov [6] has shown that
this question is independent of the particular choice of X.

Moreover, Saltman [27] has indicated how this problem can be reduced to
checking stable rationality of certain fields of twisted multiplicative invariants
under the corresponding Weyl group. So, let T' be a maximal torus in G
with normalizer Ng(T) then the Weyl group of G is the finite group W =
Ng(T)/T. Then, consider the character group X(T') = Homg,(T,0 ™) as a
lattice over the integral groupring ZW and take a permutation ZW-lattice
P (i.e. a ZW-lattice having a basis which is permuted under the action of
W) fitting into a ZZW-exact sequence

0-M->P->X(T)—0 ; (1)

Saltman [27,Cor.2.7] shows that @' (X)% is stable equivalent to the field of
twisted multiplicative invariants @ o(M)" where o-is some extension of M
by ¢'* and in many.cases (as the ones we are interested in) the twisting by
o can be dispensed with.

‘Let us now concentrate on the special case where G is a quotient of SL,.
Note that the center of SL, is cyclic of order n and for each divisor r of
‘n let C, be the unique central subgroup of SL, which is cyclic of order r.
If we define SL,(r) = SL,/C, then clearly SL,(n) =.PGL, and we have
epimorphisms

SL, — PGL,
N / (2)
SL,(r)

Then, the symmetric group on n letters, S, is the Weyl group of all these
groups and the character lattices of the corresponding maximal tori can be
described as follows : let A,_; be the classical root lattice consisting of all
integer vectors (1, ...,z,) € ZZ®" such that Yoieqy i = 0. Then A,_; is the
character lattice of a maximal torus in PGL, whereas its dual A*_, is that
of a maximal torus in SL, and the Coxeter lattice

Ap_ils] = Us=0,r,2r,...n—r([2] + A1) (3)
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where r.s=nandfori+j=mn

I . .
[Z] — n(u’ —.7""'7_.7 (4)
J k3

s the character lattice of a maximal torus of .S L,(r). Saltman realized these
ZL Sy, -lattices as epimorphic images of the following permutation lattices : Let
Sn—1 be embedded in S, as the stabilizer of u; in the standard permutation
representation U, = Zu; & ...Zu, of S,,. Let V,, be the Z-lattice on the
nondiagonal entries of an n by n matrix V,, = Zy;2 ® Zy13® ... ® Zyp_1n
and turn it into a permutation ZZ.5,-lattice via the action o(y;;) = Yo (i)o(5)-
We now construct the following diagram

é

O - Gn,n - Vn - An—l — 0
l ! l

0 — Gn,r - V:n@zsn/s -1 'E) An—l[r] - 0 (5)
! ! !

0 = Gp1 — V,025,/5%%, 4 4, — 0

- where ¢ extends £ extends ¢ and are defined by : ¢(y;;) = u; —u; (note that
A;_1 is the kernel of the augmentation map on U, ); ¢ sends the canonical
generator of ZS,/S,_1 to 1((uz — u1) + (uz — w) + ... + (¥ — uy)) and
¥ sends the canonical generator of the second ZS,/S,_ factor to L((uz —
ug) + (us — u1) + ... + (un — w1)). Now, % restricted to this second factor
is an epimorphism with kernel the trivial lattice showing that G, is the
permutation ZZS,-lattice V,, @ Z5,/S,_1 ® Z. Using this terminology we
have

Theorem 1 (Saltman,Prop.3.1) Let X, be a vectorspace on which SL,(r)
acts almost freely. Then, @ (X)) is stable equivalent to the field of lattice
mvariants ¢ (Gw)s" . Moreover, both fields are stable equivalent to the center
of the generic division algebra of degree n and exponent r.

In particular, if PGL, acts almost freely on a vectorspace X, then
@ (X)FGIn is stable equivalent to @ (G,,)%» which has the center of the
generic division algebra of degree n as a rational field extension. Rationality
of this field of lattice invariants for n = 2 was known already in the last cen-
tury and Formanek proved rationality if n = 3 or 4 cf. [14],[15]. The stable
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rationality problem for PGL, quotients arises naturally in many seemingly
unrelated problems. Let us give a few examples :

o Merkurjev-Suslin result :  Using a result of Bloch [5], Procesi [24]
showed that stable rationality of @ (X)P¢L» for all n would imply that
~the Brauer group of any ('-field is generated by cyclic algebras.

e Vector bundles : The functionfield of the moduli space of stable rank n
vectorbundles over the projective plane IP, with Chern-numbers ¢; = 0
and ¢; = n is a rational field over @' (G, )% cfr. [19]

o m-Subspace problem : Consider the action of GL; on Grass(ky,l) x
... XGrass(ky,, [). If this action has a stable point then the functionfield
of the quotient variety is stable equivalent to @ (X)F%L» where n is the
g.c.d. of the k; and I,cfr. [20].

In case n is even, G (G,3)% is also of some importance. Let PO, be
the projective orthogonal group and PSP, the projective symplectic group.
Then, @ (Gnz2)%" is stable equivalent to the functionfields of the quotient
varieties of an almost free vectorspace action of PO,, or PSP, see [27,Cor.
3.4].
: In this paper we aim to study stable rationality of the fields of lattice in-
variants @ (G, )" with special emphasis to the case ¢ (G, ) for p a prime
number. The starting point is the theory of tori- invariants as developed in
the early seventies by a.o. Endo and Miyata [13], Lenstra [21], Voskresenskii
[29] and Colliot-Théléne and Sansuc [7].

Recall that a ZW-lattice (W an arbitrary finite group) M is said to be
flasque (resp. coflasque) if H-*(H,M) = 0 (resp H'(H,M) = 0) for all
subgroups H of W. Every lattice M has a coflasque resolution

0-Q—-P—-M-=0 (6)

with @ coflasque and P permutation. An explicit resolution is obtained by
taking
P=0ygwZW/HQz M¥ (7)

with M¥ the H-invariant elements given trivial G-action and the sum taken
over all conjugacy classes of subgroups H of G. Moreover, if Q; and Q, are
end terms of coflasque resolutions of M then there exist permutation ZW-
lattices P; s.t. Q1@ P = Q2@ Py. Hence, introducing the Abelian semigroup
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Cofl(W) of stable permutation classes of coflasque ZW-lattices gives a well
defined map
k1 ZW — lattices — Cofl(W) (8)

assigning to a lattice the class of an end term of a coflasque resolution.
Dually, every ZZW-lattice M has a flasque resolution

0—-M-—->P—-F—-0 v (9)

with P permutation and F flasque and introducing Flas(W) to be the
Abelian semigroup of stable permutation classes of flasque ZW-lattices gives
a well defined map

¢ ZW — lattices — Flas(W) (10)

assigning to a lattice the class of an end term of a flasque resolution.

Now, if L is a ’-field with a faithful W-action we can define for every
ZZW-lattice M the field of tori-invariants L(M)". Crucial for our purposes
is the following characterization of stable equivalence classes of tori-invariants
and its consequence for lattice-invariants :

Theorem 2 (Colliot-Théléne,Sansuc) For ZW-lattices M and N we
have

- o L(M)W is stable equivalent to L(N)W over LV if and only if (M) =
#(N) in Flas(W)

o If M and N are faithful with ¢(M) = ¢(N) in Flas(W) then &' (M)W
is stable equivalent to @ (N)W over @

The main aim of this paper is therefore to study the place of #(Gry) in
Flas(Sy).

Acknowledgement : We like to thank Michel Van den Bergh (UIA)
for many discussions and some simplifications of the original arguments.




2 Some known results.

-~ In this section we summarize the present knowledge on @' (G, )" apart from
rationality for n < 4 mentioned before. |
The moduli space M (n;0,n) of stable rank n-vectorbundles over IP, with
- Chern-numbers ¢; = 0 and ¢; = n has as its functionfield a rational fieldex-
tension of @' (U, ® Gnn)> see e.g. [22,19]. So, the natural approach is to
_prove that the field of tori-invariants @' (U,)(G,.)°" is stable rational over
@ (U,)%» which is the rational field on the symmetric functions in the wu;.
Barth [2] proved that stable vectorbundles over IP; with ¢; = 0 are classified
by their curve of jumping lines in the dual plane IPy (i.e. those lines [ s.t.
E |1 # OP) and a theta divisor on this curve. If we take a point z in
IP, then all lines through « form a IP;, in IPy. So, for a sufficiently general
vectorbundle £ this line will intersect the curve of jumping lines in n distinct
(unordered) points defining a natural map

n

M(n;0,n) - IP, x ... x IR, /S, (11)

Maruyama [22] claims that this map induces a stably rational field extension.
Unfortunately, his proof breaks down because of the false alleged PGL(n)-
-invariance of the map in [22,p.87].

Using the Colliot-Théléne and Sansuc result mentioned above this ap-
proach is equivalent to establishing an exact ZZS,-sequence

0—-Gppn— P — P,—0 (12)

with P, and ‘P, permutation ZZ5,-lattices. For, stable rationality of the field
of tori-invariants @' (Un)(Gnr)® is equivalent to ¢(Gryn) = 0 ie. ¢(Gnyn)
being stable permutation. By 1980 it was already common knowledge among
ringtheorists studying the center of the generic division algebras,cfr. e.g. [15]
and [24] that this could not be true in general. For the readers convenience
we will recall here an amplification of this result and its cohomological proof
due to Saltman [26] :

Theorem 3 (Snider,Saltman) If n is not squarefree, then there does not
exist an exact ZZS,-sequence

0> Gpn—oP—0Q—0 (13)
with P permutation and Q coflasque.




Proof :; If n = p’.m, then S, contains a subgroup G which is the
direct product of a cyclic group of order p and one of order p.m such that
~ the action on n letters is the product action. Restricting any permutation
- Z Sy-lattice P down to G we can write it as @;Z G/ H; for some subgroups

H; of G. But-then by Shapiro’s lemma : H?*(G,P) = ®&;Hom(H;,®/Z).
Thus from the existence of the required sequence we would have

0 — H*G,G,p) — @;Hom(H;,® | Z) (14)

whence any element of H*(G, G, ) must have order dividing p.m < n. How-
ever, using that V,, and U, are free ZZG-lattices we have that H*(G, G,,,,) =
HY(G, A,_,) = Z/nZZ , a contradiction. a

However, things change drastically if n = p is a prime number. Motivated
by the retract rationality result of Saltman [25], Colliot-Théléne and Sansuc
proved that such a sequence does exist, even with @ an invertible ZS,-
lattice. We will give a short proof of this result based on the following
characterization of invertible lattices which can be found in [7] and [3]

Lemma 1 For a ZZW -lattice M the following are equivalent
o M is an invertible ZW -lattice

o MQ®Z, is an invertible ZZ,W -lattice for all primes p dividing the order
of W

o M |s is an invertible ZZS-lattice for all Sylow subgroups S of W

o M|s ®Z, z:s a permutation ZZ,S-lattice for all Sylow p-subgroups S
of W (for all p dividing the order of W)

The following result will be the starting point for our further investigation

Lemma 2 For all prime numbers p we have
1. k(Ap-1) is an invertible ZZS,-lattice

2. In a coflasque resolution of A,_y the permutation lattice can be taken
to contain only factors ZZS,/H where p does not divide the order of H




- Proof : Consider a coflasque resolution of A, ; as an S,-lattice

0> k(Apy) > P— A, 1—0

For all primes ¢ < p the epimorphism ZZ, ® U, — Z; splits entailing that - -

- g ® Ap—11s an invertible ZZ,5,-lattice. Then, by tensoring. the flasque
resolution above with Z, also Z, ® k(A,_1) is invertible. Applying the
foregoing result we have that «(A,_;) is invertible when restricted to a g-
Sylow subgroup of S,. Further, the p-Sylow subgroup of S, is cyclic and thus
the restriction of the coflasque lattice k(A,_1) is invertible. The foregoing
result finishes the proof.

(2) : Consider the explicit description ( 7) of the middle term of a
coflasque resolution. Now let H be a subgroup of S, such that p divides
its order. Then, H contains a p-cycle and we have that U¥ = Z(T0, w)
from which we deduce that AZ, = 0, done. O

As an immediate consequence of this result we get a short proof of the
Colliot-Théléne and Sansuc result [8] :

Theorem 4 (Colliot-Théléne,Sansuc) For p a prime number, there does
exist an exact sequence of ZZS,-lattices

0—-Gpp—P—>1-0

with P a permutation ZZS,-lattice and I an invertible ZZ S, -lattice (and hence
in particular coflasque)

Proof :  Consider the pullback diagram

0

]
Gp,p =

!

0 — k(Ap—y) — Vo Xapy P —

I !

0 — k(Ap-1) — P —
!
0

<<—:§‘\‘<— o
3

=

O Y
-
o

!




Because V), is permutation and x(A,_;) coflasque we get
Pxy, ,V,2k(Ap 1)@V,
giving-rise to the exact ZZS,-sequence
0—Gpp— k(4p1)®V, > P —0

and since k(A,_;) is invertible there exists an invertible lattice I and a per-
mutation lattice P’ such that k(A,_1) ® I = P’ leading to an exact sequence

0> Gpp—oV,®@P - 1I®P —0

of the required type. O

3 Some general results

Given a finite group W and two ZW-lattices M and N, we want to develop
a method to decide whether or not ¢(M) = ¢(N) in Flas(W). There are
basically three major obstructions :

o local obstruction : Are the local invariants ¢,(M) and ¢,(V) equal for
all primes p | #W ?

e Burnside obstruction : If all the local invariants coincide can we find
representatives in ¢(M) and ¢(IN) which lie in the same genus ?

e genus obstruction :  Given representatives in ¢(M) and @(N) which
lie in the same genus, does this imply that ¢(M) = $(N) ?

In the special case of the symmetric groups S, we can describe these
obstructions fairly explicitly :

3.1 The local obstruction

For any domain R we define an RW-lattice M to be flasque iff
Extiy(M,RW/H) = 0 for all subgroups H of W. With Flas(RW) we

denote the semigroup of stable permutation equivalence classes of flasque
RW -lattices.




A first test to distinguish ¢(M) and ¢(IV) is to check whether they have
the same image under the localization map

loc : Flas(W) — [[ Flas(Z,W) (15)
pl#W

That is, we want to study the local invariants ¢,(M) = [¢(M) ® Z,] €
Flas(Z,W). The local semigroups can be described using ordinary and
modular representation theory of W as we have by descent-theory a pullback
diagram .
Flas(Z,W) — Flas(Z,W)
l 1 (16)
Flas(QW) — Flas(@ ,W)

In the S,-case we get a first simplification because the permutation characters
generate all :

Lemma 3 For all n and all primes p we have Flas(ZZ,S,) = Flas(Z,S,)

This reduces the computation of the local invariants to modular repre-
sentation theory of S,. In the special case of the lattices G, , a lot of these
local invariants can be extracted from the definition diagram ( 5):

Lemma 4 For all primes p and r | n we have :
o Ifp Jr then ¢,(Gn,) =0 in Flas(ZZ,S,)
o Ifp V2 then ¢p(Guy) = ¢p(Gry) in Flas(Z,S,)

Before we can describe the local invariants ¢,(G, ) for p | » we have to
recall a result of G. James [17] on the indecomposable factors of permutation
modules corresponding to Young subgroups.

Let « = (ay,...,ax) and B8 = (by,...,b) be two partitions of n then we
define o 1 § iff for all 7 we have 3% a; < Y%, b;. Further, we denote by
P, the permutation representation corresponding to the Young subgroup of
o ie.

Py = 72,8,/80; X . X S, (17)

Using this terminology we have :
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Proposition 1 (G.D. James) For any partition o of n there exists an in-
- -decomposable 22,S,- lattice I, such that for all partitions B of n we have

o Py = I8, . @I8 with Bl ey forr alli and Ig occurs with multiplicity
one

o IfI,=1Is thena=,

Using this result we get by induction on the dominance order < the
following

Lemma 5 For all n and all primes p we have :

o All invertible E;Sn-lattices of the form I, are stable permutation lat-
tices

o In particular, all projective Z;Sn-lattices are stable permutation lattices

With AZ_,[r] we will denote A,_,[r] ® Z,. Notice that AP . [r] is an
indecomposable ZZ,5,-lattice and let Q(AZ_,[r]) be its first syzygy :

Lemma 6 For all primes p and all v | n we have that ?p(Grr) =
Gp(QUAR_[r])) in Flas(Z;Sn)

 Proof: From the defining sequence of G, we deduce that ¢,(Gp,) =
¢p(kp(AL_4[r])). On the other hand, taking a projective cover gives a se-

quence
0— QA JrdP - P— A |[r]—0 (18)

As the projective modules P is stable permutation we can add a permutation
Z,Sy-lattice to the first two terms yielding a sequence

0—- QAL [r)® P — Po— AP _|[r] =0 (19)
with P; permutation. But then, ¢p(Q(AZ_1[r])) = ¢p(kp(AL_4[r])),done. O
In the special case that n = r = p we even get :

Lemma 7 ¢,(G,,) = —[0%(Z,)] € Flas(Z,S,)
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Proof : 7,5,/S,_1 is a projective Z,Sy-lattice,so A2, = Q(Z,). By
the foregoing this gives us

$p(Grp) = ¢p(Q(A 1)) = ¢(Q2( p)) ' (20)
“But QZ(Z ) is an invertible ZZ,S,-lattice and thus ¢(Q2( ) =
—[Qz( )] € Flas(ZZ,S,). O

3.2 The Burnside obstruction

Suppose we have two ZW -lattices such that for all primes p | #W we have
¢s(M) = ¢p(N) i.e. we can find W-sets T, and T, (depending on the prime
p) such that ; N .

¢p(M) & ZpT = ‘?Sp(N) D ZPT; (21)

We now ask whether one can globalize this to get W-sets T and T” (inde-
pendent on the prime p) such that ¢(M) @ ZT lies in the same genus as
&(N) @ ZT' i.e. such that for all primes p | #W :

$5(M) ® Z,T = ¢,(N) © Z,T' .. (22)

The method to vizualize this obstruction is a slight variation on an idea
of A. Dress [12] and is based on the description of (W) the Burnside ring of
-W..This is the Grothendieck ring constructed from the isomorphism classes
of finite W-sets with addition induced by disjoint union and multiplication
- induced by the cartesian product with diagonal W-action, see e.g. [10] or [9].

If C(W) denotes the set of conjugacy classes of subgroups H of W, then
we have an injective ringmorphism

=Bm)r:dW)— ][] Z (23)

(H)ec(w)

determined by the Burnside-marks Sy assigning to a W-set S the number
#S5H of H-fixed elements. Dress has shown that the image of b(W) can be
characterized as the set of those elements x = (x(H)) € [1 Z satisfying the
congruence relations

S n(H, K).x(H) = 0 mod #Nyw (H)/H (24)
7
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where the sum is taken over all conjugacy classes of subgroups K of Nw(K)
such that H < K with cyclic quotient K/H and

Ny (K) K

n(H, K) = #NW(H) 3 NW(K)‘#(ﬁ)* (25)

the last term being the number of generators of the cyclic group K/H. For
more details on computing this Mdbius-like function we refer to [18].

Now, assume M and N are two ZZW-lattices satisfying ( refeq:local).
Recall that a group H is said to be p-hypoelementary if H/O,(H) is cyclic
where O,(H) is the largest normal p-subgroup of H. With Hyp,(W) we
will denote the set of all p-hypoelementary subgroups of W and let H =
Upiew Hypp,(W). We will now define a mapping

X:H—=Z (26)

assigning to a subgroup H € Hyp,(W) the value #TH #SH defined by the
p-local data. Of course, we have to verify that thls map is well-defined. If
He Hyp,(W)NH ypq(W) then H is cyclic with generator say w. But then,

#TF — #SH = xsou(w) — xgv)(w) = #TF —#SH. (21)

where xv denotes the rational character of V. Clearly, x is invariant on
conjugacyclasses, thereby defining a partial function

x:C(H)cC(W)—-Z (28)
Using this terminology we have :

Lemma 8 If M and N have the same local invariants then the Burnside
obstruction vanishes iff the partial function x defined above can be extended
to an element in [[(myecw) Z belonging to the image of B.

Proof :  Assume that y can be extended to an element in the image of
B. Then, there exist W-sets S and T such that for all H € H ypp(W)
X(H) = #TH — 55 = 4TH _ 4.0 (29)

which entails by [11] that
Z,T, ® ZpS = Z,T & 7,5, (30)

13




But then by adding Z,S @ Z,T to both sides of ( 21) we obtain
(M) © Z,5, ® Z,S @ Z,T = ¢,(N) @ Z,T, ® Z,S & Z,T ~ (31)
But then,by cancellation and the above isomorphism we get
bp(M) © Z,S = $,(N) & Z,T (32)

which is independent of the prime p. Thus, ¢(M) @ ZZS and ¢(N) & ZT
belong to the same genus.
The other implication is obvious. 0O

We are not able to get any substantial simplifications in the case of the
symmetric groups. Clearly, James’ result (Proposition 1) will be very useful
in computing the function .

3.3 The genus obstruction

Assume we can find representatives ®p; € ¢(M) and ®y € $(N) which
lie in the same genus. Does this imply that ¢(M) = #(N)? In general,
this cannot be true as large cyclic groups already produce counterexamples.
For non-cyclic groups this obstruction is related to cancellative properties of

Flas(W) :

Lemma 9 IfW is non-cyclic and Flas(W) is a cancellative semigroup, then
the genus obstruction vanishes.

Proof : From [16] we recall that the relation modules for a non-
cyclic group form a complete genus-class and that they all have the same
¢-invariant. If ®p; and Py lie in the same genus and if R is a relation
module, then by Roiter’s replacement lemma there is a relation module R’
such that

oy ®R= Iy O R (33)
Taking the ¢-invariants on both sides and using cancellation in Flas(W)
gives ¢(M) = ¢(N),done. ]

Unfortunately, Flas(W) is seldom cancellative so we have to find another
approach.
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Let Ko(Z W) be the Grothendieck group of finitely generated projective
ZW-modules. By a result of R. Swan we know that all projective ZW-
modules are locally free entailing that

Ko(ZW)2 Z x CI(ZW) (34

where for any ZZ-order A in.a finite dimensional semisimple ()-algebra A the
locally free classgroup CI(A) C Ko(A) is defined to be

CU(A) = {[P] - [P'] € Ko(A) | P, = P, for all primes p} (35)
Now, let A be a maximal order in Q W containing ZZW and define
D(ZW) = Ker[CI(ZW) — CI(A)] (36)

induced by the inclusion map. Then, D(ZW) is known to be independent of
the choice of A and CI(A) = CI(ZW')/D(ZW ) is isomorphic to a product of
ray classgroups of certain cyclotomic numberfields see e.g. [9]. Oliver [23,Th
7] has shown that

D(ZW) C Cl(ZW) (37)

where Cl(ZW) is the subgroup of CI(ZW) generated by the projective
left ideals of ZZW with trivial ¢-invariant. Using this terminology we have

Lemma 10 IfCl(ZW) = CZ(ZW) then the genus obstruction disappears
and any f.g. projective ZW -lattice is stable permutation.

Proof : Let @5 and @y be in the same genus, then by Roiter’s
replacement lemma there is a projective left ideal I of ZW such that

Oy @ ZW =y (38)
and taking the ¢-invariants on both sides gives ¢(M) = ¢(N). O

In particular, the lemma applies if D(ZW) = CI(ZW) as is the case for
example if @ is a splitting field for W :

Lemma 11 For S, the genus obstruction vanishes and all f.g. projective
Z Sy~ modules are stable permutation.
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4 Some Negative Results

In this section we will show that the local obstruction can be used to prove
- that ¢(G,p) # 0if p is a prime larger than 3.- We have seen before (lemma -
7) that . -

$p(Gpp) = “[92(21))] € Flas(Z,S,) (39)

Therefore, we have to show that m(@p) cannot be a stable permutation

Z ,Sp-lattice. The vertex of Q2. p) is equal to the cyclic p-Sylow subgroup
Gp =<z = (1,...,p) > of S,. The normalizer of G, is a p-hypoelementary
subgroup

Np = N5, (Gy) =<z,y:2’ =y ' = Lyzy™" =2 > (40)

where a is a generator of the cyclic group IF;.

Since the p-Sylow subgroup is cyclic of order p, non-projective indecom-
posable Z Sp-lattices and Z N,-lattice behave very weel with respect to
Green correspondence (see e.g. [1] or Feit I11,5) :

Lemma 12 There is a one-to-one correspondence between isomorphism
classes of zndecomposable non-projective Z Sp-lattices M and indecompos-

able non-projective Z ,N,-lattices N such that
M|n=NoP
N %= M @ P’
where P’ (resp. P) is a projective Z];Sp- (resp. Z;Np-) lattice.

In particular, the Green correspondent of the Z ,Sp-lattice Qz(Zp) is the

ZZ,N,-lattice 02(Z,). Now, let X 1(0 ) be the Z, N,-lattice of rank one given
by the action  — 1 and y — (¢ where ( is a primitive (p — 1)-th root of
unity reducing to @ mod p. Then, it is easy to see (e.g. using [4,p.189] that
we have :

Lemma 13 The Z,N,-lattice O*(Z,) is of rank one determined by the ac-
tion x — 1.and y — (P2 where { is a primitive p — 1-th root of unity.

This gives our first negative result :
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Theorem 5 ¢(G,,) # 0 in Flas(S,) for primesp > 5
Proof : Suppose there exist S,-sets S and T such that
0 Z,) & Z,S = 7Z,T (41)

as Z,S,-lattices. Restricting down to N, gives us by Green correspondence
an isomorphism of ZZ,N,-lattices

X1(¢P%) @ (8. Z,N,/H) ® IP = (8, Z,N,/K;) ® IP (42)

where IP and IP' are the projective parts and H; and K; are subgroups of N,
containing C,. Clearly, the projective parts can be cancelled showing that
X1(¢?"%) must be a stable permutation Z;Np-lattice which by the above
lemma is impossible for p > 5 by looking at the character value on y which
is not an integer. a

This result extends the Snider-Saltman vindication of Maruyama’s argu-
ment to prime values of n.

The next best strategy is to find a lattice M of minimal rank such that
#(M) = ¢(G,;). A natural candidate for M would be A5_; the dual of the
root-lattice for the following reason : for any ZW-lattice M it 1s easy to see
that ¢(M*) = (k(M))* and from the previous discussions we have obtained
that

H(Gpp) = ¢(k(Ap-1)) = —[6(Ap-1)] € Flas(S,) (43)
Thus, if we can prove that [kA,_;]* = —[kA,_;] then we would indeed have
that ¢(A;_;) = ¢(Gp,p). However, we have

Theorem 6 ¢(Gy,) # ¢(A5_;) in Flas(S,) for all primes p > 11

Proof :  We know that £,(A,_;) = [02(2)] and thus £,(A,1)* =
Q- 2(2 )]. Under Green correspondence Q0~%(ZZ,) corresponds to the rank
one Z ,N,-lattice X;(¢) and as in the above proof we have to exclude that
X1(¢) ® X1(¢P~2) can be a stable permutation ZZ,N,-lattice. This is easy as
the only permutation Z ,N,-lattice containing a rank one lattice correspond-
ing to a primitive p — 1- th root of unity must contain all. And, for p > 11
there are more than two primitive p — 1-th roots of unity. O

What’s the upshot of all this ? We do have :
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Proposition 2 For p =5 or 7 all the local invariants ¢, of Ay 1 and Gy,
coincide

Proof : In these cases we do have that

X:(0) & X:(¢"?) (44)

is a stable permutation ;/Z\;Ni,-lattice. By Green correspondence this implies
that
92(2") @ Q-Z(Z‘") @ IP (45)

Using that all prOJectlves are stable permutation gives us the Wanted
[(rpAp_1)] = —[kpAp_1] in Flas(Z Sp) whence ¢,(Gpp) = ¢p(Ap— )- Equal-
ity for the g-invariants for p # ¢ is easy. O

Hence, at least for p < 7 there is some hope to prove stable rationality by
reducing the problem to the lattice invariants of the rank p — 1 lattice Ay
However, for p > 7 things become uniformly bad.

5 Some Positive Results

There is a remarkable difference in the 2 Sy-structure of G, , when n is
prime or composite :

Proposition 3 1. Ifn is composite Gy, cannot be coflasque

2. For p prime G, is an invertible ZZS,-lattice

Proof : (1) : Let n = m.k with m,k > 1 and consider the subgroup
G=3S5, X Sk-1)m of S, acting in the natural way on the n elements. From
the defining sequence of G, ,, we get the exact sequence

VeL AC 1 — HYG,G,,) =0 (46)

Now, it is easy to see that

(=l k=11l € A7, )

m (k—‘i)m
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and that the image of V,¢ under 7% consists of the vectors

Z(fn(k - 1),.;.,m(k — 12,:m,...,—n3) (48)

m (k-—;)m

and therefore H (G, G,,) # 0,done.

(2) : To verify coflasque-ness it is enough to check that H}(G,G,,) = 0
for each conjugacy class of a subgroup G of a ¢-Sylow subgroup of .S,. Now,
if ¢ # p we can take GG to be a subgroup of S,_; and hence G fixes at least
one element of U,. But then it is easy to see that the sequence

0—-Gp—=V,—U,—>Z —0 (49)

splits everywhere as ZG-lattices. So, G,, lg is an invertible ZG-lattice
and hence H'(G,G,,) = 0. If ¢ = p then G = C, can be chosen to permute
the base of U, and so A | = 0 and then the cohomology sequence entails
that HY(C,, Gpp) = 0.

S0, Gpp is coflasque and thus [k(A,_1)] = [G,,] € Flas(S,). Using that
x(Ap-1) is an invertible ZZS,-lattice finishes the proof. O

Therefore, in order to prove that ¢(Gp,) = #(A%_ ;) for p = 5 or 7 it
suffices to verify that
Gop ® G, (50)

is a stable permutation ZZS,-lattice. For, we have the sequence
0—4; -V, > G, —0 (51)

and if we have that G, , @ G, , ® ZS ~ ZT for some Sp-sets S and T we
can add G, , ® ZS to the last two terms and obtain the sequence

02 A, = Gp®V,®@ZS — ZT -0 (52)

yielding that ¢(G,p) = #(A%_;)-

In the previous section we have seen that all local invariants of G, , @ Gy,
vanish, so we have to check whether the Burnside obstruction vanishes. Thus,
we have to compute the partial function x : C(H) — Z and verify that it
lies in the image of the Burnside ring.
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Now, let us first compute x(H) for ¢-hypoelementary subgroups H of S,
- if ¢ # p. Working over ZZ, we have by invertibility of Gpp that

G, ® Gy 0 (U = (V) & Z,02 (53)
~and hence for-a g-hypo H we can compute x(H) by
X(H) =2+ 2#V,] — 24U (54)
On the other hand, if ¢ = p we can use the fact that over Zp we have
Grp = B (Zy) © ZpS,/(Sp2 % $1) (55)

and use the explicit description of the stable permutation i;Sp- lattice
0¥ (Z,) & O%(Z,) to compute x(H) for p-hypoelementary subgroups.

Let us concentrate now on the case p = 5. We need to have fairly precise
information on the conjugacy classes of subgroups of S5 which we summarize
in the following table :

class representative order | length | normalizer | hypo
A 1 1 1 S 2,3,5
‘B <(12)> 2 10 N 2,3,5
C <(12)(34)> 2 15 L 2,3,5
D <(123)> 3 10 N 2,3,5
E £(12),(34)% 4 15 L 2
F ¢«(1234) 5 4 15 L 2,3,5
G |<(12)(34),(13)(24)> | 4 5 Q 2
H <(12345)> 5 6 P 2,3,5
I €(12),(345)> 6 10 N 2,3,5
J <(123),(12)> 6 10 N 3
K £(123),(12)(45)> 6 10 N 3
L £(1234),(12)(34)> 8 15 L 2
M | (12345),(25)(34)> | 10 6 P 5
N S3 x O, 12 10 ‘N none
0 Ay 12 5 Q 2
P <(12345),(2354)> 20 6 P 5
Q Sy 124 5 Q none
R As 60 1 S none
S Sx 120 1 S none




Using this information one can now describe the Burnside ring of Sy as

the image of Z®!? under multiplication on the right by the matrix :

1200 0 0 0 0 0 0 0 0 0 00 O0COOTOOOO

OO OO OO0 = O
C OO OO OO OO O OO —
0.00000000000020121
O OO OO OO OO0 O 10O OO
OO OO DD OO DOONODO—-OAN
OO OC OO OO O T OOoO—O—
C OO OO OO NOoODO 1O O NN
0000000020001002\01
C oo OO OoONOoOCocoOo T oo oo —
C OO OO FOOODONODDOD—ON
DO OO O VWO OOODOMOONOC QA
SO OO O NOCOODODOHOOOWMNN — O
DO O NODOODODOO 1O NOO — O i
OFT O NN OO0 IFMm FANNN—~ N —
L OO YL OO O NWOMOIHOOMO —
CBIRRARIRIITESEZ S oma—

Next, we compute the values of x(H) for H a 2- or 3-hypoelementary

subgroup of Ss. Using the above formula we obtain
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Moreover, we have over the 5-adic integers that
O(Zs) & V*(Zs) @ ZsSs|M ~ ZZ5Ss | H (56)
yielding the isomorphism
G3s ® G5% @ ZsSs /M ~ Zs S5/ H @ (Z5S5[N)®* (57)

allowing us to compute y on 5-hypoelementary subgroups :

G | x(G)
M| -2
P| 0

We can extend this partial function x by unknowns x(N) = a1, x(Q) =
az, x(R) = a3z and x(S) = a4 Then, multiplying this y-vector by the
inverse of the Burnside matrix we get an integer valued vector (and hence
the Burnside obstruction vanishes) provided we have that a; and a; are even
and as = a4 modulo 2. Hence, we can take all ¢; to be zero and then we
obtain from the above computations :

Lemma 14 G55 @ G55 @ ZSs/D ® ZSs/M lies in the same genus as
ZSs|H @ ZSs|1 ® ZSs|J @ ZSs/K. Moreover, ¢(Gss) = ¢(A}).
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Proof : The first statement follows from the above computations.
Hence, because the genus obstruction always vanishes we have that G5 s @G 5

~#]ies in the permutation tree. But then, since'it-is an invertible lattice it has:

~-to be stable permutation from which the last statement follows. RS ™ I

Next, we have to find an ad hoc argument to prove (stable) rationality of
the lattice invariants @ (A%). Clearly, we have the exact sequence

0>Z —-Us— A; -0 (58)

entailing that ¢’ (A}) is the quotient field of the algebra @' [Us]/(uj uguzuqus —
1) and the Ss-action is induced by that on @' (Us). Clearly, the invariant field
@ (Us)®s is rational on the elementary symmetric functions o; on the u;. But
then, @’ (A4)®" is rational on the images of the first four elementary symmetric
functions. One can also give an explicit trancendence basis of ¢ (A%)>® when
@' (Aj}) is viewed as a quintic extension (obtained by adding ¢/ajazazas) of
O (A4) = @ (a4, az,0a3,a4) with the Ss-action as in the following diagram

a a a9 as ay

(12).a 1/ar  as/ay azfay asfay
(12345)& az/al a3/a1 a4/a1 1/&1

Using this presentation we obtain that :

Yai+1l Ya?+1 Yai+1 Sat+1
b 7 T 7 b )

Summarizing the above discussions we have proved :

¢ (4> =0 ( (59)

Theorem 7 Let X be a vectorspace with an almost free action of PGLs. |
Then, the quotient variety X/PGLs is stably rational.

In particular, this gives us :

Corollary 1 The moduli space of stable rank 5 bundles over IP, with ¢; = 0
is stably rational.

Now, let us turn our attention to the case when p = 7 : Again, we need
rather precise information on the conjugacy classes of subgroups of S7. In
this case there are 96 different classes out of which 55 are hypoelementary
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subgroups. In the appendix we have collected all the necessary information
on these conjugacy classes as well as the Burnside matrix for S7. In the rest
-of this section we follow the subgroup notations of the appendix. ‘

As mentioned before it is easy to compute x(H) of a g-hypoelementary -
subgroup with ¢ # 7 using

X(H) = 2+ 2#VH — 2tUF (60)

As V7 (resp. Uy) is the permutation representation corresponding to the
subgroup of class [88] (resp [94]) the values of x are easily deduced from the
Burnside matrix. We obtain :

H [ [1] 2] [3] [4 [5] [6] [9] [10] [11] [12]
x(H) | 72 32 8 0 0 18 8 0 0 8
H |[13] [14] [15] [7] [16] [17] [18] [19] [20] [21]
xH |8 ©0 0 2 2 0 0 0 2 2
H [[22] [23] [8] [30] [31] [32] [33] ([34] [35] [36]
XA | 2 18 2 8§ 0 0 06 0 0 0
H | [24] [25] 26] 27] 137 [43] [44] [45] [&7] [49]
x(H) 0 2 2 2 2 2 2 2 2 8
H | 49 [57] [B0] Bl 2] [B4] 55 [59] [64 [65]
xH) 0 0 0 0 0 2 2 2 0 0
T | [69] [74]

x(H)] 0 0

Now, the more chalenging job to determine x(H) for the three 7- hypoele-
mentary subgroups [28],[29] and [56]. The starting point is the description
of the stable permutation Z;[56]-lattice Qfg(ZZ7) ® Q[‘sg](Zﬂ = W induced
up to the S7-level giving :

W 15" ©@Z2;(28] ® Z:(29) =~ Z:[8] @ ZZ,[56] (61)

where for each subgroup [i] we denote by ZZ;[i] the permutation lattice
Z78[[t]. By Green correspondence we know that

W 5= QX Z,) ® O} Z;) & IP®? (62)

where IP is a projective ZZ;S7 lattice with characters
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cyclic | 1] [2] [3] [4] [6] [16] [21] [5] [12] [11] [44] [7]

[25]

[18]

8]

charac | 105 -5 1 -5 -3 1 1 3 -1 1 -1 0 0

1

0

By James’ result we know that IP is stable permutation with all transitive
permutation factors corresponding to Young subgroups. Hence, the descrip- .
tion of IP as a stable permutation character coincides with the description of
the corresponding character as a linear combination of the Young-subgroup
permutation characters. So, we have to multiply the character of IP with the
inverse of the permutation-character matrix :

/5040

92520 120

1260 120 12

630 90 18 6

840 120 0 0 24

420 80 12 0 12 2

210 50 14 6 6 2 2

140 40 12 0 8 4 0 2

210 60 6 0 24 0 0 0 6

105 35 9 3 12 2 0 0 3 1

35 15 7 3 5 312111

42 20 6 012 2 0 0 6 0 0 2
21 11 5 3 6 2 20 3 1 0 1 1
7 5 3 1 4 201310201
\'1 1 1 11 111111117171

Here, the columns correspond to the cyclics in the above mentioned or-
dering and the rows correspond to the Young-subgroups in the ordering
: [11,[21,[91,(321,[23),[41],[58],[73],[60],[81],[91],(88],[92],[94],(96]. The resulting
vector being

(,0,1,-2,-1,2,1,-1,0,1,~1,-1,0,1,0) (63)

we obtain the following description of the projective IP as a stable permuta-
tion lattice

IP & Z1[32]%* @ Z2:[23) ® Z; & [13] ® Z[91) ® Z,[88]
~ Z2,(9] © Z[41)%* @ Z;[58] © ZZ4[81] @ ZZ,[94]
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Next, we use the fact that
G;;, @ G;:“., ~ O Zy) & V2 Zr) D Z2:92)%* -~ (64)

which allows us in view of the above mentioned facts to obtain a description .
~of V = G, @ G}% as a stable permutation lattice :

V @ 2,919 @ Z,[41)%* & Z,[58]%% @ Z[81]%? @ ZZ,[94]®* @ ZZ,[28] ® Z,[29)

~ Z7 [56] @27 [8]@Z7 [92]6326927 [32] 64@27[23] @2@27[73]632 @Z7 [91]632 @27 [88] ®2

This allows us to compute the values for x(H) for the three 7- hypoelementary
subgroups of Sy :

T [28] [29] [56]
x@) | 2 1 1

This partial function x can be shown to extend to an element in the
Burnside ring of S;. More precisely, the following combination of S;- sets
extends x :

[1]— (2]~ [3]+[4] - 2.[6] +[8] — [L0] — [13] —[18] + [20] + [23][24] - [28] - [29] +[30]

+[32] — [34] + [47] + [48] + [53] + [56] — [58] + [59] + [63] — [75]

Therefore, we obtain from the foregoing computations :
Lemma 15 The lattice
G ® G, @ Z[2) @ Z[3) ® Z[6]%* & Z[10] ® Z[13]
DZ18]) @ ZZ[28) ® ZZ[29]) & Z[34] ® Z[58] & Z[75]

lies in the same genus as the permutation ZZS7-lattice
Z|1)® Z[4]) © Z[8) & Z[20] & ZZ[23] & Z[24] & Z[30]

DZ(32) @ Z4T) @ ZZ[48) & ZZ (53] & ZZ[56] & Z[59] & Z[63]
Moreover, ¢(Gr7) = ¢(AZ).
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It is a bit surprising to note that in order to prove that the rank 36 lattice
(77 has the same ¢-invariant as the rank 6 lattice A}, we need to show that-

two lattices of rank 13412 lie in the same genus!
As in the 5 x 5 case it is easy to verify that ¢’ (A%)"" is rational over @

and therefore we obtain :

Theorem 8 Let X be a vectorspace with an almost free action of PGL.
Then, the quotient variety X/PG Ly is stably rational.

In particular, this gives us :

Corollary 2 The moduli space of stable rank 7 bundles over IPy with ¢; = 0
is stably rational.
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Appendix

A Subgroups of 57

In this-appendix we give the relevant information about conjugacy classes
of subgroups of S7. In the following list we give for each conjugacy class
the order of a representative, a list of generators for a representative (note
however that these generators are often not minimal nor the most elegant
ones) and the primes for which the representative is hypoelementary :

SUBGROUPS OF S7

[ 1] ORDER 1 ,GENERATORS : IDENTITY ALL HYPO
t 2 ] ORDER 2 ,GENERATORS : (6,7) ALL HYPO
[ 3] ORDER 2 ,GENERATORS : (1,2)(3,4) ALL HYPO
[ 4] ORDER 2 ,GENERATORS : (1,5)(3,6)(4,7) ALL HYPO
[ 51 ORDER 3 ,GENERATORS : (1,5,2)(3,4,7) ALL HYPO
[ 6 ] ORDER 3 ,GENERATORS : (1,6,4) ALL HYPO
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[ 7 ] ORDER 5.,GENERATORS :

[-8 ] ORDER 7 ,GENERATORS :

- ['9 ] ORDER 4 ,GENERATORS :

[

L

10 ] ORDER 4,GENERATORS :

11 ]
12 ]
13 ]
14 ]

15 ]

16 ]

17 ]
18 ]
19 ]
20 ]
21 ]
22 ]
23 ]

24 ]

ORDER

ORDER

ORDER

ORDER

ORDER

ORDER

ORDER

ORDER

ORDER

ORDER

ORDER

ORDER

ORDER

ORDER

4,GENERATORS :

4,GENERATORS :

4,GENERATORS :

4,GENERATORS :

4,GENERATORS :

6,GENERATORS :

6,GENERATORS :

6,GENERATORS

6,GENERATORS :

(1,4,2,3,5)

3(1:415:3:2:7’6)

(2,4), (6,7)

(1,2)(3,4), (6,7
(1,3,2,4)(5,6)

(1,4,2,3)

(1,2)(3,4), (1,4)(2,3)
(1,2)(3,4), (3,4)(8,7)
(1,2)(3,4), (1,4)(2,3)(5,6)
(1,5,3), (6,7)

(1,5,2)(3,4,7), (1,2)(3,4)

ALL HYPO

ALL -HYPO

2 HYPO

2 HYPO

ALL HYPO

ALL HYPO

2 HYPO

2 HYPO

2 HYPO

ALL HYPO

3 HYPO

: (1,5,2)(3,4,7), (1,7)(2,4)(3,5)ALL HYPO

6 ,GENERATORS :

6 ,GENERATORS :

6,GENERATORS :

6 ,GENERATORS :

9,GENERATORS :

30

(1,6,4), (1,4)(2,3)
(1,6,4), (2,3)(5,7)
(1,6,4), (1,4)(2,5)(3,7)
(1,6,4), (4,6)

(155’2): (3:4’7)

(1,5,2)(3,4,7), (1,4)(2,7)(3,5) 3 HYPO

3 HYPO

ALL HYPO

3 HYPO

3 HYPO

3 HYPO




25 ]

26 ]

27 1

28 ]
29 ]
30 ]
31 1]
32 1]
33 ]
[34]
35 ]
36 ]
37 1

38 ]

39 1]
40 ]
41 ]

42 ]

ORDER

“ORDER

ORDER~
ORDER-
ORDER
ORDER
ORDER
ORDER
ORDER
ORDER
ORDER
ORDER
ORDER

ORDER

ORDER
ORDER
ORDER

ORDER

10,GENERATORS :

10,GENERATORS :

10;GENERATORS
14 ,GENERATORS

21,GENERATORS

oo
.

8 ,GENERATORS :

8 ,GENERATORS :

8 ,GENERATORS :

8 ,GENERATORS :

8 ,GENERATORS :

8 ,GENERATORS :

8 ,GENERATORS :

(1,4,2,3,5), (6,7) ALL
(1,4,2,3,5), (1,3)(2,4) 5
(1,4,2,3,5); (1,5)(3,4)(6,7) 5
:(1,4,5,3,2,7,6), (1,3)(2,6)(4,5) 7
:(1,4,5,3,2,7,6), (1,4,7)(2,3,6) 7
(2,7,5,3), (2,3)(5,7) 2
(5,6), (1,4,2,3) 2
(1,2), (3,4), (6,7) 2
(1,2)(3,4), (1,4)(2,3), (5,6) 2
(2,7,4,6)(3,5), (2,6)(3,5)(4,7) 2
(1,3,2,4)(5,6), (1,4)(2,3) 2
(1,4,2,3), (3,4)(6,7) 2
(1,5,3), (2,4), (6,7) 2

12,GENERATORS :

12,GENERATORS :

12,GENERATORS :

12,GENERATORS :

12,GENERATORS :

12,GENERATORS :

31

(1,5,2)(3,4,7), (1,2)(3,4),
(1,4)(2,7)(3,5)

(1,6,4), (2,5)(3,7), (1,4)
(1,5,3), (1,3)(2,4), (6,7)
(1,5,3), (3,5), (6,7)

(1,6,4), (1,4)(2,3), (2,3)(5,7)

HYPO

HYPO

HYPO

HYPO
HYPO
HYPO
HYPO
HYPO
HYPO
HYPO
HYPO
HYPO
HYPO

NOT

NOT
NOT
NOT

NOT




[ 43 ]
[ 44 ]

[ 46 ]

ORDER

ORDER

ORDER

ORDER -

ORDER

ORDER

ORDER

ORDER

ORDER

ORDER

ORDER

ORDER

ORDER

ORDER

ORDER

ORDER

ORDER

12,GENERATORS :

12,GENERATORS :

12 ;GENERATORS

12 ,GENERATORS

12,GENERATORS :

12,GENERATORS :

12,GENERATORS :

18, GENERATORS

18,GENERATORS :

18,GENERATORS :

20,GENERATORS :

20,GENERATORS :

20,GENERATORS :

42 ,GENERATORS

16 ,GENERATORS :

(1,6)(2,7,3,5), (2,7,3,5)(4,6) 3
(2,7,3,5), (1,6,4) _ALL
c0(1,6,4) ,(2,3)(5,7) , (2,7)(3;5) "2
:(1,6,4),(2,3)(5,7),(1,4)(2,5)(3,7)
(1,4,2)(5,6,7), (1,2,3)(5,6,7) 2
(1,4,2), (1,4,3) 2
(1,4,7)(2,3,6), (1,3,6)(2,4,7) 2
:(1,5,2)(3,4,7), (1,2,5)(3,4,7), 3
(1,7)(2,4)(3,5)
(1,5,2), (3,4,7), (1,2)(3,4) 3
(1,2,5), (3,4,7), (3,4) 3
(1,4,2,3,5), (1,3)(2,4),
(1,5)(3,4)(6,7)
(2,4,3,5)(6,7), (1,2,3,4)(6,7) 5
(1,4,3,2), (2,5,3,4) 5
: (1,4,5,3,2,7,6),(1,4,7)(2,3,6), 7
(1,3)(2,6) (4,5)
(1,3,2,4)(6,7), (1,4,2,3), 2
(1,4)(2,3)

24 ,GENERATORS :

24 ,GENERATORS :

32

(1,5,3), (1,3), (2,4), (6,7

(2,7,3,5), (1,6,4), (2,7)(3,5) 2

HYPO

HYPO

~HYPO

NOT

HYPO

HYPO

HYPO

HYPO

HYPO

"HYPO

NOT .

HYPO

HYPO

HYPO

HYPO

NOT

HYPO




60 1

61 ]

62 ]
63 ]
64 ]

65 1]

66 ]

67 ]
68 1]
69 1
70 ]
71 1]

72 ]

73 ]
74 ]

75 1

ORDER

ORDER

ORDER

ORDER

ORDER

CRDER

ORDER

ORDER

ORDER

ORDER

ORDER

ORDER

ORDER

CRDER

ORDER

ORDER

24 ,GENERATORS :

24 ,GENERATORS

24 ,GENERATORS

24 ,GENERATORS :

24 ,GENERATORS :

24 ,GENERATORS

24 ,GENERATORS

24 ,GENERATORS :
24 ,GENERATORS :
24,GENERATORS :
24 ,GENERATORS :
24 ,GENERATORS :

36 ,GENERATORS :

36 ,GENERATORS :
36 ,GENERATORS :

36 ,GENERATORS :

(2,7:3:5): (2’3:7:5)
: (5:6),(5:7)9(1,4:2:3)

:(5,7,6),(1,2)(3,4),(1,4)(2,3),
(5,6)

(2,7,4,6)(3,5), (1,3)(2,6,4,7),
(2,6)(3,5)(4,7)

(1,4,7) (2’3’6)’ (1’3’6) (2’4’7) 2
(1,2)(3,4)(6,7)

:(1,4,2),(1,4,3),(1,2)(3,4) (5,6)

:(1,6)(2,7,3,8), (2,7,3,5)(4,6),
(1,4)(2,3)

(2,7,8,5), (1,6,4), (1,4)(2,3)
(1,3,2,4)(5,86), (1,3,4,2)(6,7)
(1,3,2,4)(5,86), (1,4,3,2)(5,6)
(1,6,2,7)(3,4), (1,3,2,4)(6,7)
(1,4,2,3), (3,7,4,6)

(1’2’5)’ (3’4’7)’ (1’2)(3’4)’
(1,7)(2,4)(3,5)

(1,2,8), (3,4,7), (1,2), (3,4)
(1,7)(2,3,5,4),(1,7,5,4)(2,3)

(1:6:4) (2:5:7): (1’6:4) (3)5:7)

33

2

2

2

3

NOT

NOT

NOT -

NOT

HYPO

HYPO

NOT

NOT

NOT

HYPO

NOT

NOT

NOT

NOT

HYPO

NOT




76 ]
77 ]
78 ]

79 ]

80 1]
81 ]

82 ]

83 ]

84 ]

85 1]

86 1]

87 1]

88 ]

89 1]

20 ]

ORDER

ORDER

ORDER

ORDER

ORDER

ORDER

ORDER

ORDER

ORDER

ORDER

ORDER

ORDER

ORDER

ORDER

-ORDER

40 ,GENERATORS :

60 ,GENERATORS ::

60,GENERATORS :

48 ,GENERATORS :

48 ,GENERATORS :

48 ,GENERATORS :

72 ,GENERATORS :

72 ,GENERATORS

72 ,GENERATORS :

72 ,GENERATORS :

120,GENERATORS :

120,GENERATORS :

120,GENERATORS :

120,GENERATORS :

168 ,GENERATORS :

(2,4,3,5), (6,7), (1,4,3,2) NOT

(1,3,6,4,5), (1,5,3,4,6) . NOT

(1,5,7,4,6), (3,4,6,5,7) NOT

(5,6), (5,7, (1,4,2,3), NOT
(1,4)(2,3)

(1:7:5:4)(3:6): (4:7): (196:5:3) NOT
(5,6), (1,4,3,2), (1,4,2,3) NOT

(1,7)(2,3,5,4), (1,7,5,4)(2,3), NOT
(1,7(2,4)(3,5)

:(2,7,3,5),(2,3,7,5),(1,6,4)(2,5,7) NOT

(1,3,2,4)(5,6), (1;4,3,2)(5,6), NOT
(1,3,4,2)(6,7)

(1,4,2)(5,6,7), (1,2,4)(5,6,7), NOT
(1,3,2)(5,6,7), (1,2)(3,4)(5,6)

s,7,4,6), (1,6,5,7), (1,6,3,5) NOT

(1,3,5,4)(2,7), (1,3,4,5)(2,7), NOT
(1,6,4,3)(2,7)

(3,6,4,5), (1,6,3,5) NOT
(1,3,6,4,5), (1,5,3,4,6), NOT
(2,7)(3,4)(5,6)

(1,4,3,2)(5,6), (1,6,2,7)(3,4) NOT

34




[ 91 ] ORDER 144,GENERATORS : (1,4),(2,7,5,3),(1,6),(2,7,3,5) NOT

~[ 92 ] ORDER 240,GENERATORS : (1,3,5,4)(2,7),(1,3,4,5)(2,7), NOT
(1,6,4,3)(2,7), (3,6,4,5)

[ 93 ] ORDER 360,GENERATORS : (1,3,4,2)(6,7), (1,6,2,7)(3,4)  NOT

[ 94 ] ORDER 720,GENERATORS : (1,3,4,2)(6,7),(1,6,2,7)(3,4), NOT
(1,4,2,3)

[ 95 ] ORDER 2520,GENERATORS :(1,3,2,4)(5,6), (1,2)(3,4,6,5), NOT
(1,3,7,2)(4,5)

[ 96 ] ORDER 5040,GENERATORS : (5,6), (1,2)(3,4,6,5), NOT
(1,3,7,2)(4,5), (1,4,2,3)

B Burnside matrix of S;
The following figure is the Burnside matrix for Sy using the notations of the

foregoing list. Note that this time the subgroups are ordered in ascending
size :
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