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Introduction.

Tracing back the Nile to its crigin must be about as difficult as tracing
back the origins of our interest in the theory of orders. At many junc-
tions one has to choose in an almost arbitrary way which is the Nile
and which is the other river joining it, wondering whether in such prob-
lems one should stick to the wider or to the deeper stream. Perhaps
a convenient solution is to recognize that there are many sources and
then to list just a few. Those inspired by number theory will certainly
think first about the theory of maximal orders over Dedekind domains:
in number fields, the representation theory-based algebraist will refer
to integral group rings, an algebraic geometer will perhaps point to or-
ders over normal domains, and the ring theorist might view orders in
central simple algebras as his favorite class of P.1. rings. In these topics
graded orders and orders over graded rings appear not only as natural
examples, but also as important basic ingredients : crossed products
for finite groups, group rings considered as graded rings, orders over
projective varieties, rings of generic matrices, trace rings, etc. On these
observations we founded our belief that the application of methods
from the theory of graded rings to the special case of orders may lead
to some interesting topics for research, new points of view, and results.
The formulation of this intent alone creates several problems of choice.
Do we consider graded orders or orders over graded commutative rings
or orders satisfying both ? What restrictions on the grading groups
are allowable and which conditions must be considered.too restrictive ?
Which conditions on the gradation do we allow ? Which are the cen-
tral ground rings we consider ? Let us describe the program for this



book by working through these questions starting with the last one. A
simple dimension argument shows that apart from k[t], k[t,t~*] where
k is a field, there are not many Dedekind domains graded by the in-
tegers; similarly, it is hard to give an example of a group ring over a
Dedekind domain which is again a Dedekind domain (in fact there is no
nontrivial example). Therefore, allowing at least polynomial extensions
of Dedekind domains, one should consider the class of Krull domains
as a natural first candidate. Since the centre of a maximal order is a
completely integrally closed domain, the class of Krull domains is also
very close to the most general one for which the existence of maximal
orders is still guaranteed. In Chapter 1 we provide a rather detailed
treatment of graded Krull domains and in Section I1.4. we recall some
of L. Silver’s work on tame orders over Krull domains, cf. [49], but in
the generality allowed by R.M. Fossum’s treatment of this theory in
[20].

In order to decide what conditions are necessary on the gradation we
have to point out that one of the main tools in the application of graded
ring theory to orders is the construction of so called generalized Rees
rings over orders. The gradations on group rings, twisted group rings,
and crossed products all have the property that R, R, = R, for every
o, T € G where R = @ cqls is a G-graded ring.” Rings which are
graded in this way are said to be strongly graded. In Section I1.2. we
show that it is much more natural, in view of the fact that we are
dealing with orders over Krull domains and with reflexive modules on
most occasions, to weaken the foregoing condition to (R,R,)** = R,
where ** denotes the double dual (of Z(R,.)-lattices).

For these divisorially graded rings it is possible to relate the class group
of R, and R in terms of the image of the group morphism G — CCI(R.)
which derives from the existence of the divisorial gradation on R (e is
the unit element of @). The vanishing of the class group of an order
may in turn be related to the structural properties of the order : if
the class group of the order equals the class group of the centre then
the order is a reflexive Azumaya algebra, up to some exceptional cases
that can easily be traced and excluded. Since both the structure of a
reflexive Azumaya and the properties of divisorially graded rings are
easily imfestigated this presents a method for studying orders that we

intend to focus on in this work. Evidently the divisorially graded rings
will thus be of capital interest to us. In Section I1.3. we investigate the
properties obtained from a combination of P.L theory and of the theory
of divisorially graded rings; here some restrictions on the grading group

are necessary.

Concerning restrictive conditions on the type of groups considered let
us point out that the centre of a graded order is in general not graded,
as when the group is finite, but it is the case when G is abelian. The
fact that we are studying prime rihgs entails that two speciﬁé cases
appear naturally : G is a finite group or G is a torsion free abelian
group. This explains the splitting of part of Chapter III.

If we add that Section IL5. contains a few rather general methods that
will be applied occasionally in the book, and that Section III.4. is an
application of the theory of divisorially graded rings to the study of
extensions of tame orders, we have completed a rough survey of the

first three chapters.

Chapter IV is of a more geometrical inspiration. Indeed, the study of
regularity of orders may be thought of (for those readers who like to
indulge in such thought-experiments) as the search for a good notion
of regularity for “non-commutative varieties” in an algebraic geometry
for P.I. Rings. Since regularity is a local condition we restrict ourselves
to orders of finite type over a local Noetherian domain contained in
the centre of the order. Using the concept of moderated Gorenstein
algebras we define moderated regular algebras (by adding the condi-
tion that the global dimension is finite) and prove that such algebras
have an integrally closed centre which is even a Cohen-Macauley ring
in many cases. It turns out that a moderated regular order is a tame
order. The generalized Rees ring constructions may then be used to
construct moderated regular orders. Let us point out that tame orders
of global dimension two are moderated regular. The centre of a general-
ized Rees ring turns out to be a so-called “scaled” Rees 1ing. Therefore
we investigate in Section IV.3. how the regularity of a normal domain
behaves under a scaled Rees ring extension.




Section IV.4 deals with moderated regular orders having a suitably nice
ramification divisor; these smooth orders are defined, roughly stated,
by the fact that a suitable generalized Rees ring extension becomes an
Azumaya algebra with regular centre and we obtain a good picture of
the structure of such orders in division rings. In this section we use
the graded Brauer group of a graded ring without going too deeply into
this theory; we refer to [12] for a detailed account of it.

The final section is concerned with a certain open subset of the Brauér-

Severi scheme of a smooth maximal order.

In the final chapter, we continue considering orders of finite represen-
tation type, striving for a classification of these in terms of certain
invariants. Theorem V.2.20 states that the representation theory of
two dimensional tame orders is determined by a rational double point
together with the action of a cyclic group on its module category. A
structure theorem for tame orders of such two-dimensional orders-of fi-
nite representation type is given and the Cohen-Macaulay modules are
related to certain projective representations of a finite group. In a finite
appendix we give an idea about the classification of two-dimensional
orders of finite representation type in terms of generators and relators
and we provide an outline of how the first classification (following recent
work of M. Artin [3], [4]) relates to the latter one (following I. Reiten,
M. Van den Bergh [46]). Chapter V is somewhat less self-contained
than the other chapters, however we have provided adequate references

where necessary.

I Commutative Arithmetical Graded Rings.

The graded rings encountered in'this chapter are the ones that will
appear as the centres of the graded orders considered in this book. An
order graded by an arbitrary group need not have a graded centre, but
when the grading group is abelian this property does hold. Because
we exclusively consider orders over domains it makes sense to restrict
attention to commutative rings which are graded by torsion free abelian
groups, in particular where Krull domains are concerned. On the other
hand, constructions over gr-Dedekind rings appear as examples or in
the cohstructive methods for studying class groups, hence it will be
sufficient to deirelop the basic facts about gr-Dedekind rings and the
related valuation theory in the Z-graded case only.



I.1. Graded Krull Domains.

In this section G is always a torsion free abelian group and I' ¢ @G
is a submonoid such that the group < I' > generated by I' is exactly
G. Since G is ordered the I' considered usually will be the set of non-
negative elements of G.

Let R be a commutative domain graded by I. The set § = {z # 0,z
homogeneous in R} is multiplicatively closed and S~ 1R is G- graded
such that (§~1R), is a field and every homogeneous element z of S71 R,
z # 0, is invertible. We write Q9 = S~ R and we sometimes say that
Q°¢ is a gr-field; let us look more closely at the structure of a gr-field.

We have an exact sequence :
1o (@) — (@) =G — 1
eg

By chosing a representative u, € @9 for o € G, we see that u,u, =
c(o, T)usr for o,7 € G, where ¢ : G X G — ((Q9)o)* is a 2-cocycle.
Consequently : Q¢ = (@9)oG?, the twisted group ring with respect to
the cocycle ¢. If G is a free group then Q9 = (Q9)yG. Since every
finitely generated subgroup H of G is necessarily free it is easily seen
that Q9 = (Q9)o @ holds too whenever (Q9), is root-closed.

I.1.1. Proposition. 1. @9 is completely integrally closed,
2. @9 is a Krull domain if and only if it satisfies the ascending chain
. condition on principal ideals, if and only if Q¥ is factorial.
3. If G sdtisfies the ascending chain condition on cyclic subgroups then
Q¥ is a Krull domain (the converse of this does not hold in general).
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Proof. 1. Since @Y is the direct limit of the subrings Qé’H) =
Boeu(Q?)s, where H is a finitely generated subgroup of G, it suf-
fices to look at the latter rings. Now H is a free group, hence each
Qé’ oy 1s completely integrally closed. If Q(z) is the field of fractions of
QfH) then Q9N Qmy = Qé’H) , for every finitely generated subgroup H
of G. Under these conditions it is not hard to verify that the propérty
of being completely integrally closed is preserved under taking direct
limits over subgroups H of G as above.

2. UHz,ye Q% sayr =25, +...+ 2o, Y= Yr, +...+yr, thenz,y €
Q( ) where H is generated by {o1,...,0%,71,- Tm} Since Q( ) is
factorial, wQ(H) N yQ(H) = zQ(H) for some z € Q(H) But QY is a free
Q( H)—module, hence faithfully flat and therefore 2Q9 = zQ9 N ng

3. Follows easily from 1. and 2. '

4. The algebraic closure k of k = (Q9), is root closed, so k ®; Q9 = kG.
A result of Matsuda states that any group ring AG is a Krull domain
if and only if A4 is a Krull'domain and G satisfies the ascending chain

condition on cyclic subgroups, cf. [32]. o

I.1.2. Corollaries. 1. Let R = @yerR, be a I'-graded domain.
If T’ satisfies the ascending chain condition on cyclic submonoids then
SR = Q9 is a Krull domain and factorial.

2. If @9 is factorial and H is any subgroup of G then Q(gH) is again

factorial.

Let K be the field of fractions of R; we will consider fractional R-ideals
(in K) and those that are contained in R will be called integral R-
ideals but if no confusion is possible we simply refer to all of these
as “ideals of R”. If I and J are nonzero fractional R-ideals, we define
(I:J)={z € K,zJ C I} and this is again a fractional R-ideal. We
denote : (R:I)=1I"1, R:(R:I)=I* = I,. A fractional R-ideal
I is commonly called a divisorial R-ideal (or a v-ideal) if I = I**.
A fractional R-ideal J is graded if there is an =z € § such that =J is
a graded ideal of R; consequently the graded fractional R-ideals are
all contained in Q9. Clearly, I** and I™! will be graded as soon as I
graded. Let D(R) be the monoid of divisorial R-ideals with respect to
the multiplication I x J = (IJ)**.

The divisor class monoid of R, denoted by CI(R), is D(R) modulo
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the group of principal fractional ideals of R. It is well-known that CI(R)
is a group if and only if R is completely integrally closed and it is then
called the class group of R. If R is a graded domain we define the
graded class monoid and the graded class group, Cl9(R), as the
submonoid of CI( K) consisting of the elements which are represented by
graded divisorial R-ideals. If z € R is decomposed as ¢ = @5, +. .. +Zo,,;
61,...,0n € ' then we define the content of z to be C(z) = Rz,, +
..+ Rz, . Recall the following lemma due to D. G. Northcott, [40].

I1.1.3. Lemma : Let the commutative domain R be graded by I'. For

every z,y € R, C(z)"C(zy) = C(z)"*1C(y), for some nelN.

If I is any ideal of R then I is the graded ideal of R generated by the
homogeneous elements of I and I¢ is the smallest graded ideal of R
containing I i.e. the ideal generated by the homogeneous components
of elements in I. Clearly if I = Rz, = € R, then I9 = C(z).

We now review some results of D.D. Anderson, D.F. Anderson, [1].

I.1.4. Theorem : Let R be a domain graded by I, then the following
statements are equivalent :

.Forse S,z € R, (Rs: Rz) is graded.

. If I is divisorial in R with Iy # 0 then I = I,,.

. If I is divisorial of finite type in R with I, # 0 then I = I,,.

. Forall z,y # 0 in R, ((zy)** = (C(z)C(y))**

. Foreachz #0in R, @9z N R = zC(z)~ 1.

6. If I is divisorial in R and I is of finite type, then I = ¢J for some
g € Q9 and some graded divisorial ideal J in R which is also of finite

type.

[SLEENUNE I I

Proof. Cf. Theorem 3.2. of {1]. - =

Note that for I' = Z or I’ = Z,., the six conditions of Theorem 1.1.4.
are also equivalent to the following : each divisorial ideal in R is of the
form zJ for some z € $~! and some graded divisorial ideal of J in R.
The I'-graded domain R is said to be almost normal if any homo-
geneous z € QY = SR with deg(z) # 0 which is integral over R
¢ s contaiged in R. In the torsion free abelian case it is easily verified
that R is integrally closed if and only if it is gr-integrally closed in Q¥;
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thus R is integrally closed if and only if R is almost normal and R, is
integrally closed in (Q¥¢)g. Note also that for an almost normal domain
R, the integral closure R of R is given by R, @ (©+x0R,) where R is
the integral closure of Ry.

1.1.5. Theorem. Let R be a I-graded domam

1. If C(zy)*™ = (C(2)C(y))** for all z,y € R — {0} then Ris almost
normal.

2. If R is integrally closed then C(zy)** = (C(m)C(y))** for z,y € R—
{0}. Consequently R is integrally closed if and only if R is integrally
closed in (Q¥%)o and any one of the equivalent conditions of Theorem
I.1.4. holds, in particular if C(zy)** = (C(z)C(y))**.

3. If R contains a unit of nonzero degree then R is integrally closed if

and only if R is almost normal.

Proof. 1. Let z € (Q9),7 # 0, be integral over R. The monic
polynomial satisfied by z may be taken to be : f(w) =z 4, 12"+
...+ ap where each a; is homogeneous of degree v* 7. Over Q9 we may
factorize f(z) = (X — z)g(X) where the coeflicients of g(X) in Q9 are
homogeneous of nonzero degree, say g(X) = X" 1 +b,_ 2 X" 2+.. .+bo.
Clearly, C(1 — z) contains z and C(g(1)) = R+ Rbn,_2 + ... + Rbe.
Hence = € C(1—2)C(g(1)) C (C(1—2)C(g(L)* = C((1 - )g(1))*" =
C(f(1))** is contained in R.

2. If R is integrally closed, take z € C(2)C(y):x C(zy). So
20(zy)C(z)"” C C(z)C(y)C(z)" = C(2y)C(z)" by Lemma 1.1.3.

Thus z € C(zy)C(z)"2y)C(z)":x C(zy)C(z)"™ = R because R is inte-
grally closed.

Consequently, C(z)C(y) :x C(zy)) :x C(zy) = R and furthermore :

R ; C(2)C(y) = (C(2)C(y) ; C(2y)) ; C(2)C(y)
= C(2)C(y) ; Cey)C(2y)C(2)C()
= (C(2)C(y) ; C)C(y)) ; Cay) = R ; C(ay)
It follows that C(zy)™* = (C(z)C(y))**.

3. Since any unit in a domain graded by a torsion free abelian group
is homogeneous (also for I' C G) we may assume that » is a unit of

9



nonzero degree v of R. If z € (Q9), is integral over R then uz € (Q9),
is integral over R. If R is almost normal then uz € R andz € R follows,
so R is then also integrally closed. The converse follows from 2. and 1.

m]

1.1.6. Proposition. Let T' be the set of non-negative elements in an
ordering of the torsion free abelian group G and let R be a I'-graded
domain. The conditions of Theorem 1.1.4. are equivalent to R being

almost normal.

Proof. We have to prove the converse to part 1 in the foregoing the-

orem. Assuming that R is almost normal its integral closure equals

Ry ®( @ R.,) where Ry is the integral closure of Ry in (Q?),.
0£~€T

If I is divisorial in R with I, # 0 then (RI)** is divisorial (R «— R
satisfies PDE) and by Theorem 1.1.5. (2) and Theorem 1.1.4. applied
to R it follows that (RI)** is graded. Obviously I is the intersection of
(RI)** with R and as such I is graded too; hence we established (2) of
Theorem 1.1.4. for R. -

L1.7. Corollary. Let T' be the set of non-negative elements of G and
let R, be the non-negative part of a twisted group ring RG*. Then R,
satisfies one of the equivalent conditions of Theorem I.1.4. if and only

if Ry is integrally closed.

Proof. By the foregoing proposition R is almost mormal. Suppose
A € K is integral over R. Consider 0 # v € I'. Then Au,(u, € RG?)
is integral over Ry and deg(Ay) = v # 0, hence Auy, € Ry i.e. X € R.
This proves that R is integrally closed and combined with the fact that
R, = R® (®osrerRu,) = RO (@0;&761‘3'“7) = R, it follows that R,
is integrally closed. o

1.1.8. Example. Let Q9 be a gr-field graded by the torsion free abelian
group G and let ' be a set of non-negative elements in an ordering of
G. Write Q% = @®4er(Q9). It is clear that Q7 is the graded ring of
fractions Jof Q% and if z, € Q9 with v # 0 is integral over Q%, say
zl + an_lw:‘l +...4+a =0,a;€ Qﬂ_ then we may assume that the
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a; are homogeneous and then dega,-1 =7,...,deg(de) =v". If v < 0
then an_i,...,ap cannot be in Q%, hence ¥ > 0 and z, € QY follows.
We established that QY is almost normal. By Proposition 1.1.6. it
follows that QY satisfies the conditions of Theorem 1.1.4. By Theorem
L1.5. (2) it follows that Qf is integrally closed because (Q%)o = Qo is
certainly integrally closed in (Q9)y = Q.

1.1.9. Note. Corollary I.1.7. is in [1] in case R, is a semigroupring,.
The slight generalization we included here is motivated by the example
given above, i.e. in order to check whether certain subrings of Q¢ are
integrally closed it suffices to check whether they are almost normal

and the latter is an exercise of purely graded nature.

Recall that the Picard group of a commutative ring R is obtained by
taking the isomorphism classes of invertible R-modules together with
the product induced by the tensorproduct. The graded Picardgroup
of R, Pic?(R) is the subgroup of Pic(R) consisting of the elements
represented by graded modules. We write Picy(R) for the group of
isomorphism classes in degree zero of graded invertible R-modules; i.e.
we have canonical morphisms Picg(R) — Pic?(R) < Pic(R). Since an
invertible R-module is projective of rank one it is not hard to see that
Pic(R) may also be described as the subgroup of Ci(R) obtained by
considering the invertible ideals modulo the principal fractional ideals.
Similarly Pic?(R) is a subgroup of Cl9(R) but obviously we do not have
an embedding of Picy(R) in any of these groups.

L.1.10. Proposition. Let R be a domain graded by I' as before. The
following statements are equivalent :

1. If I is an invertible ideal in R such that I, # 0 then I is a graded
ideal.

2. If I is an invertible ideal in R then I = ¢J for some ¢ € Q9 and
some graded invertible ideal J in R.

3. Pic(R) = Pic/(R).

Proof. 1. = 2. An easy version of the implication 3. = 6. in Theorem
1.1.4. by restricting to invertible ideals. :
2. = 1. Let I be invertible in R with I, # 0. Write I = ¢J where

11



g € Q9 and J is a graded invertible ideal in R. If ¢ = zs™! withs € §
then sI = zJ. Since thereis an 7 € I which is nonzero and homogeneous
it follows that # is homogeneous hence sI is homogeneous and I is a

graded ideal too (because R is a domain !).

2. & 3. It is clear that Pic(R) = Pic%(R) if and only if each invertible
ideal in R, I say, is of the form ¢J with ¢ € Q9 and [J] € Pic(R) =&

If one considers the subgroups F'CI(R) and FCI9(R) consisting of the
elements of CI(R) and CI9(R), respectively, which are represented by
finitely generated divisorial ideals then it is clear that the equivalent
conditions of Theorem L.1.4. are all equivalent to FCI(R) = FCI?(R).
If we assume that R is an integrally closed domain then CI(R) = CI9(R)
if and only if each divisorial ideal I in R is such that Q91 becomes a
principal ideal in Q9. Consequently CI9(R) = CI(R) holds e.g. in case
R is a Krull domain, or in case G = Z,I' = Z .

We now pay particular attention to graded Krull domains. First let us
point out that it is well-possible to define gr-Krull domains intrinsically
in graded terms. From a purely ring theoretical point of view this may
be of some interest, however for a torsion free abelian G one easily
checks that a gr-Krull domain R such that Q9 is a Krull domain is also
a (graded) Krull domain. Since the latter situation is the one which
also yields CI(R) = CI9(R) it is clear why we restrict to graded Krull
domains whereas for gr-Dedekind rings a totally different picture will

be obtained later on.

If R C S are Krull domains then one may try to define group morphisms
CI(R) — CI(S) in two different ways. A first possibility is to send the

class of I in CI(R) to the class of (§: (S : SI)). A second possibility

would be to map p € X'(R) to ¢f**...x g2, where ¢; € X!(S) lies over
p and e; is the ramification of p in ¢;, and extend this multiplicatively.
In general these maps need not be well-defined and even if they were,
the maps would not have to be equal. If the extension R C S satisfies
conditior; PDE (if P € X(S),ht(P N R) <'1) then both maps are
well-defined and they coincide; moreover this map ¥ : CI(R) — CI(S)

12

makes the following diagram commutative :

Pic(R) — Pic(9)

CIl(R) < Ccl(S)
The folloWing lemma which is due to C. Weibel may be useful

I.1.11. Lemma. Let R be a commutative ring graded by an abelian
cancellative monoid T' with only the trivial unit. If F is a functor
from Rings to Groups such that R — R[I'] induces an isomorphism
F(R) ~ F(R[I']) then it also induces an isomorphism F(R,) ~ F(R).

Proof. Consider the ‘homomorphisms ()

/”/’R

.72

< R

R -% R[I—
—

where m1(Xr,y) = Yry and mp(Zryy) = ro. Then mi = mi = 1p
combined with the fact that F(7) is an isomorphism yields that F(m;)
and F(m;) are isomorphisms. Define f : R — R[T], f(Zry) = Zr,y.
Then m f = 1g, hence F(f) is an isomorphism, furthermore 7 f = €
is the usual augmentation map R — Ry and F(e) is an isomorphism.
Finally, from the fact that By — R-<» Ry yields 1g, we may derive
that F(Ry) — F(R) is an isomorphism.

I.1.12. Corollaries. 1. Let R be a Krull domain graded by T as
above then Pic(Ry) & Pic(R).

2. Let R be the positive part of R¢G* = §, i.e. T' is the set of non-
negative elements in G and R is a “tyisted” semigroup ring. Recall
that a ring A is said to be seminormal if A is reduced and if »? = ¢*
with b,c € A then a? = ¢, a® = b for some a € A. If R is seminormal
then I' is seminormal in the sense that for ¢ € G such that 2¢,3¢g € T’
we have g € T'. Indeed, take z, € (S),, then (z4)° and (z4)® are in the

13



positive part R of S hence z4 € R by seminormality of R, i.e. g € T.
Since R and I' are seminormal RI' is seminormal too.

Then Pic(RT') = Pic(R) implies that Pic(R) = Pic(R,), and this allows
to derive the twisted versions of this result directly from the semigroup

ring result.

3. If A is a regular ring affine over a field then projective A[l']-modules
are extended from projective A-modules. If A is moreover positively
graded then it follows that projective A-modules extend from projective
Aq-modules (well-known because such a ring A4 has to be a symmetric

algebra of a finitely generated projective Ag-module).

Let us round off this point of a more general nature by mentioning some
further consequences and modifications of the results obtained so far.

1.1.13. Properties. 1. If R is a positively graded (for ' > 0 in G)
integrally closed domain then Pic(R,) = Pic(R).

2. If R ®.er R is factorial then R, is factorial.

3. If R is a '-graded Krull domain such that T' contains only trivial
units (e.g. when T' > 0 in G) then CI(Ro) — CI(R), but this set-map
needs not be a homomorphism unless R, — R satisfies PDE

4. If Ry — R satisfies PDE and R is a I'-graded Krull domain such
that for every p € Spec(Ry) we have that (Rp)** is again a prime ideal

of R then the following sequence is exact :
1-- Cl(Ry) —» CI(R) — Cl(Q7) = 1

5. If R is a Krull domain with field of fractions K and if we assume
that RT is a Krull domain too (e.g. I' C I' >= G satisfies the ascending
chain conditions on cyclic subgroups) then we have : ’

CI(RT) = CI(R) ® CI(KT)
Moreover CI(KT) = CI(K'T) for every extension K'/K.

Now we turn to the study of domains strongly graded by a torsion free
abelian group G. An arbitrary ring A is said to be strongly graded
by a group G if A = @,ccds and 4,4, = Ay, for all 0,7 € G. From
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Ay ®a, Ap-1 = Ae = A, A, -1 for all o € G, it follows that each A, is
an invertible A.-bimodule. In particular each A, is a finitely generated
projective Ac-module on the left and on the right (we denote by e € G
the neutral element of G). The morphism 4 — Ais fa,i‘thfully flat. The
functors A ® 4, — and (). define a category equivalence, A, — mod ~
A — gr, where A — gr stands for the category of left graded A-modules.
If we consider a commutative domain R strongly graded by G then
Ker(Cl(R.) — CI(R)) = Ker(Pic(R.) — Pic(R)). To every strong G-
gradation of R there corresponds a group morphism ® : G — Pic(R.).
Together with a factor set {fsr : Ro ®r, R+ — Ror;0,7 € G} con-
sisting of R.-bimodule isomorphisms. If g, , is another factor set as-
sociated to @ (note : these factor sets satisfy the obvious associativity
condition fa’r,'y(fa,r X 1R.,) = fo‘,r'y(]-R, X fT,‘}:)) then g&,r = qO','rfa,-r
where ¢ : G X G — UZ(R,) determines an element of H2(G,UZ(R,).
If G is torsion free abelian then CI(R) = CI9(R),Pic(R) = Pic?(R) So
if R is strongly graded by G we may derive :

I.1.14. Lemma. Let the commutative Krull domain R be strongly
graded by the torsion free abelian group G, then we have exact se-
quences of abelian groups

1 — Im(®) — Pic(R.) — Pic(R) — 1
1 — Im(®) — Cl(R.) - CI(R) = 1

Proof. Since R is strongly graded, every graded (fractional) R-ideal
I is of the form RI; and the extension Ry — R is faithfully flat. If
[I] € CI(R,) maps to 1 under 7 then RI = Ra for some a € RI. Since
RI is graded and G is ordered we may show that A is homogeneous,
say deg(a) = 7. Consequently I = R.-1a, hence [I] = [R.-1] € Im(®).
Conversely if [I] € Im(®) then say [I]| = [R,] for some 7 € G. Itis easily
seen that [R.-1 ®p, I] = [R,-:1I] = [R.] = 1 and since RI = R(R,-11)
we obtain [RI] = 1 or [I] € Kerm. The surjectivity of = and w|Pic(R.)
follows easily from CI(R) = CI9(R),Pic(R) = Pic/(R) combined with
the fact that graded fractional R-ideals are extended from zero. o

Although the Lemma 1.1.14. may be formulated in ‘the general set-
ting of graded domains it makes most sense if R, is completely inte-
grally closed. The natural question is to find out whether this property
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lifts to B 7 Before we solve this problem, we extend the definition
of a strongly graded ring in order to obtain a notion wich is intrin-
sically linked to the class group. Indeed it is to restrictive to have
Ker(Cl(R,) — CI(R)) = Ker(Pic(R.) — Pic(R)) if we aim to study
Krull domains which are not locally factorial (in the locally factorial
case we do have Pic = Cl and then there is nothing to say). At the
moment we restrict attention to the commutative situation because a
general non-commutative definition (which does exist !) requires more
technicalities than can be introduced in a commutative chapter with-
out destroying its nature. We say that the domain R graded by any
G is divisorially graded if R = ®,cqR, with R, divisorial and
(RoR:)*™ = Ry, for all o,7 € G. As in the strongly graded case it
is not hard to see that a divisorial gradation corresponds to a monoid
morphism & : G — CI(R.), where Im® is a group of course, together
with a factor set obtained from the isomorphisms R, Lr, R, = Ror
for all 0,7 € G, where Lp,_ is the modified tensor product (— ®g, —)**.

Obviously a strongly graded ring is also divisorially graded.

1.1.15. Proposition. Let the commutative domain R be divisorially
graded by a torsion free abelian group G. If R, is integrally closed in
its field of fractions @, then R is integrally closed in its field of fractions

Q.

Proof. By Proposition 1.1.1. (1), Q¢ is completely integrally closed
and in order to show that R is integrally closed it will suffice to establish
that R is almost normal. Let ¢ € @7 satisfy the equation :

(* X™ +a,z2™ 1 +...+am =0, witha; € R, i =1,...,m. From
(RrR,-1)* = R, for all € G, it follows that every element of h(R)
will be inverted in the ring obtained by inverting the nonzero elements
of R.. So we may select a ¢ € R, such that cg,;, € R for all g,
appearing in the decomposition ¢ = ¢5, + ... + ¢»,. Let £ be the set
of homogeneous elements obtained as homogeneous components in- R
of ¢, cq,a1,...,am. Let H be the subgroup of G generated by the
degrees of the elements in C and let § be the graded ring generated
by £ oyer the prime ring (Z or Z,) of R. Obviously ¢ is integral
over S and the latter is an H-graded Noetherian domain such that
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its field of fractions contains g. Since H is a free abelian group it is
totally ordered. Combinations of (*) and the fact that c™¢’ € § for
j =0,...,m, yields that ¢™S[g] C S. Suppose oy < ... < o, then
cm‘qgn € S for all j € IN, hence S[g,,] C Sc™™ and the latter is a
finite S-module. Consequently, S{g,,] is a finite S-module and ¢, is
integral over S. We reduced the problem to ¢' = g5, , + ... + goy»
so by induction, we arrive at the situation where ¢, is integral over §
for 2 = 1,...,n, hence g5, is integral over R for ¢ = 1,...,n. If one
of the ¢5; is not in R we fix it and denote it by y, from now on. If
R,-1y, C R, then RoR,-1y, C R, C R implies (RsRy-1)"*y, C Rs
since R, is divisorial, hence y, € R,, a contradiction. Therefore there
isan z € (R)e — Re. If z satisfies an equation z*+djzt* +...4+d; =0
with d; € R then z also satisfies the equation :

(**) 2t + (dy)ez®* 1 +...+ (d¢)e = 0. Since y, € Q9 it follows that z €
R,-1y, € Q. and it is integral over R, because of xx. The assumptions
entail that z € R,, a contradiction again. Consequently ¢o,,...,90, €
R and ¢ € R, or R is integrally closed. o

1.1.16. Proposition. Let R be a Krull domain which is divisorially
graded by a torsion free abelian group then R, is a Krull domain and
we have an exact sequence of abelian groups :

1—Im(®)— C’l(Re)-L Cl(R)—1

where @ : G — CI(R,) is the group morphism associated to the diviso-

rial gradation of R.

Proof. Since R, = Q. N R in A9 it is obviously a Krull domain.
Since Q¢ is a Krull domain it is factorial and hence CI(R) = CI9(R);
therefore = is surjective. If [I] € Im®, say [I] = [R,] then (RI)** =
(RR,-1I)** = J is such that [J] = 1 because {( R,-1I)**] = 1in CI[R,.].
On the other hand, if [I] € Ci(R,) maps to 1 in CI(R) then (RI)** =
Ra for some homogeneous element a (since (RI)** is graded !), say
deg(a) = . Taking parts of degree e yields : I = R.,-1a hence [I] =
[Ry-1] € Imep. ; o

L1.1.17. Proposition. Suppose that the commutative domain R is
divisorially graded by a torsion free abelian group G satisfying the
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ascending chain condition on cyclic subgroups. If R is a Krull domain

then R is a Krull domain too.

Proof. First let us show that R is completely integrally closed. Since
this property is preservéd under direct limits it will be sufficient to
show that Rz is completely integrally closed for each finitely gen-
erated subgroup H of G which is then a free abelian group. Clearly
Ry =RnN QfH). Now @9 and QfH) are factorial Krull domains (see
also Proposition 1.1.1.(4) and Corollary 1.1.2.) and as H is free abelian :
QfH) ~ Q(R.)[H] is completely integrally closed. The fact that R is
divisorially graded entails that Q9 is obtained by inverting the nonzero
elements of Re. If z = a~ 'y with a € Re, y € R(g) is almost inte-
gral over R(g), say = € (I : I) then all powers of z have a common
denominator b in R, such that ba™'y® C Rgy for all i. If a is not a

unit in R, then in some essential valuation for R, one may calculate

that for some 3, a~*(by’), ¢ I, for some o. Therefore a™* € R. and

z € Rz follows. From this fact we also retain that a maximal proper
divisorial ideal of R is necessarily a minimal prime ideal (but not con-
versely, a priori). If P € X()(R) then either Py =0 or P = P;. In
case P, = 0, Rp is also a localisation of the Krull domain QI at the
minimal prime ideal PQY; therefore Rp is a principal valuation ring.
In case P = P, we note that every homogeneous element of R— P
may be multiplied into R, — P and it is evident that the graded ring
of fractions R, equals R, where p = PN R,. For any p € X®(R,)
we have that (Rp)** is a graded prime ideal; indeed if IJ C (Rp)** for
some graded ideals 7, J of R then I, C p say, but since R is divisorially
graded I** = (RI.)** hence I'** C (Rp)™ and I C (Rp)** follows. Con-
sequently p. is in XD (R,) and (R.)p = (Rp)e is a principal valuation
ring. From this fact we derive that R, = (Rp).G* (divisorial R, ideals
are free), and this is a Krull domain because G satisfies the ascending
chain condition on cyclic subgroups . It follows that Rp = (R,)p is
again a principal valuation ring. The finite characteristic property for
R can easily be checked because if ¢ € P, P € X(*)(R) then one con-
siders ¢ € PQ9 if P, = 0 or z € (Rp)** if P = P, and using the finite
character properties for Q9 and R, one easily derives the property for
R. It zemains to verify : R = N{Rp,P € XD(R)}. The latter in-
tersection equals S = Q9 N [{Rp,P = P, P € X®(R)}. Consider a
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homogeneous z € Q9 and suppose that Iz C R for some graded ideal
I in R not contained in any of the P € X*)(R) i.e. suppose z is in
the intersection Q9 N [N{R$,P = P, with P € XO(R)}ES. Since
R is completely integrally closed and since I** cannot be contained in
a prime ideal of height one it follows that I** = R. However Iz C R
vields I**z C R by definition of I** in @, hence z € R. Thus R = S
follows.

Note that P = P, with P € X()(R) entails p = P, € XY)(R,) but for
an arbitrary p € X(J(R,) it might a priori be true that (Rp)** = R,
(cf. also Proposition 1.1.16.). We have established that R is a Krull
domain.

I1.1.18. Remark. 1. The condition on G in the theorem may be
replaced by the condition : @7 is a Krull domain; the proof is unaffected.
2. The equality marked (!) follows from Q9 N Rp = RY for all graded
P e XW(R). Indeed if € Q9NRp then I = [R: z] has I, = INR, # 0
and I ¢ P. From I.z C R we derive I.z, C R for every homogeneous
component z, of zin Q9. Consequently RI.z, C R and (RIG)**z(, CR
or Iz, C R (using I** = (RI.)**, because R is divisorially graded and
I is graded by Theorem I.1.4.(I), Theorem 1.1.5.(2) and the fact that R
is completely integrally closed).

Hence z, € R}, and z € R}, follows.
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1.2. Valuations and the structure of Gr-Dedekind Rings.

In this section we consider Z-graded rings only; we leave to the reader
the verification of the claim that all concepts may be defined in case the
grading group is torsionfree abelian. Although some results generalize
to the torsion free abelian case, serious problems may arise and mod-
ifications are necessary, e.g. in the structure theory for gr-Dedekind

domains.

We consider a gr-field K9; since G = Z we have K9 ~ E[T,T~] where
kisafield. A graded subring 0, of K9 is said to be a gr-valuation ring
of K9 if for every homogeneous z € K9 we have that either z or 27!
is in K9. One easily verifies the following properties of a gr-valuation

ring.

1.2.1. Proposition. Let O, be a gr-valuation ring of K¢, then

1. The graded ideals of O, are linearly ordered by inclusion.

2. For any given 21,...,2, € h(K9) — O, there is an ¢ € {1,...,n}
such that z'z; € O, for all j € {1,...,n}.

3. A gr-valuation ring is a gr-local ring; M, will denote its maximal

ideal.

We include the following theorem in order to establish that gr-valuation

rings correspond to usual valuations on K = Q(K¥).
s

1.2.2. Theorem. Let O, be a gr-valuation ring of K9. To O, we may
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correspond a valuation function v : (K9)* — T for some ordered groups
I'. This function v extends to a valuationv: K* — I'. If £ € K9 then
z € O, if and only if v(z) > 0.

Proof. On h((K9)*) we define an equivalence relation a =~ if there
exist £1,z2 € O, such that ¢ = 216 and b = z,a. Let T be the
ordered group. obtained from the equivalence classes with respect to
the relation. As in the ungraded case one defines a valuation function
v9: h((K9)*) - T. iz e (K9)*, say 2 = &1 +...+ 2, with degz; = d;,
d; < ... < dp, then we put v(z) = min{v9(z1),...,v9(z,)}. The
reader may verify by a rather straightforward computation that V is
a valuation function (K9)* — TI'; actually only the condition v(zy) =
v(z) + v(y) takes some work, cf. [37] Theorem 1.3.13. p. 167. This
definition also makes it perfectly clear that O, = {z € (K9)*,v(z) >

0} U {0}. It is not hard to extend v to a valuation 7 : K* — T'. Let

us show directly that (O,)a, is a valuation ring of K. Pick z € Kj;
sayz=(21+...+a)(p1+...+ ) L or 21,...,ZnyY1,.4.,¥s € Os.
By Proposition 1.2.1. (2) there is a £ € h(K9) such that {z;,€y; €
h(0,) — {0} and some £z; or y; is equal to 1.

Looking at z = (¢z1 + ... + £z,)(€ys + ... + Ey,)~ ! it is clear that
either its nominator or its denominator cannot be in M, (since M, is
graded, 1 € M, would follow if both nominator and denominator were
contained in it) hence z or z~! € (O,)as,. This proves that the latter
ring is a valuation ring associated to a valuation ¥ : K* — T’ which

extends v. o

If v is a gr-valuation with I' = Z then we say that v is a discrete
gr-valuation or a principal gr-valuation. For Z-graded rings R it is
well-known that R is gr-Noetherian i.e. R satisfies the ascending chain
condition on graded ideals, if and only if R is Noetherian, cf. [37]
Theorem I1.3.5. p. 88. This allows to state and prove :

L.2.3. Proposition. Let O, be a gr-valuation ring of K9 with asso-
ciated valuation v. Then v is discrete if and ounly if O, is Noetherian
(gr-Noetherian). ' '
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Proof. If O, is Noetherian then so is (O, )m, hence 7 is discrete, I' = ZZ
and v is discrete. For the converse it suffices to check that I g JCcM,

are graded ideals then (O, )ar, I g(O,,) a,J. But if the latter inclusion

were to be an equality then any z € h(J) has the property that cz € I
for some ¢ € O, —M,. Writec = ¢1+...+cm, dege; = diydy < ... < dp.
From cz € I, ¢;z € I follows for ¢ = 1,...,m. Since some ¢, ¢ M,
it then follows that z € I. So that I = J would follow too. The
assumption that v is discrete leads to the fact that v is discrete, hence
(0,)um, is Noetherian and the above argument entails that O, is gr-

Noetherian as well. a

Combining our knowledge of gr-valuation rings obtained so far we may

conclude that a discrete gr-valuation ring will be a Noetherian inte- .

grally ‘closed domain, hence a graded Krull domain. The graded Krull
dimension of O, is clearly equal to one, therefore O, has KdimO, < 2.
A prime ideal P € XW)(0,) is either equal to M or else P, = 0. Conse-
quently if P € X()(0,) is such that P # M then (O, )p is a localization
of K9 at PK9 and therefore it is a discrete valuation ring of K (but
the associated valuation on K does not come from a graded valuation
on K9 1). Perhaps the easiest examples of discrete gr-valuation rings
of k[t,T~!] are k[T] and k[T ~']; actually there are essentially the only
discrete gr-valuation rings of k[T, T ~!] where Kdim = 1, and not two.

This is an easy consequence of the consequent structure theorem.

I.2.4. Theorem. Let K9 = k[T,T*] be a gr-field with degl’ = 1. A
discrete gr-valuation ring R is necessarily one of the following types :
a. R =k[T]

b. R = k[T?]

c. R= Y, My™T™ where a € @ and M, is the maximal ideal of a
neZ
discrete valuation ring Ry of k.

Proof. Let v : h(K9) — Z be the graded valuation corresponding to
Rin K9. First, if v(k) = 0 then R D k, either R D k[T] or R D k[T }].
" Since both rings mentioned are gr-valuation rings and discrete they
are alsg maximal graded subrings of k[T, T~1] hence we arrive at the

possibilities mentioned in a. en b.
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Secondly, v(k) = nZ. Then Ry is a discrete valuation ring of k& with
corresponding valuation v/k. It is harmless to normalize v such that
v(k) = Z (actually, in the sequel we assume that all valuations will
be normalized in this way). Then we put v(T') = . By definition of
v, (R) = {z € h((K9)*),v(z) > 0} U {0} and so we find R; = {z €
(K9); — {0},0(z) > 0} U {0} = {yT%,y € k*,o(uT") > 0} U {0} =
{yT%,y € My**} = M~*T". RS-

Up to replacing T' by #™T where  is the uniformising element of R, we
may always assume that 0 < @ < 1. We define the type of R, denoted
by #(R), to be the number o mod 1. It is obvious that Ro a.nd t(R)
determine the discrete gr-valuation rmg R.

1.2.5. Proposition. Let R be a discrete gr-valuation ring of k[T, T~!]
of {( R) = p/e where 0 < p < e and (p,;e) =1 (if {(R) = 0 put p = 0 and
e = 1). Let p denote the maximal ideal of Ry and M the gr-maximal
ideal of R. The following properties hold :

1. M® = Ry; e may be called the ramification index of Ho in R.
2. The units of R are homogeneous of degree he with b € Z.

3. Uniformizing elements of R have degree p' with pp' = 1mod(e).
4. We have : R/M ~ Ro/u[T¢; T~¢] with degT = 1.

Proof. We may exclude the trivial cases and assume that R ~

EZ pome X" It is clear that g~ ™*X™ contains a unit of R if and
ne

only if 4~ "*u"* = Ry, if and only if p(—"0)+ire) — R, (where i(—)
denotes the upper integral part of the number considered), if and only
if i(—na) + i(na) = 0 or na € Z i.e. eln and 2 follows. It is clear that
the minimal value that may be attained by the valuation of an element
in p7"T™ is i(—no) +ne. So p~™*T™ can only contain a uniformizing
element if i(—na) + no is as small as possible i.e. equal to 1/e. For
this to happen it is necessary that e divides 1 — np or equivalently that
np = 1 mod e. Conversely if np =1 mod (e) then a direct calculation
shows that i(—na) + na = l.e. and 3. follows, as well as 1.

Since R/M is a gr-field, R/M = Ro/p[T*,T~*] and f is the smallest
number such that Ry ¢ My;. We have observed that M; = {z €
(K9)i,v(z) > 1} U {0} hence M; # R; if and only if there exists an
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z € R; with v(z) # 0, if and only if R contains an homogeneous unit
of degree 7. The first observation in this proof learned that the latter
happens if and only if 7 = he, so the smallest possible ¢ is indeed equal
to f and this proves statement 4. - o

I.2.6. Remark. The valuation of a homogeneous element of K¢ is not
completely independent of its degree (that is as far as gr-valuations are
concerned). Indeed, one easily establishes the following relation for any
a € h(K9): : : '
v(a) = adeg(a)modl

As an easy consequence of this one retains that not every element of
negative valuation has degree zero (Corollary 1.3.15. of [37]).

We now turn to the structure theory of gr-Dedekind domains, the ma-
terial we present here is a combination of results of M. Van den Bergh
[51] and F. Van Oystaeyen [53].

A Z-graded commutative domain is called a gr-principal ideal do-
main if every graded ideal is principal. A Z-graded domain is said to
be a gr-Dedekind ring if every graded ideal is projective. The follow-
ing two results may be proved in a way much similar to the ungraded
equivalents, for a little more detail we refer to [37], p. 179.

1.2.7. Theorem For a Z-graded domain R the following statements
are equivalent.

1. R is a gr-Dedekind ring.

2. R is a Krull domain and nonzero graded prime ideals are maximal
graded ideals. ,

3. R is Noetherian and integrally closed in its field of fractions K, and
nonzero graded prime ideals are gr-maximal ideals.

4. Every graded ideal of R is invertible.

5. Every graded ideal of R is in a unique way a product of graded
prime ideals.

6. R is Noetherian and homogeneously integrally closed in K9 and
every nonzero graded prime ideal of R is a gr-maximal ideal.

7. The graded fractional ideals of R form a multiplicative group.

8. R is Noetherian and each Ry at a gr-maximal ideal M. of R is a
principgl ideal domain. :
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9. R is Noetherian and each graded localization R} at a graded prime
ideal P of R is a gr-principal ideal domain.

10. R is Noetherian and each graded localization RY, at a gr-maximal
ideal M of R is a gr-principal ideal ring.

11. All graded R-modules which are gr-divisable are injective in R-gr.

L.2.8. Proposition. Let O, be a gr-valuation of the gr-field K9. The

following statements are equivalent

. O, is a discrete gr-valuation ring.

. O, is a gr-Dedekind domain.

O, is a gr-principal ideal domain.

M, is generated by one homogenéous element of O,.

. O, is factorial.

. O, satisfies the ascending conditions for principal ideals
. O, is a Krull domain and hi(M,) = 1.

1.2.9. Lemma. Let R be a Dedekind domain.

1. Ry is a Dedekind domain.

2. There is an e € IN such that R = ®,czR., with R, # 0.

3. Every fractional graded ideal of R can be generated by two homo-
geneous elements, one chosen arbitrary in the ideal.

Proof. 1. If I is an ideal of Ry then RI is projective hence a direct

summand of a gr-free R-module L which we may assume to be freely

generated by elements v;,...,v, of degree zero. It is obvious that
Ly is a free Ro-module and (RI)y = I is a direct summand of L.
Consequently, ideals of Ry are projective and Ry is a Dedekind domain.

2. Choose d,e > 0 minimal such that R_4 # 0, R, # 0. Note that if
the gradation is left or right limited then R ~ k[Y'] and we may neglect
these trivial cases i.e. we may assume that both e and d as above exist.
Write RR, = P/*..... Pl where the P; are graded prime ideals of R.
If d > e then 0 = (RR.)o D (P{*)o.-.-- (P%»)o hence (P;)o = 0 for
some ¢ € {1,...,n}. Therefore P; N R,q = 0 for all m '€ Z and hence
every element of h(P;) has to be nilpotent (of order d) i.e. P; = 0.
The case e > d may be dealt with in a similar way. So we arrive at
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e = d. Consider Rpetm With 0 < m < e. Then R_,eRnetm = 0 with
R_,. # 0 yields Ryeqm = 0.

3. If I is a graded fractional ideal of R then an argument similar to
the ungraded case yields that I may be generated by a and b with
a € h(I) but not necessarily homogeneous. Write b = b; + ... + b,
deg b; = t;,t1 < ... < t,. Since b; € I we have relations :

(*) b; = zza+yibi+...+ysbi+. . .+ yiby, with z;,y; € h(R) Ifb; = zia
then we replace b by b—b; and repeat the argument. Ifb # b; # z;a then
comparing degrees in (*) yields either y; = 0 which would contradict
b; # z;a,ory; =land z;a+by +...4+b;+ ... + b, =0. In the latter
case b — b; € R and we may replace b by b;. Finally this leads to the
fact that I is generated by a and some b;. ' o

Consider an extension of commutative rings R C T. An ideal I of
R is said to be invertible in 7' if there is an R-(bi)module J in T
such that IJ = R. The generalized Rees ring R(I) with respect
such an ideal I is defined to be the graded subring of T[X, X ~!] given
as R(I) = €€BZI7‘X ", Note that the pospive part of R(I) is nothing
but the us1ral Rees ring R(I). If T is the field of fractions of R then
we do not refer to it i.e. “invertible in T” becomes “invertible”. It is
easy to prove that R(I) and R(I) are Noetherian if R is Noetherian.
We now describe the structure of strongly graded gr-Dedekind rings; R
is strongly graded exactly then when RR; = R. Since a gr-Dedekind
domain is a graded Krull domain we may invoke Lemma I.1.14. bearing
in mind that Pic(R) = Pic(R), CI(R) = CI9(R) and Pic(R) = Cl9(R)
because all graded fractional ideals of R are projective. Hence Pic(R) =
CIl(R) although R may (and will usually) have KdimR = 2. Since
G = Z the map ® : Z — Pic(Ry) is determined by ®(1) = [I].
Lemma 1.1.14. and the generalities preceding it yields :

L.2.10. Theorem. If R is a strongly graded gr~Dredekind domain

“then there is an invertible Ry-ideal I such that R = on(I ). There is a

canonical epimorphism 7 : CI(Ry) — CI(R) and Ker(r) is the subgroup

genera,ged by the class [I] of I. Moreover, 7 is an isomorphism if and

only if I is principal and in this case R & Ry[X, X 1] with degX = 1.
26

Conversely each Ry(I) for an invertible Ry-ideal I is a strongly graded
gr-Dedekind domain. Furthermore Ro(I) = Ry[J]if and only if [I] = [J]
in Cl(Ry).

Proof. All statements except perhaps the last one follow at once
from the preceding remarks. For the last statement we may assume
without loss of generality that I and J are integral Ry-ideals. As-
sume first that R = R¢(I) = Ro(J). Then RI = RX™! yields
I=R X' = JYX1 if we write Ro(J) = nng”Y". Consequently

IJ71is principal. Conversely if we assume I = Jz for some z € K then
Ro(I)= @ (J2)"X" = @ J"(2X)" ~ Ry(J). o
neZ neZ .

Starting from the structure result in the strongly graded case we may
proceed to unraffle the general case. Recall that for any Z-graded
ring A we define for each e € Z, A® =

(A, = Aepm.

Apme with gradation
mexX

L2.11. Lemma. If R is a gr-Dedekind domain then for all e € Z,
R(® is a gr-Dedekind domain. :

Proof. It is clear that R(®) is Noetherian. Considering R(®) in
(K9)(®) = Q9(R) one verifies immediately that R(®) is integrally
closed. The correspondence P — P(¢) defines a bijective correspon-
dence between Spec,(R) and Spec,(R()), the inverse correspondence
being given by @ — rad(R(mEG:z Qme))- Hence graded prime ideals

of R(®) are also gr-maximal. It now suffices to evoke Theorem L.2.7.,
6 < 1, to conclude the proof. o

Even if a gr-Dedekind domain is not strongly graded still the graded
rings of fractions at graded prime ideals are determined by what hap-
pens in degree zero ! This is established by the following elementary

but basic lemma.

1.2.12. Lemma. Let R be a gr-Dedekind domain and let P be a
graded prime ideal of R. The graded ring of fractions at P, R} say, is
obtained by localizing at Ry — Fy.
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Proof. We know by Theorem 1.2.7.(9) that R} is a discrete gr-

valuation ring. Now R/P is a gr-field. If § € (R/P), then there is

ayt e (R/ P)_n and if y represents ¥, y' represents §_; then it suf-
fices to invert yy' € Py in order to invert y ¢ P. So we only have to
worry when R/P is trivially graded i.e. P contains all R, with n # 0.
The final observation in Remark 1.2.6. may be applied to R, in order

to exclude this situation.

Proof. 1.2.13. Theorem. Let R be a gr-Dedekind domain then there
exists an e € IV and a fractional ideal of Ry such that R(®) = Ry([).

If RR; = R then we may take e = 1 by Theorem 1.2.10. If RR; # R,
write RR; = P/*..... P¥=, Each R/P; is a gr-field thus each graded

prime P; contains 69 Ry, 4+ for some e € IN, some r, 0 < 7 < e.

The argument at the end of Remark 1.2.6. yields that for each P;
containing B; we find an e; ;0 in IN such that Pi( 0 does not contain

(R)); = R.,. Let ¢ = s.cm. (e1,...,e,). P ¢ R, then P ¢ R,
for any m > 0 hence R)(R(?)); = R(9) because (R(®); cannot be
contained in any graded prime. ideal of R(®). Apply Theorem 1.2.10. to
R(©) and the statement follows.

Graded integrally closed domains R such that some R(®) is a generalized
Rees rings have a well defined structure let us present this structural
result now after having introduced some necessary terminology.

Let Ry be integrally closed and I € Inv(Ry). For p € Z we define I?”
as the sum of all ideals J of Ry satisfying J? C I. In order to check
(IP"")? C I'it suffices to check that J? C I, J? C I entails (Jy+J2)? C I
and the problem comes down to checking the validity of J{JZ ~¢ < I for
i=1,...,p. But (JJJ77I7)? C (J})}(JF)P~*I"P C Ry and that Ry is
integrally closed yield JiJ™" C I. For a = p/q, g € IN we define I as
([p)q‘1 - (Inp)(nq),'1

all n € IN, as one easily checks. If Ry is a Dedekind domain then the

. This definitions make sense because (I?)?

definitions obtain their classical meaning in terms of invertible ideals.

1.2.14. Proposition. Let I be an invertible ideal in an integrally
closed domain Ry, then the following properties hold :
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1. For all a,B € Q, I°IP C I**F
2. Forall a € Q, I*J* C (IJ)*
3. Forall a,3,7€ Q such that a < B <, I*NIY C I8,

Proof. Direct verification. : o

I.2.15. Theorem. Let R be a Z-graded integrally closed ring
such that R(®) is a generalized Rees ring for some e € IN, then

R = 3 I"eX™ where I € Inv(Ry) is given by R(®) = Ry(I). Con-
n€Z
versely, if Ry is integrally closed then every graded ring of the type of

R is also integrally closed.

Proof. Put K9 = k[X,X™!] and write R = > [ X* where I; is an

Ro-module in k. Since R(®) = Ry(I) we have Q(Ry) = k and each I; is
a fractional Ry-ideal. Since R is ihtegrally closed, z € h(R) if and only
if z¢ € h(R()).

Therefore I; = {z € Ry,z° € L; = I'} = I/ and R = ZIn/eX"

follows. Conversely if R is such that R(®) = Ry(I) then the integral
closure R' of R has the property that (R')(®) = R(®) hence by the
foregoing R' = Y. I"/¢X™ and R' = R. o

We now return to gr-Dedekind domains.

1.2.16. Proposition. Let K9 be a fixed gr-fixed and let {R;,7 € I}
be a family of discrete gr-valuation rings of K9. Suppose that N(R;),
is a Dedekind domain such that (R;)¢ # (R;)o for i # j and ¢{(R;) =0
for allmost all 2 € 7, then R = N{R;,: € I} is a gr-Dedekind domain.

Proof. (For definition of #(R;) and e; see before Proposition 1.2.5.).
That R is graded and integrally closed is clear. Let e be L.e.m. {e;,e;
the ramification index of R;}; this makes sense since #(R;) = 0 for
almost all i € J. Since (R;)o # (Rj)o if ¢ # j it follows that R(®) is
strongly graded (as in Theorem 1.2.13.), hence R(¢) = Ry(I) for some
invertible Ro-ideal I. The structure of R(®) and the assumption on
R, entail that R(®) is a Noetherian domain of Krull dimension at most
two. Since R is the integral closure of R(¢) the classical result of Nagata
yields that R is Noetherian. Every nonzero graded prime ideal of R(¢)
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is gr-maximal, hence by integrally of R over R(®), the same is true in
R and then we nay apply Theorem 1.2.7.(6) and include that R is a
gr-Dedekind domain. o

1.2.17. Note. The condition (R;)e # (R;)o is necessary because if one

takes Ry = Y, M"X™, Ry = >, M~™X™ where M is the maximal
ne€Z neEZ )
ideal of a discrete valuation ring then Ry NR,; is not gr-Dedekind because

it has graded Kdim equal to two and Kdim equal to three.

If R is a gr-Dedekind domain then there is a bijective correspondence
between ‘maximal ideals of Ry and gr-maximal ideals of M (the latter
set is denoted by Q4(R)).

I M € Q4(R) and m = M N Ry then (R$;)o = (Ro)m and the corre-
sponding gr-valuation and ramification index will be denoted by vz, epr
respectively. We say that R satisfies the graded approximation
property, G.A.P., if for any finite subset S of Qq(R), together with
any given set of integers {nar, M € S}, there exists an z € h(K 9) such
that eprvp(z) = nag for all M € S and vpr(z) > 0 for M ¢ S.

I1.2.18. Theorem. A gr-Dedekind domain R satisfies G.A.P. if and
only if for every P # @ in Q4(R) we have that (ep,eq) = 1.

Proof. First suppose R satisfies G.A.P. For Q # Q in Qg (K) there
exists a z € h(R) such that vp(z) = 0 and vg(z) = eg — 1. By
Remark I.2.6. : degz = 0 modulo ep and degz = 1 modulo eg, this
yields (ep,eq) = 1. Conversely, just as in the ungraded case G.A.P.
will follow if we show that h(Py) ¢ h(PZ) U Rh(P) U ... U h(P,) for
Pi,...,P, € Q4(R). Let m be a uniformizing element for Rp,, a; =
degm;. Pick I such that ! = ay modulo ep, and [ .= 0 module ep,,
i1=2,...,n. Inthis case: (P;); = (P;)g* R with a; > 0 for i’ = z,...,n,
(P?); = (P)§* R, with-a] > a;. The ungraded approximation theorem
yields (P1); ¢ (PE); V... U (Pp):- o

We include some results concerning the category R-gr for a gr-Dedekind
ring B. The proof of the following propospion is an easy technical
modification of the corresponding ungraded statements, so we omitted
it here’
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L1.2.19. Proposition. Let R be a gr-Dedekind domain.

1. Any finitely generated graded R-module M decomposes as M =
N @& T where N € R-gr is torsion free, T' € R-gr is torsion.

2. If T € R-gr is a finitely generated torsion module then T =
& R/P with P; € Qy(R).

%ilIf M is a graded R-lattice (i.e. a graded torsion free finitely generated
R-module) then M = I, ®...®1I,, where I1,..., I, are graded fractional
R-ideals. ' o

Let R be any Z-graded ring. For any n € Z we define the shift functor
T» : R—gr — R-—gr by associating to a graded R-module M the graded
R-module M(n) obtained by considering the ungraded R-module M
and equip it with the new gradation defined by : M(n)m = M,tm, for
all me Z.

L1.2.20. Proposition Let R be a discrete gr-valuation ring. Then
R(n))® ...® R(nt) ~ R(m;) ® ... ® R(my) with n;,m; € Z if and
only if there is a permutation o of the set {1,...,k} such that n,;y = m;
modulo e, where e is the ramification index of R.

Proof. If M is the gr-maximal ideal of R then by definition of e we

have :

R(n)/MR(n) = k[X*, X™°|(n)
R(m)/MR(m) = k[X*, X~*|(m)
where for any graded R-module N, N(m) = & N(m;).

Comparing dimg((R(n)/MR(n));) and dim((R(m)/M R(m));) for ev-
ery ¢, yields the resvlt. : o

If M, N are graded R-lattices over the ZZ-graded gr-Dedekind domain R
then we say that M and N have the same genus, and we write M ~ N,
if Mp = Np for all P € Q4(R). If M is a graded R-lattice of rank n
then we let detM denote the graded module A™ M which has rank one.
Consequently, if we take M to be the graded lattice I, @ ... ® I, then

L.2.21 Lemma. Let I;,J;,i = 1,...n, be graded fractional ideals of
the gr-Dedekind domain Rsuchthat ;@ ... 01, ~ J1 ®...® J,. The
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following statements are equivalent, for ¢ € Ry :
1 L....LJ .. I =1tR
2. (I)o(L2)o--- - (I‘,,)O(J1 L (Jn)gt = tRy.

Proof. The assumptions make it clear that we may reduce the prob-
lem to the gr-local case i.e. we may assume that R is a discrete
gr-valuation ring. Write ¢{(R) = p/e with (p,e) = 1, 0 < p < ¢,
and let p' be the degree of a uniformizing element = of R. Say,
I, = n™ R, J; = % R. By Proposition 1.2.20. we can write r; — s; = [;e
and thus [;..... I, Jl_l, vor, It = RreTl | We also have that 7° = 7%«
where 7° is a ‘uniformizing element of Ry and u is a homogeneous
unit, hence Rr*®% = R(n®)®%. We calculate : (I)y = n™R_,p;
(Ji)o = " R_g,p,

»p’ T 22’ 53

(T)o(7:)5" = n(x")’ ( ) )X"”’ (=) ( ) )X’”"Ro
= (n®)k(trr) ((7r )~?P X7 e) X-ler' B,
= (r°)% Ry :

Consequently (I1)o..... (L)o(J1)g . ... (J)g' = (7°)®4 Ry and the
statement is evident. o

1.2.22. Corollaries. Let R be a gr-Dedekind domain.

1. If M and N are graded R-lattices with M ~ N then an f €
Homp_4(M,N) is an isomorphism if and only if fo = f|M, is an
isomorphism.

2. For M, N as in 1., we have detM = detN if and only if My = No.
3. If I and J are graded fractional R-ideals such that I ~ J then
J = HI for some fractional Ry-ideal H. :

Proof. 1. We may assume M = [;®...®1,, N = Ji®...®J, for some
graded fractional ideals I3, J;. Then f may be viewed as an element of
degree zero of @&;I;71J; 5+ Now fo will be an isomorphism exactly when

Rodetf equals (I;)7*..... (L.)y*(J1)o---(Jn)o. By the lemma this is

equivalent to Rdetf = I71..... I ... Jn, so f is an isomorphism.
2. YW;th notation as in 1., detM = I ...I, and detN = Jy..... In-
The Lemma and Steinitz theorem prove the statement. '
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3. From I ~ J we derive that IJ"! ~ R. Since (IJ " 1)oR C IJ7! it
follows from 1 that IJ~! = (IJ"1)oR. o

1.2.23. Lemma. Let M and N be graded lattices over the gr-Dedekind
domain R such that M ~ N and M = I; & ... ® I, for some graded
fractional ideals I,...,I, of R. Then there exist Jy,...,Jn, graded
fractional ideals of R suchthat N2 J, ®...8 J, and I, ~ J; for all
t=1,...,n

Proof. We may write N = H; & ...® H, for certain graded fractional
R-ideals Hy,...,H,. By the approximation property for By, we may
select t1,...,1, € Ry satisfying the following conditions :

(a) ty =1.

(b) Let P € Q4(R) be such that (I,)p # Rp, or (H;)p # Rp
for some 3. Put : wvp(#;) + vp(H;) = ¢;. Then we demand :
g < Min{g1,..+,¢i—-1;4i+1-+-5qn}. Note that only finitely many P
satisfy the condition.

(c) For P € Q4(R) not included in (b) we demand : 0 < vp(t,),...,0<
’vp(tp(t‘n).

Let then J; be equal to 1 H1 & ... ® t, Hy. It is clear that J; ~ I;. Let
N’ be the kernel of £ : N — J; given by componentwise multiplica.tioﬁ
by t;. We obtain N = N' @ J; with N' ~L®...® I, Repeating the
argument will yield a proof of the statement. , o

1.2.24. Lemma. Let Ii1,Ii2,151,122 be fractional ideals of a
Dedekind domain D. If I11155 + I1315; = D then there exist elements
ai1, 12,821,832 € Q(D) = K, such that aj1a32 — a12a21 = 1.

Proof. Put A = {P € Q(D),v,(I;;) # 0 for some I;;}. Choose a},, ay,
such that the following conditions hold : if P € A then vp(a};) =
vp(l11),vp(ahy) = vp(ly2); if P ¢ A then vp(a}y) > 0,vp(al,) > 0.
Choose ay, and @}, such that : if P € A, vp(a},) = vp(lp1) and
vp(ay,) = vp(l12). If P € A then we want vp(a},) = vp(ay,) = 0 if
vp(aj;) # 0 or vp(ay,) # 0, but vp(al,) = 0 and vp(ay,) > 0 in case
vp(a1;) = vp(ap,) =0.

The choice of the elements a;; yields : R = Raj;ay, + Rajyas;- The
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lemma is thus proved. ‘ o

1.2.25. Lemma. If I and J are graded fractional ideals of the gr-
Dedekind domain R and if H and K are fractional ideals of Ry then :

HiIo KJ=I®dKHJ

Proof. Put M = HI® KJ, N = I & KHJ, and write Hom(M, N) as

the ring

H'R K-1JI

KI-tJ HR
Since (H™R)o(HR)o+(K~1J " 1)o(KI~1J)e = R, it follows from the
foregoing lemma, combined with Lemma 1.2.21., that M = N as graded

R-modules. o

I.2.26. Theorem. Let M and N be graded R-lattices over the gr-
Dedekind domain R. The following statements are equivalent :

1. M = N as graded R-modules.

2. M ~ N and M, & Ny.

3. M ~ N and detM = detN

4. M ~ N and detM;, = detN,

Proof. 3. & 4. is Steinitz’ theorem because Ry is a Dedekind domain.
2. < 3. follows from Corollaries 1.2.22. '

We prove 1. < 3. We may assume that M = I; @ ... ® I,. From
1.2.24. and 1.2.25. we retain that N =2 H11 & ... ® H,I, for some
fractional Rp-ideals H;. Because M & (Hy..H,)®d L ® ... I,
and detM = detN we obtain Hy..... H, = Ry, proving 3. = 1. The
converse implication is trivial of course. o
As a consequence of this we also have the cancelation theorem for gr-

Dedekind domains.

1.2.27. Theorem. If M, N, P are graded lattices over the gr-Dedekind

“'domain Rthen M @ T = N & T implies M ~ N.

The fact that any gr-Dedekind domain contains a generalized Rees ring
of a v;ell-described type allows to do much better than Lemma I.1.14.
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when it comes to the determination of the class groups, even if R is
not necessarily strongly graded. In addition to the graded class group
CI9(R) introduced in Section I we also consider the following groups.
1. Cl4(R) : the group of graded isomorphism (i.e. in degree zero)
classes of graded divisorial R-ideals.

2. g(R) : the genus group of R, is givenas g(R) = Y, Z/epZ.
Pef,(R)

3. 9o(R) = g(R)/ < (1,.++,1,..0,1) >.

1.2.28. Proposition. Let R be a gr-Dedekind domain, suppose that
R(®) is given as Ry(I) for some fractional Ry-ideal I. The following

commutative diagram is exact :

0 — <> — <R{1)> — <(1,."I,1)> — 0

0 — Cl(Ro) —  ClL(R) — g(lR) — 0

0 — ClRy)/<[l]> — Clgl(R) — golR) — 0
0 0 0

Proof. Exactness of the columns and the first row follows by definition
of the groups involved. Exactness of the middle row is consequence of
Corollaries 1.2.22.. Exactness of the bottom row is a technical conse-

quence of the snake lemma.

L.2.29. Corollary. Let R be a gr-Dedekind domain.
1. If R satisfies G.A.P. then CI9(R) = CI(Ry)/ < [I] >, this is a

generalization of Lemma 1.1.14. in this case.

2. If R is gr-semilocal then R is a graded principal ideal domain if and
only if R satisfies G.A.P. (it had been noted before that gr-semilocal
rings are not as nice as their ungraded equivalents e.g. Pic? need not
vanish, the corollary shows that it is the failure in G.A.P. that causes
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these problems of purely graded nature).

Proof. 1. If R satisfies G.A.P. then (ep,eq) = 1 for all P,Q €
Q4(R) by Theorem 1.2.18. Therefore the subgroup of g(R) generated
by (1,...,1) is the whole of g(R), hence go(R) = 0.

2. If R is gr-semilocal then Rj is semilocal; again combining Theorem
1.2.18. and Proposition 1.2.28., the statements follow easily,. =~ . o
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I1. Graded Rings and Orders.

II.1. Graded Rings over Goldie Rings.

The rings considered in consequent chapters will allways be P.L rings,
nevertheless in the present section the restriction to the P.I. case is
really superfluous and it would serve no aim at all since none of the
proofs given in this section would simplify if one restricts attention to
P.L rings. Hence, the fact that we prefer to include the following results
in a generality exi:e&ing that of the main body of this book is a choice
inspired by an esthetic evaluation rather than by pragmatic argumients.

A ring R is said to be a Graded Goldie Ring if it satisfies the as-
cending chain condition on graded left annihilators and if it has finite
Goldie dimension viewed as an object of the category, R-gr, of graded
left R-modules. It has been pointed out in [37] that a graded Goldie
ring does not necessarily have a ring of homogeneous fractions which
is gr-simple gr-Artinjan (concepts defined as in the ungraded case but
now intrinsically in R-gr). Also a graded Goldie ring is not necessarily a
Goldie ring that happens to be gra.ded, but our first result will rermedy
this at least in the cases we will be considering throughout this book.

IL1.1. Lenma. A graded ring R of type G, where G'is an ordered
group, satisfying the ascending chain condition for graded left annihi-
lators has nilpotent left singular radical , ,(R). '
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Proof. First one easily verifies for any graded left ideal L of R that
R is an essential extension of L in R-gr if and only if it is an essential
extension in R-mod. If I is any essential left ideal in R then the left
ideal I™ generated by the components of highest degree appearing in the
decompositions of elements of I is essential as a graded left ideal of R.
Therefore I™ is then also essential as a leftideal. Ifr = r; + ..4r; € R,
say i3 > ... > i where i; = degr;;, then I7 = 0 entails I™r;, = 0 and
then it follows from the foregoing remarks that r;, € ¢,(R). Repeating
this argument finally leads to the conclusion that #,(R) is a graded (left)
ideal. Write J = t,(R). From the ascending chain of left annihilators :
I(J) C I(J") C ..., we derive that I[(J") = [(J**) = ..., for some
n € IN. If J®t! #£ 0 then there is an homogeneous a in R such that a
J™ # 0 and we may assume that a is chosen such that I(a) is maximal
with respect to the forementioned property. Let b be an homogeneous
element of J, then I(b)N Ra # 0 since [(b) is an essential left ideal of R.
Consequently we may select an homogeneous ¢ in R such that ca # 0
but cab = 0. Since I(a) g I(ab), the maximality hypothesis entails that
abJ™ == 0. Since J is generated by its homogeneous elements it follows
that aJ™t! = 0, i.e. ¢ € [(J™!) = [(J*) a contradiction. Therefore
J7*! = ¢ follows. o

IL.1.2. Theorem. Let R be a semiprime ring graded by a finitely
generated ordered group then the following statements are equivalent :

1. R is a graded Goldie ring.
2. R is a Goldie ring.

Proof. The implication 2 = 1 is obvious.

1. = 2. The lemma entails that t,(R) = 0. If we can show that R has
finite Goldie dimension then the injective hull E(R) of R is semisimple,
hence R will then ulso satisfy the ascending chain condition for left
annihilators and the proof will be finished. By 1.. we know that R has
finite Goldie dimension in R-gr, the fact that G is finitely generated
allows us to derive that R has finite Goldie dimension in R-mod. o

# :
An obvious draw-back of the result mentioned in Theorem II.1.2. is
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that rings graded by finite groups are a priori excluded. It is there-
fore natural to look for mild conditions on the gradation ensuring the
existence of rings of homogeneous fractions even when we consider ar-
bitrary grading groups. The condition (E) we come up with is mild
enough so as to include all the particular examples we will study in this
and consequent chapters. In the sequel of this section we consider an
arbitrary group G with unit element e and a graded ring K = @®,cq Ro
of type G. We say that R has property (E) if each nonzero graded left
ideal of R intersects R, in a nontrivial way, or equivalently, if for every
nonzero r, € R, we have that R,-17, # 0. In case R, is semiprime,
this condition is left-right symmetric i.e. for r, # 0 in R, we have
R,_1r, # 0if and only if r, R, -1 # 0. It is easily verified that a graded
Goldie ring of type G satisfying (F) has a Goldie ring R, as its part
of degree e. Up to assuming that property (E) holds; we therefore
have reduced the problems concerning graded Goldie rings to problems

concerning graded rings over Goldie rings.

I1.1.3. Lemma. Let R be a graded ring of type G such that property
(E); holds then the following properties hold too :

1. R, has finite (left) Goldie dimension if and only if R has finite (left)
graded Goldie dimension.

2. A graded left ideal L of R is (graded) essential in R if and only if
L N R, is essential as a left ideal of R..

Proof. An easy consequence of property (E). o

I1.1.4. Proposition. Let R be a graded ring of type G such that R
satisfies (E) and R, is a semiprime (left) Goldie ring, then the following
properties hold :

1. The set § = {s € R, s is regular and homogeneous ‘R} is a multi-
plicative (left) Ore set of R.

2. The multiplicative set S, = {s € Re, s is regular in R.} is a regular
(left) Ore set of R and the (left) ring of fractions ST R is also a (left),
ring of fractions of R with respect to S..

3. The ring S™'R is graded of type G and it satisfies (E) Moreover,
S—1R is a (left) gr-semisimple ring such that (S™1R), = S, 'R,.
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Proof 1. Pick s € S and suppose that L is a nonzero graded left ideal
of R such that Rs N L = 0. Then we obtain an infinite direct sum of

nonzero graded left ideals of R : LS Ls@ ... Ls" ®...,n € IN.

By the lemma this yields a contradiction, i.e. Rs is essential as a
graded left ideal of R. For » € R homogeneous one easily verifies that

(Rs : r) = {z € R,zr € Rs} is essential as a graded left ideal of R.

Again by the lemma (Rs : ) N R, is an essential left ideal of R. and
since R, is a semiprime Goldie ring there exists a regular element of R,
in (Rs : r)NR.. For an arbitrary y € R,say Yy = Yo, +...+Yo,, 05 € G,
i=1,...,n, there exist : ¢; € S, and zy € R such that t1y,, = 215,
ty € S, and z, € R such that £5(¢1y,,) = 223, and so on,... . Finally,
there exist ¢t € S, and = € R such that ty = zs. Furthermore if 7, is
nonzero in R, then R,-i1r, # 0 and r,R,-1 # 0, i.e. if an element

t € R, is regular in R, then it is also regular in R.

2. From the above proof it follows that S is a regular (left) Ore set.

of R. If s € 5 then there exist t € S, and 2 € R such that {1 = zs,
consequently, S™1 R is a leftring of fractions with respect to S,.

3. That S™!R satisfies (E) is readily verified and it is equaly obvious
that S~!R does not contain a proper essential graded left ideal. As in
the ungraded situation one now derives in a straightforward way that
S71R is (left) gr-semisimple i.e. ST1R is a finite direct sum of minimal
graded left ideals. o

Note that the hypothesis of Proposition I.1.4. does imply that R is a
left graded Goldie ring because the fact that S~ R is left gr-Noetherian
(cf [37]) implies that R satisfies the ascending chain condition on graded
left annihilators. An easy elaboration of the foregoing results leads to :

IL1.5. Proposition. Let R be a graded ring of type G such that
property (E) holds and suppose that R, is a prime left Goldie ring,
then the following properties hold :

1. SR has no nontrivial graded ideals.

2. f R,r, =0 with r, € R, then either B, =0 or 7, =0
3. G' = {0 € G, R, # 0} is a subgroup of G. Since ($~1R). is simple
Artinian we obtain that (S~'R),-1(S!R), = (S~!R). if Ry # 0,
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hence S™! R is strongly graded by G'. In this situation S~ R is even a
crossed product (cf. [35]).

Recall that R is said to be strongly graded by G if R,T; = R,, holds
for all o, 7 € G.

In the sequel of this section we consider the following situation : Ris a
graded ring of type G such that S is a left Ore set of Rand S™'R = Q¢
is a gr-simple gr-Artinian ring (in particular: R is a gr-prime left graded
Goldie ring). This assumption has the advantage that we do not only
cover the case of graded rings with property (E) over prime left Goldie
rings but also all positively Z-graded prime left graded Goldie rings
are included . The structure of Q9 is given by Theorem 1.5.8. in [37]
i.e. there exists a gr-division ring D of type G (i.e. all homogeneopus
elements are invertible) together with an element A = (Ay,...,,) € G™
such that Q9 = M, (D)(A) as graded rings, the gradation of M,(D)(})
is defined by (a;;) € (Mn(D)(A))o if and only if a;; € D, ,5-1. Since
D, is a division algebra (skewfield), D is a crossed product of D, and
G' ={0r € G,D, # 0}.

I1.1.6. Proposition. Let D be a gr-division ring of type G.

1. If G = Z then D is a left and right principal ideal domain.

2. If G is poly-infinite-cyclic then D is a Noetherian domain.

3. If G is torsion-free abelian then D is an Ore domain. '

4. If G is finite then D is an Artinian ring,

5. If G is polycyclic-by-finite then D is Noetherian and it has an Ar-
tinian classical ring of fractions. '

Proof. We may assume that D is nontrivially graded.

1. If G = Z then D = Do[X,X™?,p] where X is an indeterminate,
@ € Aut(Dy) and Xa = ¢(a)X for all a € Dy, cf. [37]

2. Obviously G? is again poly-infinite-cyclic, hence there exists a finite
series {e} = G} C G} C ... C GL = G? of subgroups vsuch' that each
Gi_, is normal in G} and G}/Gj}_, is infinite cyclic for each i. If
n = 1 then the statement holds, so we proceed by induction on n. Put
H = G}_,; then D is strongly graded by G'/H = Z over the subring

n—1

DE) = @ D,. Now, by induction, D) is a Noetherian domain.
c€H )
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From [37] p. 88, Lemma II.3.7., it follows that D is Noetherian. Since
G*/H is ordered, D is also a domain. '

3. Since G is an ordered group the fact that D does not contain homo-
geneous zero-divisors implies that it is a domain. Pick nonzero a and b
inD,a=ay, +...+ @y, and b =b, +...+ b, say. The subgroup H
of G generated by o1,...,04,71,...,Tm is torsion-free abelian, hence
H = Z* for some k € IN. The subring D of D is again a gr-division
ring, hence it follows (see 2.) that DD is a Noetherian domain and
consequently D) is an Ore domain. Thus @ and b satisfy the Ore
condition in DD hence in D.

4. Corollary I1.3.3. in [37].

5. Obviously G! is again polycyclic-by-finite. Therefore there exists
a poly-infinite-cyclic normal subgroup H of G' such that [G! : H] is

finite. By 2 the subring D(H) = @H D, of D is a Noetherian domain
oc )
and as such it has a classical ring of fractions X which is a division ring.

Now D is strongly graded by G'/H over the subring D), According
to Proposition IL1.4. the set T = D) — {0} is a regular Ore set of D
and T~!D = DT~ is strongly graded by G*/H over the division ring
K = T7*D®, Since G!/H is a finite group it follows that T-1D is
an Artinian ring (cf. 4.) hence it is a classical ring of fractions of D.
Moreover, D is a Neoetherian ring, cf. [37] p. 86. o

I1.1.7. Corollary. Let R be a graded ring of type G possessing a
graded left ring of fractions @9 whichis a gr-simple gr-Artinian ring (e.g.
R satisfies (E) and R, is a prime left Goldie ring) then the following
properties hold : ,

1. If G is poly-infinite-cyclic or torsion-free abelian then R is a prime
left Goldie ring.

2. If G is poly-cyclic-by-finite then R has an Artinian classical left ring
of fractions, hence R is a left Goldie ring. :

Proof. We have that Q¢ = M,(D) for some gr-division ring D (the iso-
morphism is only considered here as an isomorphism of ungraded rings).
Clearly M,,(Qci(D)) is an Artinian classical (left) ring of fractions for
QY thus it is a (left) ring of fractions of R. o

Even if a prime graded (left) Goldie ring is also a (left) Goldie ring
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in the ungraded sense it need not have a graded ring of homogeneous
fractions (in the absence of property (E)). If we are contented to obtain
a nice graded localization that is not necessary a ring of (homogeneous)
fractions in the classical sense then general graded Goldie rings do in-
deed allow such a localization. We write E9(R) for the injective hull of
R (up to graded isomorphism) in R-gr.

I1.1.8. Proposition. Let R be a prime graded Goldie ring then E9(R)
is a gr-simple gr-Artinian ring such that the canonical ring morphism
R — E9(R) is a left flat ring epimorphism.

Proof. In view of Theorem IL.1.2., the injective hull E(R) of R in
R-mod is a simple Artinian ring and it is clear that this entails that
E9(R) is a Goldie ring. The gr-injectivity of E9(R) entails that it
is a graded Von Neumann regular ring in the sense of [55]. As in
the ungraded case one may deduce from this that F9(R) is indeed gr-
simple gr-Artinian. Since EY(R) is the localization of R at a graded
torsion theory (associated to the filter of essential graded left ideals of
R) it follows that this localization is perfect (since essential graded left
ideals extend to EY(R) by localizing). Then the final statement is a

consequence of the properties of perfect localizations. o
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I1.2. Divisorially Graded Rings and Generalized Rees Rings.

The concepts of divisorially graded rings and generalized Rees rings
have been introduced by F. Van Oystaeyen first in the commutative
situation, then extended to the case of rings satisfying polynomial iden-
tities, cf. L. Le Bruyn, F. Van Oystaeyen [30], and then to more gen-
eral noncommutative rings cf. H. Marﬁbayashi[l%l], C. Nastasescu, E.
Nauwelaerts, F. Van Oystaeyen [35]. We start here from the most gen-
eral definition of a divisorially graded ring given by H. Marubayashi in
[31]. "

Let R be a graded ring of type G such that R, is a prime Goldie ring
with classical ring of fractions Q.i(R.) = @, and let E, = E(Q./R.) be
the injective hull of the left R.-module Q./R.. Consider the idempotent
kernel functor £ on R.-mod with Gabriel filter £(x) = {H left ideal of
R.,Homg, (R./H, E.) = 0}; in other words, H € L(«) if and only if for
r € R, g € Q. such that (H : r)qg C R, we have that ¢ € R.. For an
M € R.-mod we write Q.(M) for the module of quotients of M with
respect to k, and we let j. : M — Q.(M) be the canonical localization
morphism. In a left-right symmetric way one obtains the idempotent
kernel functor «' on the right R.-module category mod-R, which is
then associated to the injective hull of Q./R,. as a right R.-module etc
; . Since R, is a prime Goldie ring, x(R.) = 0 and Q.(R.) = R.
 and similar statements hold for «'. For a left ideal L of R, we define
the k-closure of L as cl(L) = {# € R.,Hz C L for some H € L(x)}
and we say that L is k-closed if and only if L = cl(L). Actually, since
Q«(R.) = R, it is not difficult to verify that cl(L) & Q.(L) as a left
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R.-module.
We say that R is divisorially graded if the following properties hold :

1. Ris x- and x'-torsion free,

2. For all 0,7 € G, Qu(RoR.) = Ryr = Qu(RsR,). Note that the
latter condition implies Q. (R,) = Qu(R,) for all & € G; moreover,
for each o € G we have that Qx(RoR,-1) = Qo(R,-1R;) = R,, hence
R,R,-1 and R,-1R, are both in £(x) (and in £(x')).

It is clear that a divisorially graded ring R of type G satisfies (E), so by
the results of Section IL.1., S, = {s € R,, s is regular in R.} is a regular
left and right Ore set of R. The left ring of fractions with respect to
Se is isomorphic to the right ring of fractions and it will be denoted
by Q9. Since no R, is zero it follows that Q9 is strongly graded by
G and (Q9)e = Qu(Re) = Q.. If H € L(x) then H is an essential
left ideal of R, and hence H N S, # because R, is a prime Goldie
ring. Consequently, Q9 is k-torsion free and Q.(Q9) = Q9. Similarly,
we derive that Qn/(Qg ) = Q9. From the foregoing remarks one easily
deduces that :

Q«(Rs;) ={q€(Q%)s,Hq C R, for some H € L(k)}
Q«(R) ={q € Q% Hq C for some H € L(x)}

and from Q.(R,) = R, it then follows that Q,(R) = R. Simjlé,r
properties hold with respect to «'.

I1.2.1. Example. If R is a strongly graded ring of type G then R is
automatically divisorially graded if R, is a prime Goldie ring. To prove
this claim it will be sufficient to show that Q.(R,) = R, = Qu(Rs)
for all o € G. Since R is strongly graded property (E) holds and thus
we may apply the preceding remarks. If ¢ € Q.(R,) then Hq C R, for
some H € L(x) and thus HgR,-1 C R.. But then gR,-1: C (Q9)e = Q.
and H(gR,-1) C R, imply that ¢R,-: C Re, hence gR,-1R, C R, or
q € R,.

Let us now investigate somewhat closer the notion of a strongly graded
ring; we restrict to the bare necessities and refer to C. Nistédsescu, F.
Van Oystaeyen [36], [37] for full detail on the basic theory.
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Let R be strongly graded by a group G. From R,R,-1 = R, it is eas-
ily deduced that R, is a finitely generated left (and right) projective
R.-module and then R, = Ry;R,-1 =2 R, Qg  R,-1 forall o € G. It
follows that R, for all o € G, is an invertible R,-bimodule and hence
its isomorphism class (of R.-bimodules),. [R,] say, determines an ele-
ment of the Picard group Pic(R,.). The Picard group of a noncommu-
tative ring consists of the isomorphism classes of invertible bimodules
equipped with the group operation induced by the tensorproduct. The
fundamental theory of the Picard group of a noncommutative ring, in
particular of an order, is well established by A. Fréhlich in [21]. Giving a

strongly graded ring R over R, of type G comes down to giving a group.

morphism & : G — Pic(R,.),o > [R,] and to define multiplication in
®occ R, by a set of R.-bimodule isomorphisms f, - R ® R, — R,

for all 0,7 € G satisfying the associativity conditions expressed by .the
commutativity of the following diagram for o, 7,y € G :

Ro» ®& ® -R'y i Ror ®Re
R, R

fo' ‘r® b1
Io- ® fr,’yJ( Jfo'r,»y
Ra R-r Ra'-r

The family {fs,,0,7 € G} is called a factor system describing the
gradation of R. '

IL.2.2. Proposition. Let A be any ring with centre Z(4) =
1. There is a canonical group morphism, ¢ : Pic(4) — Aut(Z(4)).
2. The following sequence of groups is exact :

0 — Inn(A) — Aut(A4) — Pic(4).

Proof. Well-known, cf. [21] or [37]. Let us just indicate how the
maps are defined. If [P] € Pic(A) then we have that End4(Ps) & A,
Endg(4P) = A° and Endag-4(P) = Z(4) = C. So, if ¢ € C then
there is a uniquely determined element of C; ¢ p(c) say, such that Pc =
©p(c)P holds elementwise. The map ¢ is then defined by ¢([P]) =
op. Ha e Aut(A) then we write 4, for the A-bimodule obtained
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by considering the left A-module structure of A induced by the ring
structure but for the right A-module structure we use z.a = za(a) i.e.
we “twist” by the automorphism « on the right. Clearly ; 4, =; A; as
A-bimodules if and only if o is an inner automorphism. o

Applying the foregoing result to the situation where R is a strongly
graded ring of type G we obtain group morphism :

G . Pic(R.) - Aut(Z(R.)),

and the composition ¢ 0 ® defines an action of G on Z(R.) (this action
need not be extendable to the whole of R, in general !). Since property
(E) holds we may apply Proposition I1.1.5. to conclude that Q9 = S;'R
is strongly graded of type G over (Q9)e = S;'R. = Qua(R.) = Q.,
when R, is a prime Goldie ring. Since (Q9). is a simple Artinian
ring Q9 is a crossed product Q. * G = a?G Qe Uy, With u,q = ¢¥ u,,
UeUr = ¢(0,T)Ugr for all o, 7 € G (where ¢, is determined by {(Q9).] =
[1(Qe)y, ] for some ¢, € Aut(Qe) and ¢ : Gx G — U(Z(Q.)) is some 2-
cocycle). The subring R of Q9 may thus be written as R = @®ocq Iouo
where I, is an invertible R.-bimodule in Q. for each o, satisfying I, I, =

I,.. With these notations we have the following :

I1.2.3. Definition. A strongly graded ring of type G such that
R, is a prime Goldie ring is said to be a generalized Rees ring if
©o(Re) C Re for all o € G i.e. ¢,|R. € Aut(R,) for all o € G. Since
the properties of @9 mentioned above remain true even if R is. only
divisorially graded, we will also use the term generalized Rees
ring in the divisorially graded case. If R. is a semiprime (not
necessarily prime) Goldie ring then Q. will be a semisimple algebra
and the Q9 need not be a crossed product of the form Q. * G (cf. the
counter example given'by C. Nastasescu, F. Van Oystaeyen in [37])
but then we define (the most general) a generalized Rees ring to be a
strongly or divisorially graded subring R of type G in Q. * G such that
Q9(R) = Q. * G and ¢, |R, € Aut(R.) for each o, (¢, € Aut(Q.)).
Let us round off this section by giving some specific results for strongly
graded rings of type Z over prime Goldie rings.

I1.2.4. Proposition. Let R be strongly graded of type Z.
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1. If P is a (semi) prime ideal of Ry such that R then RP is an ideal
of RP is a (semi prime ideal.

2. Suppose that R, satisfies the ascending chain condition on ideals.
If P is a semiprime ideal of R then P N Ry is a semiprime ideal of R,.
If P is a prime ideal of R then PN Ry is of the form M N Ry MR_; N
..NREMR_;,k € N, for some prime ideal M of R, minimal amongst
prime ideals containing M N Ry. k h

Proof. 1. Easy.

2. There is a bijective correspondence between prime ideals of R,
containing I and prime ideals containing R,IR., given by M —
R,MR.,. Therefore if rad(I) = NM; than rad(R,IR_,) equals
NR,M;R_,. Now, R_,(N RnMiR~n)an CNM; yieldsN R,M;R._,, C
;Zn(ﬂ M;)R_,, hence N Iz%nMiR_n = Rn(r; M)R_,. zConsequen‘cly
radv(}inIR_n) = Rnraczl(I)R._n for all n. For all n we also have :
R.(PN Ry) = PN R, = (PN Ry)R,,. Hence, Ryrad(P N Ry)R_,, =
rad(P N Ry) and Rrad(P N Ry) = rad(P N Ry)R. The ascending chain
condition on ideals of Ry entails that (rad(PNRy))™ C PN Ry for some
m € IN. Hence, we obtain that (Rrad(P N Ry))™ C R(PNRy) C P or
Rrad(PNRy) C P and alsorad(PNRy) = PNR,. By the remark above
we then obtain : PN Ry = N(N R, M;R_,,), where the M; are minimal
amongst the prime ideals o;' }30 containing P N Ry, and the intersec-
tion over the ¢ may be taken to be finite. Now, for each i we see that
R(Q R, M;R_,) = (Q R,M;R_,)R. So if P is a prime ideal of R then
it follows that R(Q R.M;R_,) C P (because ?R(Q R,M;R_,) C P!)
and hence PN Ry = QR,,MI R_, and the intersection is finite. @~ o

I1.2.5. Remarks. 1. It is clear that the restriction to G = Z is not
really necessary in the foregoing proposition.

2. If P is a (semi) prime ideal of R such that P N Ro'; 0 then R is a
(semi) prime ring (here “@ is ordered” is a necessary assumption).

‘Indeed, if P, is the graded ideal generated by the homogeneous elements

of P then P, is a (semi) prime ideal of R since G is ordered; from
Py = §(Pg NRy) C R(PN Ry) it follows that Py, = 0; hence R is (semi)

prime.
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I1.2.6. Proposition. Let R be strongly graded of type Z over a
prime left Goldie ring Rp.

1. If I is an ideal of R such that R/I satisfies the ascending chain
condition on left annihilators then Q97 is an ideal of Q9.

2. If Ry is a Goldie ring (i.e. left and right) then Q91 is an ideal of Q¢
for each ideal I of R.

Proof. It is clear that @91 # Q9 if and only if I does not contain a

regular element of degree zero.

1. Let Sy be the set of regular elements in Ry, then its image S, in R/T
is a left Ore set and therefore Sy is left reversible in R/I. For r € R,
s € Sy such that rs € I we obtain s'r € I for some s' € Sy. Ha € I,
s € Sy then there exist r € R,t € Sy such that ta = rs; but nowrs € I
implies s'r € I for some s' € Sy, hence s'ta = s'rs with s't € Sy and
s'r € I. Consequently I1Q9 C Q91 follows.

2. By Proposition I1.1.6., Q¢ is a prime left and right principal ideal
ring and thus QIQ¢ = Q% = aQ?9. We claim that ¢ be chosen in
I. Indeed, since Ry is a left and right Goldie ring there exist s, € Sp
such that ast € I. Now, Q9sat = QYat = A9aQ9 = @Q9a and similarly
sat@9 = a@9. Obviously Q9I = IQ9 follows. o

I1.2.7. Proposition. Let R be strongly graded of type Z such that
Ry is a prime left Goldie ring. ‘

1. If P is a prime ideal of R such that PN Ry = 0 and R/P is a left
Goldie ring then QPN R = P.

2. Suppose for each prime ideal P of R with PN Ry = 0 that R/P
is a left Goldie ring. Then there is a bijective correspondence between
prime ideals of R lying over zero in Ry and proper prime ideals of Q‘g.‘
Moreover each such prime ideal P has h#(P) < 1.

Proof. 1. Theideal I = Q9PN R-contains P. If I/P # 0 then it has to
contain a regular element @ of the prime left Goldie ring B/ P. Choose
a representative a € I for @; for this a there exists an s € Sy such that
sa € P, but then s € P leads to a contradiction. Consequently I/P=0
or I =P,

2. If P is a prime ideal of R such that PN Ry = 0 then Q9P is a proper
prime ideal of Q¢ because Q9P N R = P (see 1.). On the other hand,
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if M is a proper prime ideal of Q9 and M % 0, then M N R C P for
some ideal P of R which is maximal with respect to the property of
lying over zero in Ry. It is clear that P is a prime ideal of R. Now,
M = QI(MNR) C QIP. Since @ is a left and right principal ideal ring,
M = Q9P follows and M N R = QIPN R = P. For the final statement
consider a prime ideal P' # 0 of R,P' C P. From P'N Ry = 0 it follows
that Q9P' C Q9P are prime ideals of the prime left and right principal
ideal ring @9, hence Q9P' = Q9P and P' = P follows. : o

IL.2.8. Proposition. Let R be strongly graded of type Z over the
prime left Goldie ring Ry. Assume that for all prime ideals P of R
such that P N Ry = 0 the ring R/P is a left Goldie ring. Then for
each prime ideal P of R lying over zero in R, we have that C(P)
(the multiplicative set associated to P) is a regular left Ore set of R
containing So. Moreover, R C Qp(R) = Qu(Q?) where M = Q9P
and Qp(R) is the ring of fractions of R at C(P), the latter ring is a
bounded prime left and right principal ideal ring with unique maximal

ideal Qp(R)P.

Proof. First, if rs € P for some s € Sy, 7 € R, then there is an ' € So
such that s'r € P, hence r € P and thus Sy C C(P). We now divide
the proof in three steps.

1. C(P) C C(QIP) Take ¢ € C(P) and let ¢ € Q9 be such that
gc € Q9P. Write ¢ = s~ r for certain s € Sy, r € R. Then gc € Q9P
yields r¢c € QPN R = P, hence r € P and ¢ € Q9P follows. This
states that ¢ € C(QYP).

2. If s~'c € C(Q9P) with s € Sp, ¢ € R, then ¢ € C(P).

Indeed, if r¢ € P for some 7 € R then rss~'c € Q9P yields rs € QIP
andr € @PNnR=P.

3. C(M) is a regular left and right Ore set of Q9.

Obvious because Q7 is a prime left and right principal ideal ring.

4. Qn(Q7) is the left ring of fractions of R with respect to C(P).
Clearly, R C Qm(Q?9). If ¢ € C(P) then ¢ € C(M) and hence c is

invertible in @ar(Q7). On the other hand for any g € Qu(Q9) we write

g =u" v for some u € C(M), v € Q¢ and u = s71¢, v = s~ 1r for some
s € So,c,rinR. From u € C(M) it follows that ¢ € C(P) (see 2.) and
thus c”is invertible in Qr(Q9). This yields ¢ = (s~¢)~1s~1r = ¢~ 1p
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and thus it follows that Qa7(Q?) = Q@p(R) and C(P) is a regular left
Ore set of R. o

In concluding this section let us point out that the assumption : “R/P
is a left Goldie ring for each prime ideal P of R such that P N Ry = 0”
is trivially satisfied in the case where R is a left Noetherian ring or a
ring, satisfying polynomial identities, hence from our point of view this

condition is a very mild one.
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IL.3. Graded Rings Satisfying Polynomial Identities.

For the general theory of rings satisfying polynomial identities (termed
P.L rings in this work) we refer to the books by C. Procesi and L.
Rowen resp [42] and [48]. The study of a gradation of type Z, or
more general groups like polycyclic-by-finite groups, is a very natural
idea. Indeed, the ring of generic n X n matrices as well as its trace
ring is a positively graded ring. The consideration of P.I. rings graded
by a group G presents in some sense a reversion (of a generalization)
of the problem of determining which group rings satisfy polynomial
identities, cf. D. Passman [41]. Both the gradations of type Z and
the more general ones of type G will play an effective part in further
chapters of this book. We say that G is a pi-group if kG satisfies some
polynomial identities for some commutative ring k.

I1.3.1. Proposition. (D. Passman) Let K be a field and suppose that
K@ satisfies a proper polynomial identity of degree n. If A(G) denotes
the “finite conjugation” subgroup of G, i.e. g € A(G) whenever the
centralizer Cg(g) of g in G has finite index in G, then [G: A(G)] < %
and [A(G)'| < oo. ‘

~ Proof. cf. [41] Theorem 2.14. o

If in the foregoing proposition KG is a prime ring then A(G) is a
torsign-free abelian group. In general for any finitely generated sub-
group H of A(G) in the pi-group G we have : [H : Z(H)] < o0, |H'| <
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0, [G : Cq(H)] < oo and H/Hiys is a free abelian group. So if G
itself is a finitely generated pi-group then it contains a normal abelian
subgroup of finite index; the same is true for a general pi-group if
char(K) = 0. It is the latter result we aim to extend to the graded
situation. First note that we may take K to be a commutative ring
in Proposition I1.3.1.; actually, using A. Regev’s result on the tensor
product of P.I. rings being again a PI ring, it is possible to prove that
over a semiprime P.I. ring K, K G satisfies polynomial identities only if
[G : A(GQ)] < o0 and |A(G)]' < oo.

IL.3.2. Theorem (F. Van Oystaeyen). Let R be a G-graded ring
over the semiprime Goldie ring R, of characteristic zero such that prop-
erty (E) holds. Assume that there is a subgroup G(R) of finite index
in G and consisting of o € G with R, # 0. If R is a P.L. ring then G
contains a normal abelian subgroup of finite index; in particular if G is
finitely generated then G is polycyclic-by-finite and |G'| < co.

Proof. Up to reducing to R(G(R) = ®oca(r)Ho if necessary, we may
assume that G = G(R). At this point let us point out that some
conditions like R, 5 0 for almost all ¢ € G are unavoidable if one aims
to relate properties of G to the structure of R and vice-versa.

Without a condition like this we may consider R as an H x G-graded
ring by putting Ry = O for all » € H. The fact that H is completely
arbitrary makes it completely clear that it would be impossible to obtain
any decent result about the structure of G in the absence of the imposed
condition (which most people would agree to call : not restrictive at
all). From the foregoing section we know that Q9 = S~'R is a gr-
simple gr-Artinian P.I ring with Q. = S;' R, being Artinian and with
Q7 # 0 for all o € G. Decompose Q. as L; & ... ® L, where each L;
is a minimal left ideal of Q.. From condition (F) it follows that Q9L;

- is a minimal graded left ideal of Q¢ and also that Q9L; N QYL; = 0

ifi#j,ie QY=QIL ®...0QL,. Let Q; be the gr-simple gr-
Artinian components of Q9 (i.e. the minimal graded ideals obtained by
grouping together the suitable Q9L;) and we write Q9 = Q1 ®...® Q.
Because each @;,2 = 1,...,1, is a graded ideal of Q)9 we obtain for each
0 € G that Q2 =(Q1)o ® ... (Qt)s, hence for every o € G there is a
i(o) € {1,...,t} such that (Q,)) # 0. The graded version of the Artin-
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Wedderburn theorem as stated in [37] yields that Q; & M, (D;)(¢?) for
all ¢ = 1,...,t, where D; is a gr-division ring and'¢ € G* determines
the gradation of Q; (as explained just before Proposition I1.1.6.). For
each D; we let G; = G(D;) be the subgroup of @ consisting of all
o € G such that (D;), # 0 (this is indeed a subgroup !). If § € G is
such that (@;)s # 0 then some entry in (Mni(Di)(g;"))& is nonzero, i.e.
o46(o%)= € G; for certain A, p. :
Consequently (Q;)s # 0 implies that § € (¢)"*Gio,. Now we look
at the finite set of subgroups of G, {Gi,(0%) 1Gic%,i = 1,...,%,2
=1,...n;}. Since for every § € G some (Q;)s # 0 it follows that G is
a finite union of right cosets of the forementioned groups, i.e.

RACTACIRCER IS

A result of B. Neumann, cf. [39], yields that at least one of the groups
considered must have finite index in G. But if some (0%)7*G;0% has
finite index in G then so has G; so we may assume that G; has finite
index in @, and we have reduced the proof of the theorem to the case
of a gr-division ring strongly graded by G, i.e. G = G;, R = D; and
R = R, *G is a crossed product, where G acts on Z(R.) via the group
morphism ¢ : G - Aut(Z(R.)) deriving from the strong gradation on
R. We claim that [Z(R.) : Z(R.)®] < co. Suppose this were not true.
We first show that Z(R.) and Z(R) are linearly disjoint over Z(R,)%,
ie. Z(R.)Z(R) = Z(R, ) ® Z(R) Consider Z(R.)® —mdependent

Z1,...,2m € Z(R,) and suppose that they are linearly dependent over
Z(R), say :
ziyi+ ...t ZmYm =0 . (*)

with y; € Z(R). Write y; = ), (¥i)o, 2 = 1,...,m. Since the z; are of
c€eG ) .

degree ¢ it follows that :

ml(yl)a +...+ xm(ym)o‘ = 0 (**)

for each o. Since y; € Z(R), 2,y; = yiz, for all 2, € R,,7 € G,

2r(Yi)o = (Yi)yzr for some 7. It is clear that v = To7~'. Then if
(vi)o Zé 0 then z-(y;)s # 0 and thus (¥;)rer~1 # 0. It follows that we
may assume that in the relation (*) the y; are such that the degrees
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appearing in their homogeneous decomposition are exactly the finitely
many (!) conjugates {ror~!, 7 € G}. From (**) we then derive for all
0 €G: z21(y1)o(ym)st + ... + Zm = 0, and after summation over the

conjugation class C(¢) of a fixed o we obtain the relation :

Z (y1)7 ym +1’2 E ('yZ)v(ym);l"i'

wGO(a)_ ~EC(0)

ot de, =0 ()

where d is the number of conjugates of o, i.e. d =[G : Cg(o)]. Since
d # 0 and because charR, = 0, the foregoing relation is not trivial.

For any 7 € G, zr € R, we calculate :

z‘r(yi)a(ym)gl = (ui)rar"izr(ym)gl
zr(ym)a = (ym)rar—l,zr or (ym)'ror-1z'r =Zr = Z‘T(ym);l

Consequently we obtain the following relations.

z‘T(yi)G(ym);l = (yi)-ra'-r—l (y‘m).::,-—l Zr

z"’( Z (y%)ﬁ(ym)';l) ( Z (yi)r'yr—1(ym):,¢,.—1) Zr

YEC(o) v€C(o)

= ( > (yi)v(ym)il) zr
¥€C(o) »

The coefficients in ( * ) are therefore in Z(R)N R, = Z (R )¢, contra,-
dicting the assumption on @y,...,%x.

So Z(R.)Z(R) is a free Z (R)—module of infinite rank. Since this leads
to the existence of a free Q(Z(R))-module in the central simple alge-
bra Q(R) = Q(Z(R))Q®zr) R it yields a contradiction. Consequently
Z(R.) is a Galois extension of Z(R. )¢ with Galois group Im¢ whichisa
finite group. Crossed products of Z(R.) and G with G-action on Z(R.)
given by ¢ and two-cocycle ¢ : G X G — U(Z(R,)) will be denoted by
(Z(R.),G,¢p,c). Since R = R, %G isa P.I. ring Z(R.) * G is a P.L. ring
too. Now if 4 = (Z(R.),G,¢,c) and B = (Z(R.),G,p,c') then we
claim that A ® z(gr,)e B contains the Z(R.)C-algebra (Z(R.), G, p,cc')
as a subring. Actually, the proof of this claim is the same as the proof of
the product theorem for 2-cocycles in Galois cohomology cf. Pierce [] p.
258, up to verifying that the finiteness of G assumed in loc. cit. is not
neccessary as long as Im ¢, i.e. Z(R,) over Z(R.)%, is finite. Applying
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this general argument to (Z(R.), G, ¢,¢) ® z(r,)c (Z(R.), G,go,c)o =9
we see that S is a P.I. ring by A. Regev’s result and S contains
(Z(R.),G,p,1) as a subring. It follows that the latter ring as well
as the subring Z(R.)®G is a P.I ring. Since char(Z(R,)¢) = 0, D.
Passman’s result entails that G' contains a normal abelian subgroup of
finite index. If G is finitely generated then so is the normal abelian sub-
group contained in it, hence G will be polycyclic-by-finite, also |G'| <
follows from |A(G)' < oo where A(G) has finite index in G. o

I1.3.3. Remark. If char(R) # 0 in the foregoing theorem then the
proof breaks down at the point where one has to establish that for
a gr-division ring D which satisfies polynomial identities and which
is strongly graded by G, i.e. D = D, x G the extension of fields
Z(D.)/Z(D.)C is finite. Now it is easy to see that Im¢ is a torsion
group (¢ : G — Aut(Z(De))) and its exponent is bounded by the
pi-degree of D. So if G is finitely generated then the cases where the
Burnside problem may be answered in the affirmative for torsion groups
of bounded exponent (e.g. groups which may be embedded in some ma-
trix ring) allow to establish Theorem I1.3.2. even if char(R.) is nonzero.

The existence of a multilinear central polynomial for (certain) P.I. rings
provides very elementary proofs for the following results.

I1.3.4. Proposition. 1. Let R be a P.I ring graded by an abelian
torsion-free group G' and assume that R satisfies the identities of n X n
matrices. A prime ideal P of R will have pi-degree n if and only if P,
has pi-degree n; consequently the radical of the Formanek centre of R
is a graded ideal.

2. Let R be graded by an arbitrary abelian group such that R satisfies
the identities of » X n-matrices. Suppose that every central homoge-
neous element of R is invertible, then R is an Azumaya algebra.

Proof. In both cases considered in the statement of the proposition

‘we know that R allows a multilinear central polynomial, f say, which

is not an identity for R (since we assume that R does not satisfy the
identities of n — 1 X n — 1 matrices, i.e. the n in the statement is
suppofed to be minimal as such). Since f is not an identity for R it
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cannot vanish at all the homogeneous substitutions for the variables
appearing in f (note that the fact that G is abelian entails that ho-
mogeneous substitutions by elements of R in f lead to homogeneous
values. If ¢ = f(A1,...,A,) # O for some homogeneous A; in R then
the assumptions in e yield that c¢ is invertible and hence the Formanek
centre (generated by all evaluations of central polynomials) of R equals
Z(R) and then R is an Azumaya algebra, cf. [42], what proves 2. The
ideal of Z(R) generated by all evaluations of f is a graded ideal (using
the fact that G is abelian). Since the hypothesis of 1 makes G into an
ordered group it is clear that P, is a prime ideal of R for any prime ideal
P of R. Consequently P will contain all evaluations of f if and only if
P, contains all these evaluations. The statement of 1. follows imme-
diately from this because a prime ideal of R can only have pi-degree n

when it does not contain the evaluations of F'. o

IL3.5. Proposition. If a prime P.I. ring R is graded by an abelian
group G then every graded ideal I of R contains nonzero homogeneous
elements in I N Z(R).

Proof. IN Z(R) is graded and I N Z(R) is nonzero by a theorem of L.
Rowen, cf. [42] or [48]. o

I1.3.8. Corollary. A P.I ring R graded by an abelian group G such
that R is gr-simple is an Azumaya algebra.

Proof. If ¢ € Z(R) is homogeneous then Rc = R because R is gr-
simple, i.e. ¢ is invertible and we may apply Proposition I1.3.4.(2) o

Some results in the same vein as the foregoing but for not necessarily
abelian groups will be included in Section IL.3. Let us conclude this
section by showing that Proposition II.1.8. may be strengthened as

follows :

I1.3.7. Proposition : Let R be a prime P.IL ring graded by an abelian
group then R has a graded ring of homogeneous fractions, Q¢ say, and
Q9 = E9(R) (as defined in Proposition I1.1.8.).

Proof. Let L be an essential graded left ideal of R. Since L is essential
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as a left ideal and R is prime P.I. it follows that L contains a nontrivial
ideal and thus L N Z(R) # 0. Since LN Z(R) is a graded ideal it
contains a nonzero homogeneous element which is regular since R is
prime. Consequently, if we put Q, = S, 'R where S. is the set of
regular homogeneous central elements then Q,L = Qj follows. For
z € E9(R) there exists an essential graded left ideal L of R such that
Lz C R hence QpLz C Qp and z € Q. It follows that E9(R) = Q4
is a ring of homogeneous fractions and we have even verified that it
suffices to invert central homogeneous elements in order to obtain it. o
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I1.4. Orders and Gradéd Orders.

The theory of orders and maximal orders is expounded in I. Reiner’s
book [44]; here we include only some perhaps less accessible facts about
tame orders, class groups and reflexive algebras. In this section we also
introduce graded orders and (gr-) maximal orders and some applications
of these concepts. The main results concerning the ungraded properties
of graded orders will be in Chapter III and further applications will ap-
pear frequently in Chapter IV. As a basic reference for maximal orders
over Krull domains the reader may use R.M. Fossum’s paper [20] and

for details on tame orders we may refer to L. Silver [49]. .

In this section R will be a Krull domain with field of fractions K and
A will be a central simple algebra over K. A ring R C A C A such
that KA = A and each element of A is integral over R will be said
to be an R-order of A. The reduced trace Tr : A . — K induces
t: A Homg(4,K),a— #(a)t(a)(b) = Tr(ab) forb € A,and tisa K-
vector space isomorphism. If a € A is integral over R then T'r(a) € R.
For a K-basis {aj,:..,a,} of A there are a},...,a}; € A such that
Tr(a}a;) = 6;; and we put F' = Ra; +...+ Ra,, F® = Raj +...+ Ra;,
then T restricts to an isomorphism ¢: F* — F* = [R: F].

I1.4.1. Proposition. 1. Consider R-orders A C I of A and suppo_se
that A contains a free R-module F, then F* D T.

2.‘ The R-orders of A are R-lattices in A.
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Proof. 1. It is clear that 'F C I'. Since T'r(I') C R it follows that
Tr(TF) C R hence ' C F°.

2. By definition, each R-order contains a free R-module, so by 1. A is
contained in a free R-lattice in A. o

Recall some facts about R-lattices. Consider a finite dimensional vector
space V over K. An R-submodule of V is said to be an R-lattice in V'
if it contains a K -basis for V and if it is contained in a finitely generated
R-submodule of V. Let us recall some of the operations on lattices that
are used most frequently (cf. R. Fossum [20], N. Bourbaki [9]).

Proposition. Let W,U,V.V4,...,V,, be finite dimensional vector
spaces over K.

1. If M and N are R-latticesin V thensoare M + N and M N N.

2. IfU CV and M is an R-lattice in V' then M N U is an R-lattice in
U. . ; :
3. Consider R-lattices My,...,M,, in V;,...,V,, resp. and let u :
Vi x...x Vp, — U be a multilinear form, then the R-module generated
by p,(Ml ...M,,) is an R-lattice in the subspace of U spanned by
(Vi x ... x Vi )

4. Let M be an R-lattice in V, N an R-lattice in W, and define
(N : M) = {a € Homg(V,W),a(M) C N}, then (N : M) is an
R-lattice in Homg(V, W) and (N : M) = Homp(M, N).

5. If S O R is a domain with field of fractions I and M is an R-lattice
in V then the image of S % Min L % V is an S-lattice.

If we identify V' and Homg (Homg(V, K), K) then M may be viewed
as an R-submodule of (R : (R : M)). Clearly, if M is a free R-lattice
then M = (R : (R: M)). In general (R: M) = (R: (R:(R: M))).
We say that an R-lattice M is divisorial if M = (R : (R: M)).

For an arbitrary torsion-free R-module M we say that M is divi-
sorially if in K%M we have that. M = n{M, = RP§M,p €
X'(R)}. The rank of M is the K-dimension of K ®M We define
(R: M) ={f¢€ HomR(K®M K),f(M) C R}, and we write M*
for Homgp(M, R). The canomca.l isomorphism K ®p M = (K @ M)**
allows#to view (R : (R : M)) as an R-submodule of K %M . 11} M is
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an R-lattice then (R : M) is isomorphic to M* and therefore M is
divisorial if and only if M = M™**, '

An R-order A is said to be a maximal R-order if it is not contained
properly in another R-order. Every R-order of A 'is contained in a
maximal R-order of 4, cf. [20] Theorem 1.4., p. 323.

I1.4.3. Proposition. An R-order A of A is a maximal R-order of A
if and only if the following properties hold : ‘

1. A is a divisorial R-lattice in A.

2. A is a maximal R,-order of A for each p € X'(R).

The so-called tame orders may be viewed as globalizations of hereditary
orders over discrete valuation rings. In L. Silver’s treatment of these
rings, cf. [49], the orders considered are by assumption finite modules
over their centres whereas in R.M. Fossum’s approach, cf. [20], this
is not necessarily the case. The following result of A. Braun, cf. [10],
relates both approaches.

I1.4.4. Proposition. If A is an R-order such that A is an affine P.L
algebra then A is a finitely generated R-module.

An R-order A is said to be a tame R-order if it is a divisorial R-lattice
such that A, is a hereditary R,-order for each p € X*(R). If A" is a
maximal R-order containing a tame order A then A}, = A, for almost
all p € X*(R). :

I1.4.5. Lemma. 1. Let E and F be finitely generated A-modules,
where A is an R-algebra and F' is reflexive as an R-module, then
Homy(E, F) is reflexive as an R-module.

2. If A is a reflexive R-algebra then a finitely generated reﬂexwe A-

module is also reflexive as an R-module.

Proof. 1. Homy(E,F) = Homy(E,F**) = Hompg(F* ?;E, R) by
Cartan-Eilenberg [13], I1.5.2.
2. Put F=Ainl. ' o

I1.4.6. Proposition. 1. If A is a tame order over the Krull domain
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R then every divisorial R-order containing A is again tame.
2. An ideal I of A is quasi-idempotent if I. = (I2)**. There is a canon-
ical one-to-one correspondence between divisorial R-orders containing

A and quasi-idempotent ideals of A.
Proof. Along the lines of L. Silver’s Theorem 1.8. in [49]. o

I1.4.7. Corollary. If A is a tame R-order‘then the number of divisorial
R-orders containing A is finite. For each p € X'(R) let e(p) be the
number of hereditary R -orders containing A,, then there are exactly

e =Y exi(r) ¢(P) tame orders containing A.

An Rlattice M in A which is a two-sided ideal A is called a divisor of
A'if M is a divisorial R-lattice and M, is an invertible Ap-modﬁle for
each p € X'(R). If E is a right ['-module, where T is some arbitrary
ring, then we define the (right) trace ideal {r(E) = ti(F) to be the
image of ¢, t : E%Homp(E,I‘r) — T, e® f — f(e). The left trace

ideal th(E) of a left I'-module is defined in a similar way. It is clear
that each of these trace ideals is an ideal (two-sided !).

I1.4.8. Proposition. Let A be a tame R-order in 4 and let M be
a two-sided A-module in A which is a divisorial R-lattice, then the

following statements are equivalent :

. M is a A-divisor.
Enda(Mya)=A

Lt (M) = A
(M) =A

. End(AM) = A

O‘bb&.Nl—l

Proof. It suffices to prove these equivalences locally at each p € X*(R)
i.e. for hereditary orders. Therefore the equivalences 2 & 3 & 4 & 5
follow from Proposition 2.1. in M. Harada’s paper [22].

‘Since M), is an invertible A ,-module for each p € X*(R), the equivalence
of 1. and 2. (or 5.) is evident. o

Let If{A) be the set of A-divisors, we derive :
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11.4.9. Theorem. 1. D(A) is an abelian group. In fact, D(A) is the
free abelian group generated by the ideals J(A,)NA, for all p € X(R),
where J(A,) is the Jacobson radical of A,,.

2. The A-divisor M is invertible if and only if MM ™! = A = M~ M.

3. If M and N are invertible divisors, then M~ and M *N = (M N i
are invertible. The invertible divisors form a subgroup of D(A).

Proof. 1. The product in D(A) is defined by M x N = (MN)** for
M,N € D(A). The proof is now completely similar to the proof of
Theorem 2.3. of L. Silver, [49].

2. cf. loc. cit. Proposition 3.1.

3. cf. loc. cit Proposition 3.2. a

I1.4.10. Proposition. Let R be a Krull domain with field of fractions
K, let A be a central simple algebra over K and let A;, A, be maxi-
mal R-orders in A. The conductor (A; : A2) induces an isomorphism
d(A2,A1) : D(Ay) — D(Az). If Az is another maximal R-order in 4
then we have : d(As, A3)d(Az, A1) = d(As,Aq).

Proof. The conductor (A; : A) is a divisorial R-lattice and it is also
a Ay — A;-bimodule. It is easily checked that ((A : Ag)(A; : A2))™ =
(A1 : Asg). Define d(Az, A1)(M) to be equal to ((Ag : Az)M(Az 2 Ag))™
for any M € D(A;). The statements of the proposition are easily
checked. o

I1.4.11. Proposition. Let A be a tame R-order in A and let Y C
X1(R) be some subset. If § = a R, thenT = Q A, is a tame S-order
PEY PEY

in A. Moreover if A is a maximal R-order then I' is 2 maximal S-order.

Proof. S is a Krull domain and I is a divisorial S-order. By localisa-
tion at each p € Y the result follows. : o

II.4.12. Corollary Let S be a multiplicatively closed subset of R,0 #
S.

If A is a tame (maximal) R-order then S™!A is a tame (maximal) S~1-
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order.

In general a maximal R-order A exists in A only when R is a completely
integrally closed domain and R will be a Krull domain when A satisfies
the ascending chain condition on reflexive ideal of A. In the literature
there exist several different types of non-commutative Krull rings, cf.
M. Chamarie [14], H. Marubayashi [31],..., but all of these notions co-
incide if one considers Krull rings satisfying polynomial identities. In
the latter case all the different types of Krul rings reduce to the notion
of a maximal order over a Krull domain in a central simple algebra.
In general a Noetherian maximal order A need not have a Noetherian
centre and it certainly needs not be a finitely generated module over its

centre. On the positive side we have :

I1.4.13. Proposition. Let A be a Noetherian maximal order in a
central simple algebra A of pi-degree n. If n is invertible in A then
Z(A) = R and A is a finitely generated R-module.

Proof. Since A is integral over R and R is completely integrally closed,
Tr(A) C R = Z(A) follows. If I is an ideal of Z(A) and z € AI N Z(A)
then Tr(z) € I and z = n"1Tx(z) € I follows, thus I = AI N Z(A). Tt
is now very easy to verify that Z(A) = R is a Noetherian ring. A well-
known result of G. Cauchon then entails that A is a finitely generated
R-module. o

I1.4.14. Lemma. Let A be a maximal order over the Krull domain
Rin A. Let p C g be prime ideals of R and assume that there exists a
prime ideal @ of A such that @ N R = g, then there is a prime ideal P
of A such that P C Q and PN R = p.

Proof. Let S be the multiplicatively closed subset of A generated by
R~—pand C(Q). Asin the commutative case one shows that ApNS =0,
Theorem 6 on p. 262 in [62]. Let P be an ideal of A containing Ap and
‘maximal such that it has no intersection with S. It is easy enough to
verify that P is a prime ideal of A such that PN R = p. o

IL4.5. Lemma. Let A be a maximal R-order and let P be a prime
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ideal of A.Then P is reflexive if and only if P has height one, or equiv-
alently if p= PN R € X(R). If this holds then P is the unique prime
ideal of A lying over p.

Proof. The first assertion is clear because here the terms “reflexive”
and “divisorial” have the same meaning (on R-lattices !). By the going-
down result in the foregoing lemma it follows that the extension R — A
satisfies P.D.E., i.e. hi(p) = 1. Since R, is a discrete valuation ring
and A, = R, % A has a unique maximal ideal R, % P, the final assertion

also follows immediately. ; o

I1.4.16. Proposition. Let A be a maximal R-order in 4 and let P
be a prime ideal of A, p = PN R; then: 1. Qp(A) = R, ®A where

Qp(A) is the localization of A at the m-set A — P. Note that QP(M)
may well be different of R, ® M for left A-modules M # A.

2. The left and right Ore condltlons with respect to C(P) hold if and
only if P is the unique prime ideal over p.

Proof. 1. That A, C Qp(A) is clear. Conversely, let z € Qp(A);then
AzA is a (fractional) A-ideal and so there exists a left A-ideal I of finite
type such that I C AzA and I™! = (AzA)~'. Therefore Iz C A for
some z € C(P) and hence there is an ideal J of A such that J ¢ P

and zJ C A. In D(A) we write J** = H P(m‘) where the P; are

reflexive rime ideals and (m;) denotes the m,-fold product in D(A). If
J*NR C pthen P,NR C pforsome: € {1,...,n}. By the going down
property and the foregoing lemma : P; C P. Consequently J C P but
this is a contradiction. But J** N R ¢ p entails that = € A, hence
A, =R, ® A =Qp(A).

2. IfA sa.tlsﬁes the left Ore condition with respect to C(P) then C’(P)
consists of regular elements of A. It follows that Qp(P) is the unique
maximal ideal of Qp(A); the first part entails that P is the unique
prime ideal of A lying over p. Conversely, if P is the unique prime ideal
of A lying over p then P, is the unique maximal ideal of A, and thus
Qp(P) is the unique maximal ideal of @p(A). Since A,is a P.L ring it
follows that Q,(A) has Jacobson radical Qp(P) and by a result of A.
Heinicke [21] it follows that A satisfies the (left) Ore conditions with
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respect to C(P). a

A maximal order A over a Krull domain R is said to be a reflex-
ive Azumaya algebra if for every p € X'(R), A, is an Azumaya
algebra over R,. Two reflexive Azumaya algebras are said to be
equivalent if (A%EndR(Q))** = (B%EndR(P))** or equivalently if
(A §B°)** = Endg(P), for some divisorial R-lattices P and Q. Note
that the property (A(I%)A°)** = Endg(P) where P is a divisorial R-
lattice, may be used to characterize reflexive Azumaya algebras. The
set of classes of reflexive Azumaya algebras is a grdup with respect
to (—(1%) —)** and it is called the reflexive Brauer group, denoted

by B(R). More details about this group can be found in [61] or [58]
where some geometric interpretations of this group are highlighted. It
is not hard to verify that a reflexive Azumaya aigebra Ais an Azumaya
algebra if and only if A is a flat R-module. |

I1.4.17 Proposition. If A is a reflexive Azumaya algebra then D(A) =
D(R) (where D(R) is as defined in Chapter I, after Corollary 1.1.2.).

Proof. A consequence of the fact that A-bimodules over R which
are divisorial A-lattices correspond bijectively to divisorial R-lattices
under the correspondence M — M) = {m € M,Am = m) for all
A € A} where M is such a A-bimodule centralizing the action of R, and
Nw— (A %N )** for a divisorial R-lattice N. o

We have introduced the reflexive Azumaya algebras in order to provide
a nice class of maximal orders over Krull domains. In [28], the study of
maximal orders over Krull domains is reduced to the study of reflexive
Azumaya algebras plus the investigation of certain properties of diviso-
rially graded generalized Rees rings. We briefly recall these techniques
here in order to provide some fundaments for Chapter IV.

Let A be a maximal order over the Krull domain R. The D(A) is a
< free abelian group generated by the prime ideals of height one of A.
We consider the subgroup P°(A) of D(A) generated by the principal
ideals generated by a central element, and I(A) will be the subgroup
of invértible ideals in D(A). The central class group of A is defined
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to be CCI(A) = D(A)/P°(A). It is not hard to check that, in the
terminology of A. Frolich, [21], Picr(A) = Picent(A) = I(A)/P°(A).

Now consider an extension of Krull domains R — § and an “exten-
sion” of maximal orders A «» I resp. over R,S (i.e.  we assume
' = ACr(A),Cr(A) = {y € T,9A = Ayforall A € A}). Define a
map of sets, ¥ : D(A) — D(T'),I — (I'I)**. This map need not be a
group morphism even if A, I are commutative but ¥|I(A) defines a mor-
phism and it induces a group morphism T : Picent (A) — Picent (T).
On the other hand we may define & : D(A) — D(T') from the divisor
point of view as follows. If P € X*(A),Q € X'(T) then P, resp. Q'
denotes the unique maximal ideal of @p(A) resp. Qo(T). HQNA' =P
then Qo(T)P = (@) for some ep g € IN, called the ramification
index of Q over P. If Q4,.. ,Qn are the prime ideals of X*(T) ly-

ing over P then we put ®(P) = H Qi* where e; = epg;. The map

® : D(A) - D(T') is a group morphlsm by definition but it need not
induce a map on CCI(A). As for commutatative ;‘mgs we say that
A < T satisfies PDE if for all @ € X*(T') we have ht(ANQ) < 1. The

following is now just an easy exercise :

11.4.18. Proposition.

The following statements are equivalent :
1. 3 =0.

2. $(Az) = I'z for all nonzero z in Z(A).
3. A — T satisfies PDE.

I1.4.19. Corcollary. 1. If A < T satisies PDE then ¥ induces
a morphism ¥ : CCI(A) — CCI(T') which restricts to the morphism
Picent(A) — Picent(I') introduced before. If we apply this to the ex-
tension R < A there it follows that CI(R) C CCI(A). h

2. A — T satisfies PDE if and only if Z(A) «» Z(T') satisfies PDE.

I1.4.20. Proposition. For any maximal order A over a Krull domain

R, the following sequence is exact :

1— CI(R) — CCUA) —» G =P Z/epZ — 1
P

where the ep are the ramification indices of the essential valutions of
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K which ramify in A. The exponent of G is bounded by the P.I. degree
of A.

Proof. For p € X'(R), P = ¥(p) satisfies (Ap)** = (PP )** for some
ep € IN. That ep equals the ramification index of the discrete valuation
of K associated to R, in the central simple algebra A is clear. Since
¥(P(R)) = P°(A), the sequence 1 — D(R) — D(A) — @®pZ/epZ
is evident and the proposition follows if we show. that the number of
ramifying primes is finite. To verify this consider ¢ # 0.in the Formanek
centre of A and note that V = {p € X'(R),c € p} is finite, while
the A, with p € X'(R) — V are Azumaya algebras. Consequently
the p € X'(K) — V correspond to P € X*(A) such that ep = 1.
The claim concerning the exponent of G follows from a result of G.
Bergman, L. Small or as follows : for P € X!(A), the reduced norm
nr(P) satisfies (nr(P))** = (pf)** for f € IN, so (Apf)** = (Perf)*
yields (pf»)** = (p(f*¢))** and since D(R) is free on the p € X'(R) it
follows that n = fep. o

I1.4.21. Corollary. Let A and I' be maximal R-orders in A, then
CCl(A) = cClT).

The foregoing corollary may be a desillusion for those who hoped to
use the properties of the central class group for the determination of
specific structural features of maximal orders. On the positive side it
follows from Proposition 11.4.20. that the condition CCI(A) = CI(R)
may be translated into a condition on the ramification of the essential
valuations of R in A i.e. all of these have to be unramified.

I1.4.22. Lemma. Let A be a maximal order over a discrete valuation
ring R. If CCI(A) =1 (i.e. A is unramified) then either 4 is an Azu-
maya algebra over C, or else the center of A/mA is a purely inseparable
extension of R/mR = R, where m is the maximal ideal of R.

‘Proof. If Z(A/mA) = R/m then pi-deg(Am) = pi-degA, so by the
Artin-Procesi theorem it follows that A is an Azumaya algebra; the
converse of this is clear. The existence of nontrivial separable elements

in Z(X/mA) over R/m would provide nonzero irreducible polynomials
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p',q' in Z(A/mA)[T] lying over a separable p in (R/mR)(T] and hence
this leads to prime ideals P, @ of A[T] such that PNA =QNA = Am,
and P and Q lie over the same prime ideal of K[T']. Since A[T] is a
maximal order over the Krull domain R[T, we derive that Qp(A[T])P
is the unique maximal ideal of @p(A[T"]) hence it is the Jacobson radica.l
too, by applying proposition 11.4.26. Moreover : Qp(A[T])/Qp(P) =
A[T]/P = (A/mA)[T]/ P’ for some P' generated by an irreducible poly-
nomial p(T') € Z(A|mA)[T]. Thus, the elements of C(P) are invertible
and since A[T] is Noetherian we may apply the results of A. Heinicke, [],
to derive that A[T] satisfies the Ore conditions with respect to C(P).

Again, by Proposition I1.4.16. it follows that P = @, or p' = ¢' or
Z(A/mA) is purely inseparable over R/mR. . - o

IL4.23. Lemma. Let A be a maximal order over a discrete‘va.lvua.tion
ring R. The following statements are equivalent : ‘

1. Ais an Azuxha.ya algebra.

2. CCI(A) = 1 and there exists a separable splitting field L of A such
that A % D is hereditary, where D is the integral closure of R in L.

3. CCIl(A) = 1 and there exist a separable splitting field L of A such
that A % D is a tame D-orderin A % L. '

4. There exists a faithfully flat extension § of R such that S/mS is
separable over R/mR and S splits A, i.e. the field of fractions of S
splits A.

Proof. 1 = 2,3,4 are obvious.

2. = 1. Suppose Z(A/mA) is purely inseparable over R/mR. In that
case Br(R/mR) — Br(Z(A/mA)) is surjective, so up to changing A4 into
a suitable matrix ring over A we may assume that A/mA contains an
R/mR-central simple algebra B such that A/mA = B R/(Ei a Z(A/mA).

The pre image A; of B in A is an R-order contained in A and mA is a
common ideal for A and A;. Obviously, mA is the unique nonzero prime
ideal of A; and Z(A1/mA) = R/mR. By definition D is a semilocal
Dedekind domain and its nonzero prime ideals my,...,m, ly over mD.
Let D; be the discrete valuation ring Dp,;,j = 1... ¢, and write mj for
its maximal ideal. If we localize the inclusions (A % D)ym C A % Dc
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A QD at mj, then we obtain (AQ D;)m!; C A1 ® D; C A® D;.
R ' R I R’ R’

Since (A ®D-)/(A®D-)m’- = B ® (D/m-D) is central simple it
follows that (A ® D; )m is the umque nonzero prime ideal of A, ® D;.
Therefore, 1deals of A ® D; intersect Ay ® D; in subsets of (A ® D,)m

Since we assume that Z(A/mA) is purely msepa.rable over C/mC
the unique prime ideal of Z(A/mA) R/® R(D/m‘,D) is the nilradical
m

(note : D/m;D is algebraic over R/mR). Consequently, there is only
one prime of A % D; lying over (A % D;)m;. M. Harada’s determination
of the structure of hereditary orders in matrix rings (cf. also M. Artin
[]) yields that the number of prime ideals of A®D- lying over m/ is

at least as big as the number of diagonal blocks of type M,;(D;) in
the structure of A ® D; (which is hereditary since A® D is.) It follows
that A%D = M, (D\,) where n = pi-deg(A) and tcltlerefore AQ®D is
a reflexive Azumaya algebra over the Dedekind domain D i.e.R it is
an Azumaya algebra. But then A is an Azumaya algebra over R and
Z(A/mA) = R/mR. So condition 2. excludes the alternative for A
being an Azumaya algebra given in Lemma I1.4.22.

3,4 = 1. Exactly as above, modifying the argument at the end (or using
a “local” version of it in case 3 = 1 is considered) in order to derive
~that A is Azumaya over R (e.g. in 4 = 1 use faithfully flat descend). o

For a maximal order A over a Krull domain R we may also consider
a separable splitting field of 4. We say that A is L-tame if A® D is
R

a tame D-order in A% L, where D is the integral closure of R in L.
We say that A is Zariski tamifiable if for every p € X'(R) there
exists a separable splitting field L(p) of 4 such that"A ® D(p) is a tame
D(p)-order, where D(p) is the integral closure of R, ilf L.

I1.4.24. Theorem. The following properties of a maximal order A
over a Krull domain R are equivalent :

1.°A is a reflexive Azumaya algebra over R.

2. CCI(A) = CI(R) and A is Zariski tamifiable.

. 3. C’Cl(ﬁ) = CI(R) and A is L-tame for some separable splitting field
L of A. o
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Proof. 1 = 3 = 2 obvious. :

2 = 1. For p € X*(R), A, is a maximal Rp-order with CCI(A,) = 1.
By the lemma’s, A, is an Azumaya algebra over R,. By definition it
follows that A is a reflexive Azumaya algebra over R. o

In the sequel of this section we consider graded orders i.e. A is now
an order over a Krull domain R which we assume to be graded by a
torsion free abelian group G. We let K9 be the gr-field of fractions
of R and A9 = Q9(A) the graded ring of fractions of A which is an
Azumaya algebra over K¢ (cf. Proposition I1.3.4., or Corollary IL.3.6.).
For p € X}(R), the set of graded minimal prime ideals, we let RJ be
the graded ring of fractions at the multiplicative set A(R — p), cf. C.
Nastasescu, F. Van Oystaeyen [37]. Since R is a Krull domain we have

that R = Nyex1(r)Rp and we also have (as is easily seen) :

R=Kgﬂ( n Rp)z n Rf,.

PEXI(R) PEXL(R)

Since G is torsion free abelian it is an orderded group and hence p €
XY(R) yields p; = p or py = 0. If p; = 0 then Rj = K9 is clear.
For every p € X;(R) we have that R is a discrete gr-valuation ring;
then we also have that R, is a discrete valuation ring of K and the
associated valuation v is “graded” in the sense that for any z € R with
homogeneous decomposition z = 24, + ...+ Z,, We have that v(z) =
min{v(z;)} (see Section L.2. up to, as indicated in the beginning of that
section, checking that the result given them for G = Z generalizes in
the obvious way to the case where @ is torison free abelian). We know
that A9 is a maximal order in A (note that A9 need not be a Krull
order since K9 is only a Krull domain when we assume that G satisfies
the ascending chain condition on cyclic subgroups). We say that A is a
gr-maximal R-order if it is not properly contained in another graded
R-order in A. In general there need not exist graded orders in a given
central simple algebra over K; indeed, an obvious necessary condition
on A is that it should represent an element of Br¢(K?9), cf. [12], and it
is straightforward to verify that this condition is also suflicient.

A graded R-order A is gr-hereditary if the graded left ideals of A are
projective. A graded R-order is gr-tame if AJ is gr-hereditary for each
p€ X (R).
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11.4.25. Lemma. A gr-maximal R-order A of A is a divisorial R-
lattice.

Proof. That A is an R lattice is obvious. It is also very easy to verify
that A*™ is an R-order, A C A** (along the lines of Proposition 1.3. in
M. Auslander, O. Goldman [7]). Since 49 C K9.A** and A9 being a
maximal K¢-order, it follows that A** C A9. Let I be the ring (it is an
R-order!) generated by the homogeneous componentsin A9 of elements
in A**. Then I is a G-graded R-order, hence the gr-maximality of A
entails that A = I" and in particular A = A**, , o

IL.4.26. Remark. One may verify that a G-graded R-order A over a
G-graded Krull domain R is a gr-maximal order if and only if : A =
A = Nye x1( r)A3 and each A§ is a gr-maximal Rf-order.

Consider a discrete gr-valuation ring S in K9 and let T be a gr-maximal
S-order in A. Modifying a classical result of M. Deuring [19], p. 74 and
p- 108, we easily verify that I' is a gr-local ring in the sense that it has
a unique gr-maximal ideal, M say, and I'/M is a gr-c.s.a.

11.4.27. Lemma. Let S and T be as above. If E is a ﬁnitely generated

left T-module then hdiE = hd%E, where hdf, resp. hd% denotes the
homological dimension in I'-gr, resp. S-gr.

Proof. Dimensions in the category of graded modules have been stud-
ied in [37]. An easy graded version of Theorem 2.2., M. Auslander,
Goldman [7], proves the claim (note that § is Noethenan here !). o

IL.4.28. Corollary. T is gr-hereditary.

I1.4.29. Proposition. A graded S-order I is gr-maximal if and only
if the graded Jacobson radical J9(T') is a gr-maximal ideal of I'. We
have that T is gr-heredlta.ry if J9(T') is also a projective left (or rlght)
r- module

Proof. Following Theorem 2.3. of M. Auslander, O. Goldman [7]. o

11.4.8307 Remark. Using obvious properties of the trace map it is
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possible to show that the different of a gr-maximal order A is a graded
ideal. So if a prime ideal P divides the different (i.e. if P is of the
first kind this means that P? divides A(P N Z(A))) then P, divides the

different.

I1.4.31. Theorem. If A is a gr-tame order over the graded Krull

domain R then A is a tame R-order in A.

Proof. If p € X'(R) is such that p; = 0 then A, is a localization
of A9 hence it is an Azumaya algebra over its center R, which is a
discrete valuation ring, and therefore A, is a fortiori hereditary (even
a maximal order). If p € X 1(R) then A' = AJ is by assumptmn a
gr-hereditary R'-order where R = R} is a dlscrete gr-valuation ring.
Putting p' = pRj, we have to check Whether A}, is a hereditary Ry,-

order. One checks that the graded Jacobson radical J9(A') localizes to
the Jacobson radical J(A,) (using the “unique lying over” properties
observed earlier over Krull domains applied here to A'). Since JY(A’)
is a projective A’-module it follows that J(A,) is projective as a Ap-
module. So A, is left (and right) hereditary. Since for p € X*(R) either
pg = 0 or p € X;(R) the cases considered cover all possibilities for Ap,

i.e. A is a tame R-order in A. o

If I is a graded fractional ideal of A then I** is graded too :

= ﬂ L=(N%Ln( ] L

pEX(R) pg=0 PEX(R)

=a'n( [ L)= [) @nL)= (] L

PEXY(R) PEXL(R) ‘ pEX(R)

The group D9(A) is defined to be the subgroup of D(A) consisting of
the graded elements in D(A). As for the ungraded case one establishes

that D9(A) is the free group generated by X;(A).
Let us mention some consequences of results of M. Chamarie in partic-

ular Theorem 4.2.3. in [14].

I1.4.832. Lemma. Let A be a maximal order over a Krull domain R

and consider an intermediate ring A CT' C A.
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The following statements are equivalent :

1. T' is a central localization of A.

2. T' is a subintersection of A, i.e. ' =N{A,,pe ¥ C X (A)}.
If these conditions hold then we have an exact sequence :

1—-H— CCI(A) - CCIT) -1
where H is generated by the p € X*(A)-Y. |

In Section IL.1. it will be shown that gr-maximal orders (for torsion
free abelian grading groups) are in fact maximal orders; it is necessary
to point this out in order to make it clear that the following theorem
holds for gr-maximal orders in the sense of the foregoing results.

I1.4.33. Theorem. Let A be a maximal order over a Krull domain
R and suppose that A is graded by an abelian group. The following

sequence is exact :

1— H - CCI(A) - CI(K9) — 1

Proof. Since A¢ is an Azumaya algebra over K9 we have CCI(A9) =
CI(K?) and then it suffices to apply Lemma I1.4.32 to A C A9 C A.
Note that H is also the subgroup of CCI(A) generated by the classes
of P € X*(A) such that p= P N R contains nonzero elements of h(R).

[m]

Note that, if z € K9 then AcN K9 = Re, hence for every gr-maximal or-
der we have an injection Cl19(R) — CCI9(A) where CCI9(A) is DI(A)
being the subgroup of graded ideals of A generated by a central homo-
geneous element. By Corollary 11.3.6. it follows that H in Theorem
I1.4.33. is in fact equal to CCI9(A), so we obtain :

I1.4.34. Corollary.
Let A be a maximal order over the Krull domain R and suppose that
A is graded by the torsion free abelian group G, then the following

sequence is exact :

4

1 CCUB(A) — CCIl(A) — CIK%)—1
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But K9 is a Krull domain, hence it follows from Proposition 1.1.1.(3)
that K9 is factorial, hence CCI9(A) = CCI(A) follows.

In a straightforward way one may prove that Pic(A) = PRic%(A),
Picent(A) = Picent?(A) where in each case the graded version of the
group considered is defined by taking only the classes represented by
graded elements. Note that Pic(A) (a subgroup of CCI(A) determined
by the invertible ideals) may be different from Picent(A) defined (fol-
lowing A. Frohlich [21]) by using invertible bimodules in -general (in
particular non-Noetherian situations). ,

Finally let us mention some results over strongly graded Krull domams,
a situation that may arise if one applies the construction of generalized
Rees rings to an order A in a “central way” i.e. by applying the con-

struction to the center.

I1.4.35. Lemma. Let R be a Krull domain strongly graded by a
torsion free abelian group G' and let A be a gr-maximal (i.e. graded
and maximal, in view of results to come, III.1.) R-order in A. Then we
have the following properties :

1. A is a central extension of A..

2. A. is a maximal order over the Krull domain R, in the K. = Q(R.)-
central simple algebra (A49)..

3. A is a left and right flat A.-module.

4. The (central) extension of orders A, < A satisfies P. D E.

5. The map ¢ : D(A.) — D(A),I — (AI)** induces a group morphism
CCIl(A.) — CCI(A) and also a group morphism Plc(A ) — Pic(A).
Actually (AI)** = AI for every I € D(A.).

Proof. 1. f z € A,,0 € G, then 2z € Ry, R,-1A, C RA..

2. If I is an ideal of A, then AI is a proper graded ideal (by 1.) of
A and thus (AI AI) = A follows from the fact that A is gr-maxima.l

Consequently (I I) C A.. That Ag is simple Artmlan is a direct

consequence of the fact A9 is gr-simple gr-Artinian. If z € Z(Af) then,
since RA, = A yields RA? = A9, it follows that z € Z(A9) = K9 and
thus 2 € KINAZ = K¢ = Q(R.) or Z(A%) = Q(R.): Soitis clear that

A is a maximal R.-order in A9.
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8. Since A = @ A, and each A, is a projective left and i‘ight A.-
oc€G

module.

4. PDE for A over A, follows from PDE for R over'R, and the latter

is a consequence of flatness of R over R..

5. One easily checks for any graded ideal I of A,I = AL, that T** =
I'* @ A = A(I.)** (using the graded localizations at p € X*(~) both
A,

for A and A, and the correspondence between these which does exist in
view of the strong gradation on R and the equivalence of the categories
R-gr and R.). All the claims are easy consequences of this fact. o

I11.4.36. Theorem. With assumptions as in the lemma we obtain the

following exact and commutative diagram :

0 0

,P‘ N

0— CIR) - ccip) L @ ZlepZ —0
PeX}(A)

0— CIR) =% CClA) 25 @ ZlepZ —0
P.eX1(A.)

< Imyp > < Imp >

0 0

where ¢ : G — Cl(R.),0 — [Rs],@ : @ — CCI(A.),o — [A,] and the
ep,ep, € IN are the ramification indexes for P, resp. P..

Proof. Define v by P{* ... P!> — (vymodep,,...,v,modep, ); this
is well defined because I and Ic with ¢ € R have the same image under
v (we'used CCI(A) = CCI9(A) here 1). If 4(P" % ... % P¥) = 0
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then e; = ep, divides »; and therefore P/* x ... % P¥ then has to be
an extension of p/*/®* x ... pt"/* in CI(R). Exactness of the first
row follows from this, exactness of the second row follows in the same
way. Exactness of the first column follows from the fact that R is a
generalized Rees ring (cf. Proportion 1.1.16.). Consider the diagram of

extensions :
R — A :
] Q
R — A,

and note that (by flatness) each extension satisfies P.D.E. It is clear
that ep = ep, because graded ideals of R,A are generated by their
parts of degree e in R,,A, resp. The diagram CCI(x) = CCl9(x) is
commutative. The class of P:’ll * ..k Pet,“q in CCIl(A.) maps to the
class of P{* % ...% P;* in CCI(A), where P; = AP, ;,i =1,...,q. The
latter image will be trivial in CCI(A) when et;, i = 1,...,q, and
then the class of pzl/el * L.k pél/e" maps to 1 in CI(R) where p; =
P,NRi=1,...,q. Putting p.; = p; N R, the foregoing leads to :
pzl’l/el * ... *pz‘fée“ = ¢(I*) for some ¢ € K9, m € IN and I, being
(P % ...% P/9),. Since the ramification of P, ; over the 'pe,i equals e;
fori=1,...,qit follows that : P}}x.. #P2 = (A I ))™c and exactness
of the second column follows from the fact that AL, is divisorial (here

even invertible). o

11.4.37. Remark. The theorem holds for divisorially graded orders

too.

Proof. As above, adding ()** where necessary and noting that Propo-
sition I.1.16. holds for divisorially graded rings as stated. S

In the final paragraph of this section we deduce the main result concern-
ing class groups of generalized Rees rings following F. Van Oystaeyen,
L. Le Bruyn [30] and L. Le Bruyn [28]. This result reduces the study
of maximal orders over Krull domains to the study of reflexive graded
Azumaya algebras over certain generalized Rees rings plus the investi-
gation of the extension R — R; where R; is the generalized Rees ring

mentioned before.
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Let A be a. maximal order over 2 Krull domain (we leave it to the reader
to verify that the results can be extended to the case of tame orders).
Let Py,..., P, be the finite number of prime ideals of A which are not
centrally generated and let ey,...,e, be their ramification indexes. We
will sometimes say that X;e; P; = P is the ramification divisor of A
and ¥;e;p; = P° is the central ramification divisor where p; = PNR.
In general, to every divisor D for A we associate the Z ®...® Z-graded
subring of A[X1.X;,..., X, X7!] (where n is the number of nonzero
elements appearing in D defined by :

AID)(ma, ..., ) = (P %% PP)X[™ L. X1

This divisorially graded ring is called the generalized Rees rlng for
D. We call A['P] the ramlﬁcatlon Rees ring of A.

I1.4.38. Theorem. Let P be the ramification divisor of a maximal
order A over the Krull domain R.

1. A[P]is a P.L ring and a maximal order over its center R[P°,¢]
(where e = (ey,...,€e,) € Z™) which is a Krull domain. ‘

2. COU(A[P)) = CI(R[P*,¢]). '

Proof. 1. See Section IIL.1. The ring R[P®,c] is the so-called scaled

Rees ring with step (e1,...,e,), i.e. R[P%,¢](my,.. ,mn) = (p"‘1 *
Loxpom) XL X, where a; is the integral part of 4,4 =1,.

Note that such rings also appeared in Chapter L. e.g. Proposmon I 2 5.

Théorem 1.2.15.

2. Since A[X;,X;%,...,X,, X '] is an Azumaya algebra over a fac-
torial domain we may apply Corollary I1.4.34., hence CCI9(A[P]) =
CCIU(A[P]). Then it is easy to verify exactness of the following se-

quence :
0 =< [P],..., [Pn] >— CCI(A) — CCI(A[P]) — 0

In a similar way : CI9(R[P¢,¢e]) & CI(R[P*,¢]) and the following se-

quence is also exact :

0 < [p1],...,[pn] >— CI(R) — CI9(R[P°,¢]) — 0
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We obtain an exact commutative diagram :

0 0 0

0= <[ph--slp]> - CUR)  — CUR[P%e) —0

K

0= <[P),..,[Pa]> — CCIA) — CCUA[P) —0

d

& Zle:Z & Z/e;Z
J=1 J=1
hence CI(R[P<,e]) = CCU(A[P]) follows. o

If we are in a situation where Theorem I1.4.24. may be a.pplied‘to
conclude that A[P]is a reflexive Azumaya algebra then we have reached
the goal set out in the beginning of this paragraph. Note that this is
the case for applications over rings appearing in algebraic geometry if
the characteristic of the ground field is zero. As an extra example of a

situation where this technique works we mention the following :
IL.4.39. Proposition. If A is Zariski-tamifiable then so is A[P)].

Proof. Let L be a separable splitting field for 4, then L(Xy,...,X,)
splits A(Xy,...,X,). Let S[P°] be the integral closure of R[P°,¢] in
L(Xy,...,X,). Since R[P¢,e] is a graded Krull domain the same is
true for S[P°]. Let P € X'(S[P¢]), then either Py, = 0or P = P,. If
P, = 0 then the localization of A[P] - 1@ g S[P¢] at P is a localization

of A;? L[X:, X*,..., X0, X;7'] and therefore it will be an Azumaya
g

algebra over the Krull domain S[P¢]p, hence it is a maximal order

and obviously tame as well. If P = P, look at p = PN R. If p

is not appearing in P° then the localization of A[P)] R[® JS['PC] at
Pec,e

P is a localization of (A, ® Sp)[ X1, X7, X, X71]; therefore it is a
tame order because the class of tame orders is closed under polynomial

79



extensions and central localizations. If p appears in P°, say p = P N

R then (A[P] R{gJS[pc])p = (A[O] ® S[O))[Xz, X5 7. .., Xn, X7']

where A[O] is defined by A[®], = PP*X} S[@] is the integral closure of

R[®] = Z(A[®]) in L(X,), ¢ = PN S[O]. Clearly, A[O] R%]S[G] is an

overring of (A %S)['P] in (A% S)[P]in (A % L)(X;).

Furthermore, (A ® S)(P) will be tame (see section IIL1., or derive it
R

from Theorem I1.4.31. in a rather straightforward way) and therefore

the overring A[O] ({8)}5 [©] will be tame too. o
R[©

11.4.40. Remark. The extension of Theorem I1.4.38. and Proposition
11.4.39 to the case where A is a tame order over the Krull domain R

presents no problems (as is evident in the proofs given).
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IL.5. Some General Techniques.

Our aim in this section is to give some techniques that are useful in
the study of arbitrary graded rings. In Section IL.5.1. ‘we introduce
the notion of a separable functor. This is an attempt to give a unified
treatment of the various versions of Maschke’s theorem that occur in
the literature. We give a set of examples in an‘atteiript to convince
the reader that separable functors occur very naturally. In Section 5.2.
we introduce group rings over graded rings. This is a technique that
is very often useful to prove a theorem for arbitrary graded rings once
the corresponding result for group rings is known. -

A typical example of this technique is an easy proof of the Bergman
conjecture [16]. As another example we give an upper bound for the
global dimension of an aibitrary graded ring that is only slightly weaker
than Rosset’s bound [47] on the global dimension of a crossed product,
but has a conceptually much simpler proof.
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IL.5.1. Separable Functors.

I1.5.1.1. Definition. : o
A functor F.: C -+ D between two arbitrary categories is called sepa-

rable if for all objects M, N in C there are maps.:

goﬂr’N‘: HoymD(vFM, FN) — Homg(M,N)
satisfying the following _compatibﬂity conditions.
(DIeae Home(M, N) then ohrn(a) = a.

(2) If there are M',N' € C and « € Hom¢(M, N), § € Home(M', N'),
f € Homp(FM,FN),g € Homp(FM',FN') such that the diagram

FM L FN
Fo{ lF,B
FM' 2 FN'

is commutative, then the diagram

M enrn () N
al 8
()
k4 MI Cart vt \Y N Nl

is commutative.
If there is no confusion possible we will usually denote goﬂ,N(?) by
?. The following Proposition gives us some elementary properties of

separable functors.

I1.5.1.2. Proposition. - If F : C — D,G : D — E are separable
functors then G o F' is separable.
- If G o F is separable then F is separable.

Proof. Just checking. One deduces that

o5t (F) = 051,00 (031,30 (£))
and
a0 (F) = F(eSEan (F)) o
If a functor F : C — D is separable and if M is an object in C then
it is often possible to deduce properties of M from the corresponding

properties of FFM. Proposition 5.1.3. contains some examples of this

phenomenon.

I1.5.1.3. Proposition. Suppose that F : C — D is a separable
functor and let M, N be objects in C.

(a) If f: M — N is amap in C such that Ff is split then f is split. For
the following properties we assume that C, D are abelian categories.

(b) If FM is semisimple (every submodule splits off) then M is

semisimple.
(¢) If FM is projective then M is projective.

Proof. An easy exercise using the defining property of a separable

functor. o

Let « : R — S be a ring morphism. Then there are two classical

functors associated to a.

(1) «(?) : S-mod — R-mod which makes an S module M into an R-
module oM by defining the multiplication as .M = a(r)m. This is
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called the change of rings functor.

(2)§ %? : R-mod — S-mod of which the definition is obvious.

We will examine what separability means for these two functors.

11.5.1.4. Proposition. (a) o(?) is separable if and iny if the map
T:508 -5 :5®s — ss splits as a map of S-S-bimodules.
R

(b) S®g? is separable if and only if « splits as an R-bimodule map.

Proof. (a) Suppose that o(?) is separable. ¥ splits as an R-S bimodule
map by sending s — 1®s. Then by the separability we can change this
splitting to an S-S-bimodule splitting.

Conversely assume that ¥ is split by some S-S-bimodule map #.

Let M, N be S-modules and let f be an R linear map oM — o N. We
then define f by the following commutative diagram of § modules.

SQM 18f y» SON
R > R
SRSQM S@SQM
R 5§ R 5§
}9@)1 Yl
SeM S®N

s

R
—
R

|

M F N

From this diagram one easily verifies that f: fif f is S-linear. Let

- upr resp. vp denote the composition of the vertical maps on the left

resp. on the right.

If M',N' are different S-modules and o € Homg(M,M'), 8 €
&

Homg(N,N') g € Homg(M', N') then one has the diagram
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11«

: 1ef o .
SeQM 5 S
Uy ’ (J%4
UM ’ ] - uN ‘
M ey N :
| X I 4
g
S M > N' ’
/ , YN
37 .- 2
Y M u \

S M’
R
1®y

Here the diagonal maps are splittings. One deduces that if the outer

square is commutative then the inner square is it too.

(b) Suppose that S®g? is separable. The composite of the maps i@ :
S@rR—->S®rSandv: SQrS > S5SQrR:5Qs — ss' ®1 is the
identity. Hence v provides a splitting for .

Suppose now that a is split byamap 8. If f : S@r M — S Qr N is
S-linear then we define f by the commutative diagram.

S®rM i, S®rN

a®1 l®1

R@r M R®r N
M o 4N

A routine verification as is (a) then shows that S®g? is separable. @
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If o(?) is separable we say that S/R is separable. Some times we use
a more informal terminology by saying that S/R satisfies a version of
Maschke’s theorem. Our notion of separability is an extension of the
classical notion [17] which is defined when R is commutative.

Suppose now that R is strongly graded by a group G. It is well known
[56] that in this situation there is a unique G action on Z(R,) satisfying
for a € Ry, b€ Z(R.) : ab= o(b)a.

I1.5.1.5. Proposition. (Maschke’s theorem) R is separable over R, if
and only if the trace map ¢t : Z(R.) — Z(R.) : a — Zo(a) is surjective.

Proof. Suppose that R/R,. is separable i.e. there is an R-bimodule
splitting of the product map ¥ : R®g, R — R. But RQr R = %o R,-
for a strongly graded ring.

Hence we have to find a splitting of the sum map ¥' : ¥ R,, — R.

Such a splitting is determined by an R-centralizing element s in & R,
o,

mapping to 1. It is easily seen that s can be chosen in o € G R, i.e.
8 = (84,0-1)o Where s, ;-1 € R,. Fromthe fact that s is R.-centralizing
we deduce that s, ;-1 € Z(R.). Let ¢t € R.. From the fact that st = ¢s
we deduce that ‘

(S.,.U,U—1.,.-1 - T(sa’o.—x))t =0

and hence
(sra,cr"l-r-1 - T(sa,a—l))RT.R.r—l =0

Therefore, by the fact that R is strongly graded : s, ,-1 — 7(s5 5-1) =
0 in particular s; -1 = (see). So 1l = ¥'(s) = 35, -1 = #(sc,)
Conversely if there is an element u in Z(R,) of trace 1 we may produce
a splitting of ¥' by sending 1 to (¢(u))seq-

It is possible is this situation to describe 7 explicitly ie. if f €
Hompg, (M, N) then f(m) = E,.Eiugr)f(uvy—l)m) where the uET) €

-1 -
R,,vgr ) e R -1,1= EiugT)v(" ") and u is the element of trace one.o

I1.5.1.6. Remark : If R is an arbitrary graded ring by a finite group
G we do not know whether separability of R over R, implies that R
is strongly graded. This seems very likely however. The following
propgsition is true in general.
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11.5.1.7. Proposition. If R is an arbitrary graded ring then the
forgetful functor R-mod — R-gr is separable. '

Proof. Let M,N be graded R-modules and f € Homgp(M,N). If
m € M with homogeneous decomposition m = mgy + ... + m,, then
one defines f(m) = Z;f(mo,)o;. It is clear that f € Homp._ (M, N).

v ‘ o
A particularly useful special case of a separable extension of rings is a

Galois extension.

I1.5.1.8 Definition : Assume R C S and that there is a finite group
acting on S leaving R invariant. Then we say that S/R is G-Galois if
S is a right R progenerator and the canonical map

S ®r S — @O’EG(O”S’].) ‘a ® b @aEGU(a)b

is an isomorphism of S - S bimodules.
I1.5.1.9 Lemma : If S/R is G-Galois then S/R is separable.
Proof :Immediate.

I1.5.1.10 Proposition :Assume that S/R is G-Galois. Then the fol-
lowing are true :
(1) The canonical map

V:S8%G — Endg(Sr),V(s*c)(a) = so(a),

is an isomorphism.

(2) S =R

(3) The trace map T'r: S — R:a — Y, o(a) is surjective. (Hence R
is a direct summand of §). |

Proof:
(1) We construct the following diagram :

sxa¢ 5 Endg(S)

Homs(®,51,8) ~— Homs(S®gS,S)
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where the maps are defined as follows (all Hom’s are for right modules) :
the map V is as above, furthermore 8(¢)(a ® b) = ¢(a)b, and a(s *
o)(ra) = 8orsra where ;a € Si.

One quickly verifies that this diagram is commutative. Furthermore o
and 3 are obviously isomorphisms. V* is also an isomorphism since V
is by definition an isomorphism. (Note that we did not use the fact

that S is a R progenerator.)
(2) Since S is a right R progenerator S is faithfully flat and hence

0->R-%55L.5¢rsS

with a(a) =a and f(a) =a®1 — 1 ® a is exact. By using the isomor-
phism of I1.5.1.8., we see that Kera = S¢. Hence R = SG.

(8) Again using the fact that S is a right progenerator it suffices to
show that SQr S — §: a®b — Y ac~1(b) is surjective. Using the
isomorphism of 11.5.1.8. this becomes obvious.

I1.5.1.11 Remark : The condition that S is a progenerator is neces-
sary, otherwise any finite ring epimorphism would qualify as a Galois
extension for the trivial action. Clearly (2) and (3) are not true in this

case.

I1.5.1.12 Proposition : Assume R C S C T and that a finite group
G acts on T leaving R invariant. Assume furthermore that T'/S and
S/R are Galois, resp. for a normal subgroup H of G and for G/H.
Then S/R is G-Galois.

Proof : An easy verification after observing that TQr T =T ®5S Qr
S®sT. : o

Clearly if S and R are commutative then our notion of Galois extension
coincides with the classical notion as defined for example in [17]. Start-
ing from commutative Galois extensions one can construct new ones by

base extension. The following is easily verified.

I1.5.1.13 Lemma : Suppose that R C S are commutative rings with
S/R JGalms for some finite group G. If T is an arbltrary R-algebra then
SQ®rT/T is G Galois.
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To apply the previous proposition, it is useful to have a method for
constructing the group G if it is not already given. This is accomplished
by the following proposition :

IL5.1.14 Proposition : Assume that R C § C T and that T/S and
S/R are resp. H and H' Galois for finite groups H and H'. For each
h' € H' let there be given an element A" € Autr(T) lifting the action
of h' on S and let H'™ = {h"™|h' € H} (this might not be a group).
Assume that the following conditions hold :

(a) H acts faithfully on S.
(b) (hyHp*)(Rihy)*~" € H for b, b} € H',
(¢) R™*~1hh'"™ € H for b,k € H.

IL.5.1.15 Lemma : Let G be the group generated by H and H'* in
Autp(T). Then G/H = H'.

Proof : One easily deduces that G = H'H and H' N H = {e}. This
proves the claim. o

A different way to construct Galois extensions is through strongly
graded rings.

I1.5.1.16 Proposition : Assume that R is strongly graded for some
commutative finite group G. Assume furthermore that R contains a
field containing a primitive p** root of unity for every prime divisor
p of |G|. Then G* acts on R through multiplication by characters
(xas = x(¢)a,) and R/R, is G* Galois for this action.

Proof : Verification of the defining conditions for being a Galois ex-
tension. o

IL.5.1.17 Remark : The proposition as stated above looks somewhat
unnatural due to the condition on the field contained in R. The reason
for this is that it would be more natural to look at the action of the
dual of the Hopf algebra kG : (kG)* (k the prime ring). Then if G is
an arbitrary finite group and R/R, is strongly G graded, R/R. will be
(kG)* Galois. The conditions we put on the field in R, guarantee that
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(kG)* = k(G*) as Hopf algebras. The reason that we didn’t use (kG)*
is that it would involve going into the theory of Galois actions of Hopf
algebras [52] which is more difficult. Proposition II.5.1.16 as stated is
enough for our purposes (see Chapter V).

We can extend the above material to reflexive modules. Let us adopt
temporarily (i.e. till the end of IL.5.1) the following generalized notion
of order. If R is a Krull ring then an R-order will be simply an R-algebra
refelexive as an R-module. By A-ref we denote the full subcategory of
A-mod counsisting of A-modules reflexive over R. Modules in A-ref are
called reflexive A-modules. It is clear that A-ref does not depend on the
particular Krull domain over which A is an order. Furthermore if M
is a A-module then M™* is defined as Homgp(Hompg(M, R), R) but this
definition is also independent of R. Suppose that A C T’ are R-orders
then one can define the change of rings functor 4(?) : I'-ref — A-ref and
the functor T' L7 : A-ref — I'-ref which sends a reflexive A-module
M to (I'®p M)**. Then the following analogon of Proposition 5.1.5. is

true.
I1.5.1.18. Proposition :

(a) a(?) is separable if and only if ¥ : T' Ly T' — T splits as ' — T
bimodules where ¥ is induced from the product map I' @4 I‘ — I

s®s' — ss
(b) T'" LA? is separable if and only if A splits off as a A bimodule.

Proof. The proof of this lemma is essentially the same as the proof of
Proposition 5.1.5. =

If A(?) is separable then we say that I is reflexive separable over
A. It is a natural question to ask whether reflexive separability is a
local notion, i.e. is it true that I'/A is reflexive separable if I'p/A;, is
separable for all p € X'(R). We give an answer to this problem in the
“case that A is commutative.

I1.5.1.19. Proposition : Suppose that A C I' are R-orders where A
is corhmutative. Suppose that for all p € X'(R) I',/A, is separable.
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Then the following is true :
(a) If T is commutative then I'/A is reflexive separable.

(b) If Z(I') = A then I'/A is reflexive separable if and only if A is a

A-direct summand of T'.

(¢) In general, ' is reflexive separable over A if and only if Z(I') is a
Z(T)-direct summand of I'.

Proof. (c) is just a combination of (a) and (b).

(a) Consider the exact sequence of I' L I'-modules :
0—>J—->I‘J_AI‘——>1"%>0

It is clear that in this situation (I' Ly I')¥ is a reflexive I' ®} T ideal.
We claim that J N (I' Ly T) = 0. It suffices to check this at each

p € X*(R). Since I'y/A, is separable there is a separability idempotent

ein T, ®a, T, mappingto 1 in I'p. Hence J,+ (I, ®4, )7 =T, (¥).
Furthermore J,(T', ®a, I'p)F» = 0 since J, is generated by elements
of the form a ® 1 — 1 @ a. Hence Jp N (Tp ®a, [p)'» = 0. Therefore
J+ (T Ly )P is a reflexive submodule of I' L I'. Then we deduce
from * that T 14 T =(T' Ly )T @ J. Hence T’ Lp I’ — I splits.

(b) There is a canonical map ¢ : I' L4 I'° — Homy(T,T) obtained

from the map ' ® '° — Hom, (T',T') which sends z ® y to the map
a — zay in Homﬁ(I‘,I‘). The map ¢ is an isomorphism since it is an
isomorphism for any p € X 1(R), [58].

As in the classical case reflexive separability of I'/A is equivalent with
the existence of an e € I' L4 T’ such that : (Ker(I' Ly ' = T'))e =0
and ¥(e) = 1. Furthermore such e’s correspond to projection maps :
I' > A under ¢. This proves (b). ’ . a
For completeness we give an example of an R-order I’ separable over

its center Z(I') in each height one prime but not containing Z(T') as a-

direct summand.

I1.5.1.20. Example : Let R be a positively graded Krull do-
main with By = k, an algebraically closed field of characteris-
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tic p > 0 and let M be an indecomposable reflexive R module
of rank p. An easy example of this situation is p = 2,R =
E[X,Y,Z),M = Ker(k[X,Y,Z]® - k[X,Y, Z]), where f is given by
the column (X,Y, Z).

Let I' = Endr(M). Then k = T'/J4(T') where J, denotes the graded
Jacobson radical, and by the fact that the reduced trace I' — R is a
graded map one sees that there is no element of reduced trace 1 in I
Since every R-map I' —» R is of the form a +— tr(za) this implies that
I" does not contain R as a direct summand.

The natural generalisation of a Galois extension becomes a reflexive

Galois extension. If A is an R-order and M is a left reflexive A-module .

then we say that M is a (left) reflexive generator if M), is a A, progen-
erator for all p € X(I(R).

I1.5.1.21 Definition : If A C T are R orders and G is some finite group

acting on I' leaving A invariant then we say that I'/A is reflexive G-
Galois if I is a right A reflexive generator and the natural map '@ I' —
Boceol1 1 a®b— Dreqgo(a)b is an isomorphism as A-A bimodules.

It is quickly verified that being reflexive Galois is a local notion. ILe.
I'/A is Galois if and only if I', /A, is Galois for all p € X®)(R). Further-
more one verifies easily that Propositions 11.5.1.10, II.5.1.12, 11.5.1.13
etc... have an equivalent in this setting. For example Prop. 11.5.1.16
becomes true for divisorially graded rings. We will not state explicitly

all the generalisations since they are clear in each case.

Finally we note that proposition 5.1.5. has an extension to divisorially
graded orders. Let I' be an R-order graded by a finite group such that
(Pol'7)** = T'yr. Then there is a G-action on Z(l"é) satisfying for
a € Z(T.):ab=0o(b)a cf. o.a. [37].

I1.5.1.22. Proposition. (Maschke’s theorem for divisorially graded
rings).
I is reflexive separable over I', if the trace map Z(T'e) — Z(T'e)% : a —

Yo(a) is surjective.

Proof; Exactly as in Proposition 5.1.4. ’ o
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I1.5.2. Group rings over graded rings.

If R is a G-graded ring, then the forgetful functor R-gr — R-mod has a
right adjoint R-mod — R-gr that sends an R-module N to the graded

R-module @ N, where N, = N and the R multiplication is defined
oG .
by Ry x N — Nor : (76,nr) — 7ron;. It turns out however that

there is a more convenient way to visualize this adjoint. Let RG be the
groupring over R graded in the usual way, i.e. deg(Ro) = 0. RG has

a graded subring S = Y, R,o isomorphic to R as a graded ring. Note
oG - . .
however that the standard copy of R in RG,(R.), is not graded. If N

is an R-module then NG is a graded RG module. Then s(NG) defines
a graded-S module and the reader can verify that after identifying S
with R this is the graded module associated to N defined above. ’

I1.5.2.1. Lemma : If G is a finite group then the change of rings
functor R-gr — S-gr is separable if and only if |G|~ € R.

Proof. As before one has to construct a graded splitting of the map :
RG ®s SG — RG. 1t is easy to see that such a splitting exists if and
only if |G|™* € R. o o o

This lemma gives an explanation for the fact that for rings graded
by a finite group graded properties and the corresponding ungraded
properties usually are related. In fact one can develop the theory in the
general setting of categories with separable adjoint functors. Even the
case where |G|™! ¢ R can be incorporated in this formalism if one works
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in the localized category R-gr/C where a C is the Serre-subcategory of
R-gr consisting of graded modules that are annihilated by a power of
|G|. We think however that such a generality would be too much a
burden on the reader who is only interested in concrete results. As
an illustration of the concepts described above we give a proof of the
Bergman conjecture. This conjecture was first proved in [16] using a
method inspired by the theory of Hopf algebras.

Let J(?),J4(?) denote resp. the Jacobson radical and the graded Ja-

cobson radical of a graded ring.

I1.5.2.2. Proposition. Let R be graded by a finite group, then
Jg(R) C J(R). If |G|™! € R then J,(R) = J(R)

Proof. Let V be an irreducible R-module. Then W = VG = 3. Vo
oG

is a graded irreducible RG-module. The graded version of Nakayama’s
lemma now implies that J,(S)W s W. Since J,(S)W is a graded
submodule of W, J,(S)W = 0. But J,(S)W = (J4(R)V)G and hence

Jo(R)V = 0. So Jy(R C J(R). Assume now |G|™' € R. If M is

a graded S-module then RG ®s M = Y, M(r) where M() is iso-
TEG
morphic to M as an ungraded module but has a shifted grading :

(M(1)s = ,s. Since M — M(7) defines an auto-equivalence
on R-gr it is clear that if V is a graded irreducible S-module then
RG Qs V is graded completely reducible as an S-module. By Propo-
siotion I1.5.2.1., RG ® s V is graded completely reducible as an RG-
module. Hence J;(RG)(RGQsV) = 0. Hence J(R)(RG®sV) =0 and
J(R)V = O since V is a submodule of RG®sV. So we have proved that
J(R) C J4(R) is not restricted to finite groups as Proposition I11.5.2.3.
shows If R is a graded ring denote by gl.dimR resp. gr.gl.dim R the
global dimension and the graded global dimension of R. If M is an R
module then pdp M is the projective dimension of M. It is superfluous
to introduce a similar graded notion since the projective dimension of
a module is equal to its graded projective dimension.

I1.5.2.3. Proposition. Suppose that R is graded by a group G and
let k be a commutative subring of R, central in R. Then gl.dim R <
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gr.gl.dim R + ¢d(G@) where cdi(G) = pd,g(k) where k has trivial G

action.

Proof. Let h = cdi(G). Since gl.dimR =gr.gl.dimRG it is sufficient
to prove that for a graded RG-module M, which is projective-as an
S-module : pdra(M) < edi(@). There is an exact sequence of graded
kG-bimodules «

s kG ® kG ®1 kG 25 kG @1 kG kG — 0 (%)

Tensoring (*) on the left by S/k one obtains an exact sequence of graded
R@G-bimodules

— RG®s...s RG— ... — RG®s RG — RG — 0

This sequence is split as a sequence of right RG-modules. Therefore

tensoring on the right by M is exact. We then obtain an exact sequence
RG®sRG®sM — ...— RG@s M — M — 0 (%)

yielding a projective resolution of M as a left RG-module. If we can
show that pdigerge(kG) = h then we know that (*) and hence (**),
splits at step h. So pdgg(M) < h. =~ o

The fact pdyggrge(kG) = pdyg(k) is well known We include a proof

that has a fundamentally graded nature

If £ C R are rings, k commutative and central in R then we denote
by R-bimody the category of R-R-bimodules that are k-centralizing. If
R, is graded, k& C Re then R-gr-bimod; is the correspondmg graded

notion.

Lemma IL5.2.4. The category kG-gr-bimod;, is naturally equivalent
to k-mod.

Proof. Let M be a kG-bimodule, then G acts on M, by conjugation
and hence M, is a kG-module. Conversely if N is a kG-module then
we define N = N ®; kG where kG acts diagonally at the left and on
kG at the right. It is clear that (N), & N, (M), = M. Tt is clear
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that (kG @i kG)e = kG and (k@) = k. Hence (?). transforms (¥)
into a projective resolution of k. Since if (*) splits at a certain stage
there always is a graded splitting (as in I11.5.1.7.) we have proved that
Pdree,re(RG) = pdig(k) = cdp(G). It is interesting to note that the
projective resolution of & obtained is equivalent to the usual one. ]

The inequality in I1.5.2.3. may be strict.

Consider R = k[X,X71] [V,Y 1]/ (YX = (XY) where k is a field
of characteristic zero and ¢ is not a root of unity. R is graded by
Z x Z (degX*Y'! = (k,1)) and gl.dimR = 1, gr.gl.dimR = 0 but
cdir(Z x Z) = 2. This immediately provides a counter example against

a conjecture in [47).
I1.5.3 Some Morita theory.

In this section we review some classical facts about Morita theory and
we also show how these notions extend to the reflexive case. Our main
aim will be to prove I1.5.3.7. Apart from the fact that this proposition
(or rather its reflexive equivalent) will be useful in Chapter V, it shows
that the theory for strongly graded rings for finite groups is essentialiy
equivalent to the theory of skew group rings. '

I1.5.3.1 Definition : Assume that R, S are arbitrary rings. We say
that R and S are Morita equivalent if there exists bimodules g Mg
and gNp together with bimodule isomorphisms '

i: gpMs®s sNg > Rand j: sNg ®r rMs — S

satisfying the following associativity conditions : for all a,a" €
M, bb' € N : i(a®b)a’ = aj(b® a') and a'i(b® a) = j(a' ® b)a
We say that (M, N, 1, j) define a Morita equivalence between R and
s. .

I1.5.3.2 Remark : The associativity condition is less important since,

if one has isomorphisms ¢ and j, one can always choose j in such a way

that the associativity conditions are satisfied.

11.5.3.3 Proposition : Assume R, S, M, N, ¢, j as above. Then the
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following are true.

(1) M®s? and NQg? induce inverse equivalences between S — mod
and R — mod.

(2) 7®r M and ? ®s N induce inverse equivalences between mod — R
and mod — S.

(3) M®s?®s N and NQr?®r M induce inverse equivalences between
R — bimod and S - bimod.

(4) The equivalences introduced in (1) (2) and (3) are compatible with
the various possible tensor products, e.g. mod—Rx R—mod — Ab,
R — bimod x R — mod — R — mod, etc...

(5) S = Endgr(Ngr), R = Ends(Ms) as rings.

(6) rNg & HomR(gMR,R RR)

(7) N is a finitely generated right R progenerator.

(8) Z(R) = Z(S) canonically.

Proof : Easy and classical. (For (8) one uses the fact that Z(R) =
Homp pimod(R), Z(S) = Homs_simod(S).) o

Properties (5),(6) and (7) give us a clue how a Morita equivalence looks

in general. This is strengthened in the following Theorem :

11_.5.3.4 Theorem :

(1) Let R be a ring and N a finitely generated right R progenerator. If
S = Endgp(Ng) then N is a S—R bimodule. Let N* = Hompg(Ng, Rg).
This is canonically an R-S bimodule. Let j : NQg N* — S : j(n ®
$)(m) = ng(m)andi: N*QsN — R:4(¢®n) = ¢#(n) be the canonical
maps. Then (N*,N,i,;) defines a Morita equivalence between R and
S. ’

(2) For any equivalence F : R — mod — S — mod there are (M, N, 1, j)
as in Def. I1.5.3.1 such that F is naturally isomorphic to M @7. o

Proof : Classical.

If I is an invertible S — S bimodule then we have seen that I induces
an automorphism o on Z(S) (II 2.2.1). This automorphism has the
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property that ic = oy(c)i for all ¢ € Z(S), i € I. We will need the fact
that oy is invariant under Morita equivalence in Chapter V.

IL5.3.5 Lemma : Let R and S be Morita equivalent and assume
that I is an invertible § — § bimodule. Let I' be the corresponding
R — R bimodule. Then the automorphisms o7, oy induced on Z(S)
and Z(R) are the same under the canonical isomorphism between Z(R)

and Z(S).
Proof : Easy. o

Now we turn to automorphisms.
Let M, N, 4, j, R, S be as in Definition I1.5.3.1.

11.5.3.6 Proposition : Assume that « : S — S is a ring automor-
phism. Then there is a couple (¢, I,) unique up to unique isomorphism
where I, is an invertible R-R bimodule and «' is a right R-module iso-
morphism N — N ®p I, such that o™ is given by the composition

S & Endp(Ng) 2% Endp(Np ® Ta)* Lotpel Endg(Ng) =S (%)

Proof : S, is an invertible S-S bimodule. Hence under the equiv-
alence defined in Prop. 11.5.3.3 it will correspond to an invertible R-
R bimodule, say I,. Furthermore the isomorphism of right § mod-
ules S5 =55, = S Qs 15, corresponds to an isomorphism of rlght

R-modules N-——>N ®r I,.
One easily verifies that the composition

S = Ends(Ss) 228 Ends(S ®5 18 )——)a 10?7 0 aBndg(Ss) & S
is &~*. Using Morita equivalence this composition translates into (*).
If a,8: 5 — § are two ring automorphisms and if (o', I,), (8", I)

are the corresponding pairs then there is'a unique isomorphism faB:
I, ® Ig — I,p such that the following diagram is commutative.

N £, N®gls
J(aﬂ)' a’'®1
E 1® fa ;
' N ®r I ler ®r I, ®r I
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The maps fo,s must necessarily satisfy the cocycle condition given by
the commutativity of the following diagram :
fap®1
L,es®l, 5 LI,

1®fp,®1 J.fo‘ﬁw

L®ly = ILg,

o
Morita theory has of course a graded equivalent. Let R, S be rings
graded by a not necessarily finite group G. Then a graded Morita
equivalence is a quadruple (gMg,s Ng,i,j) as before but this time
we require M, N to be graded bimodules and ¢, j should be graded
maps. One can easily verify that Prop. 11.5.3.3 and Theorem II.5.3.4
have graded equivalents. In particular the equivalences defined in Prop.
I1.5.3.3 respect the shift functor. Furthermore any category equivalence
between R —gr and S — gr respecting the shift functor is obtained from

a graded Morita equivalence.
Now we come to our main result :

I1.5.3.7 Proposition :

(1) Let R be an arbitrary ring and let N be some finitely generated
right R progenerator such that a finite group G acts on § = Endg(N).
Let §' = %G be G-graded in the usual way. Then S’ is graded Morita
equivalent to a strongly graded ring R’ with R, = R.

(2) If R' is strongly graded with R, = R then there is a finitely gen-
erated right R-progenerator N and an action of G on § = Endg(N R)
such that R' is graded Morita equlvalent to S G.

Proof of (1) :

As above, elements o of G give rise to pairs (¢',I,). Define R' =
®occly. Then the maps fo,r define a graded ring structure on R.
Clearly R' is strongly graded. Now let N' = N @z R'. N'is a left S-
module. Let.o € G. Then we define a o-action 5: N ® I, = N @ I,
as the composition N® I, — o' @ IN® I, @ I, — for N ® I(UT)
The reader may verify the following facts

(a) G defines a left action on N' i.e. 5(7(m)) = a7(m)
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(b) The G-action is compatible with the action of S in the sense that
the following diagram is commutative for f € § = Endg(Ng).

N®L-i -5 N®Ign
Jf@l o~ (L
N@IL - N®Im,

Hence N' is a left S' = S G module. From the category equivalence of
mod— R, and gr—R' it follows that N' is a right R' graded progenerator.
Left multiplication induces a map 7 : ' — Endg/(Ng/). This map is
an isomorphism in degree zero and since it is for example a map as left
S' module (S’ strongly graded) we see that i must be an isomorphism.

Proof of (2) :

Let the R — R bimodule I, be defined as R! and let the maps f,, :
I, ® I, — I,; be defined by the multiplication in R'. If we try to
invert the proof of (1) we see that we need a finitely generated right
R-progenerator Ng and suitable maps

N—o'NQI,
such that ,
N SN NQI,
J(ar)’ Jal@l
NoL, ¥ NeIL ol

is commutative.
Now it is easily verified that it suffices to take N = R’ and o' =

@TEGf::' oo

Now suppose that ¢ : R — S is an arbitrary extension of rings and
assume that S is'a right R progenerator. Let R; = Endg(Sg) and let
J 5 — Ry be the canonical morphism by viewing S as a left S-module.
From the above we know that R; is Morita equivalent with R. Now let
M be an R-module, then one can extend it to M; = $ ®z M. On the
other z}and, under the Morita equivalence R — mod — R; — mod, M
corresponds to My = S @g M. It is easy to see that M, viewed as an
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S-module via j is isomorphic to M;. Hence extension of scalars via i
corresponds to restriction of scalars via j. ,
Similarly if N is a left S-module then we can view it as an R-module via
i. Via the Morita equivalence R —~ mod — R; — mod this corresponds
to the Ri-module N; = S®z N. On the other hand let N, = Ry ® g N
It would be nice if N; and N, were functorially isomorphic because
this would mean that restriction of scalars for ¢ would correspond to
extension of scalars for j.

To construct a canonical isomorphism between N; and N, it is clearly
sufficient to give an Ry — S-bimodule isomorphism between S@g S and
R, since Ny =SQrS®s N

Of course such an isomorphism does not exist in general but it does
exist for example in the case that S/R is Galois for a finite group G. It
is easily verified that in that case the map S®r S — Endgr(S):a®b —
aTr(b—) has the required properties.

Let us summarize what we have shown:
I1.5.3.8 Proposition : With notation as above we obtain :

(1) The composition of the Morita equivalence R — mod — Ry — mod
and the restriction functor Ry —mod — S —mod is naturally isomorphic

to the extension of scalars functor R — mod — S — maod.

(2) Suppose that S/R is Galois for a finite group G. The restriction of
scalars functor § — mod — R — mod is naturally isomorphic with the
composition of the extension of scalars functor S — mod — R; — mod

and the Morita equivalence Ry — mod — R — mod.

As usual all the above definitions and theorems have reflexive interpre-
tations. These will be mainly useful in Chapter V. We will just state
the definitions and leave the task of making the other obvious general-
isations to the reader. We revert to the situation introduced just after
I1.5.1.7.

11.5.8.9 Definition : Assume that I and A are R-orders. We say
that T' and A are reflexive Morita equivalent if there exists R-
commuting reflexive bimodules 4 Mt and IV together with bimodule
isomorphisms 7 : A\Mp Q-1 Na — T and j : pNp Q) aMr — T satis-
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fying the same associativity conditions as in I1.5.3.1. We say that the
quadruple (M, N, 1, ;) defines a reflexive Morita equivalence.

The role of finitely generated progenerators in classical Morita theory
is played by reflexive generators in reflexive Morita theory (See IL5.1).
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III. Artihmetically Graded Rings over Orders
IIL1. : Orders Graded by a Torsion Free Abelian Group.

Throughout this section, A will be a prime pi. ring, graded by a
torsion free Abelian group G. We want to prove under mild conditions
on the grading (in particular, A has to be divisorially graded) that
arithmetical properties of A., e being the neutral element of G, extend
to A. Further, we include counterexamples in order to show that the

converse implications do not hold.

Let us first consider the case that A, is a maximal order, i.e. for every
two-sided Ac-ideal I we have (I 5 I) = (I :» I) = A.. Similarly, we
may define a gr-maximal order I' to be the a G-graded ring with graded
ring of quotients Q9(T) such that for every homogeneous ideal I of T’
we have : : .
(Il ={eecQ'T):eICIl}=T
{(I:,.I)g={:I:EQ9(I‘):I$CI}=I‘

In I1.4. we have seen that gr-tame implies tame. We will now show

that a similar result holds for gr-maximal orders.

IIL.1.1. Lemma. If Ais a G-graded prime pi. ring, where G is a
torsion free Abelian group, then A is a gr-maximal order if and only if

A is a maximal order.

Proof. Let ¥ be the full ring of quotients of A and X9 the G-graded

* ring of quotients. In III.3. we will see that X9 is an Azumaya algebra

over K9 where K9 is the graded field of fractions of the center of A.
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Further, the results of I.1. entail that K9 is completely integrally closed.
Combining all these facts it is easy to show that 29 is a maximal order
in %,

Clearly, A C X9 is a central extension whence two-sided ideals of A
extend to two-sided ideals of £9. So, let z € & and I an ideal of A such
that I C I, then 2I%9 C I%9 whence z C £9 by maximality of 9.

For each o € G, we denote by C,(I) the set of elements from A, which
appear as a leading coefficient of an element from I (note that this

definition makes sense since G is ordered !). Now, decompose z into

homogeneous components z = z,, + ... + 25, where oy < ... < oy,
the I C I entails that z,,(®.Co(I)) C (®+C(I)). Since ®,Co(I)
is homogeneous and a twosided ideal of A (and A is gr-maximal) we
obtain z,, € A. Replacing z by z ~ z,, and arguing as before we
finally obtain that z € A, finishing the proof.

The other implication is, of course, trivial. o
Using this result, we will prove :

III.1.2. Theorem. Let A be a divisorially G-graded prime p.. ring,
where G is a torsion-free Abelian group. If A, is a maximal order in its
ring of quotients Q(A.), then A is a maximal order.

Proof. In view of the foregoing lemma, it suffices to show that A is a
gr-maximal order. So, let I = @,I, be an homogeneous twosided ideal
of A and z € X, such that 21 C I. This inclusion entails zI** C I**, so
we may assume that I is divisorial, hence that it is "generated” by I.
Similarly, (I :e I) is divisorial and homogeneous, whence "generated”
by (I :e I)e = (I :e Ic) = A finishing the proof. : o

We know that a maximal order A is a maximal order over a Krull do-
main provided A satisfies the ascending chain condition on divisorially
(twosided) ideals. To prove this fact, we need to impose another condi-
tion on our grading group G. This is already clear from the fact that a
G-graded field is a Krull domain if and only if G is torsion free Abelian
satisfy;ng the ascending chain condition on cyclic subgroups. We will
now show that this condition is sufficient : '
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IT1.1.3. Theorem. Let A be a divisorially G-graded prime p.i.-ring,
where G is a torsion Abelian group satisfying the ascending chain condi-
tion on cyclic subgroups. If A, is a maximal order over a Krull domain,
then A is a maximal order over a Krull domain.

Proof. The fact that A is a maximal order follows from Theorem
IT11.1.2. We have to verify the ascending chain condition on diviso-
rial ideals. Therefore, let Iy C ILzc... be an ascending sequence of
such ideals. Since X9 is an Azumaya algebra over a unique factor-
ization domain it follows that (X91;)** C (X91;)**c,... becomes con-
stant, i.e. (Z9IN)*™* = (29L,)** for all m > N. Further, one has
an ascending sequence of divisorial A.- ideals : C.(I;) C C.(L;)C...
which terminates by our assumption, i.e. Ce(Ip) = Ce(I,) for all
n > M. Let o = sup{M,N}. We now claim that I, = I, for all
n > a. For take J = (I, : I,) and j € J, then j.I,j C I, entails
(B9L,)**j C (B9I1,)** = (X91,)** whence j € 9. So, decompose j into
homogeneous components j = j,,+...+Jj,, Whereo; < ... < 0. Then,
Ce(In)-Jor, C Cop(In). Further, using the fact that A is divisorially
graded, it is easy to verify that : Cr(I;) = (A, Co(I;))** = (Co(I;) A
This entails that Ce(I;).jor, C (Ao, .Ce(Iu))*™ = (Ag,.Ce(I,))*
whence Ce(I,) 1% Ce(I,).Joy, C Aoy -Ce(Ln)*Ce(I)™ 1 o1, A jo, C Ao,
So, jo, € Ag, and replacing j by j — j,, one can continue in this way
and obtain finally, j € A. Therefore: A = (I, : I,) = I, ¥ IJ' whence
I, = I, finishing the proof. o

However, the inverse implication is far from being true. For example,
let R be a discrete valuation ring with uniformizing parameter = and

A= (ﬁ (]7;))

Then, A is clearly hereditary but not maximal. Its Jacobson radical is

consider

clearly invertible

_ () (™M) _ 0y _ (0 = -
J(Ae) = ( 7 )=t (1 5)=(1 5)Ae=un
Then form the strongly graded ring A.[J(A.)]. This ring is isomorphic

to A.[Y,Y 71, ] where ¢ is the automorphism given by conjugation in
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Ae with-z = (23) In the next theorem we will see that this ring is a
tame order. It is easy to see that every localization at an height one
prime different from p = Z(A.[Y,Y %, ¢])7 is an Azumaya algebra and
that the localization at p gives an hereditary algebra with a tinique
maximal ideal generated by Y~! and hence is a maximal order. In
conclusion A.[Y.Y ™1, ] is a strongly graded maximal order whose part

of degree e, A, is not maximal.

Theoren III.1.3. has an immediate consequence for gradation by a
polycyclic infinite (but not necessarily abelian) group.

IIL.1.4. Corollary. Let A be strongly graded by a poly-infinite-cyclic
group G. If A, is a maximal order (over a Krull domain) then A is a

maximal order (over a Krull domain).

Proof. There is a finite series {e}=G CcG C...C G, =G of

subgroups of G such that each G;_; is normal in Giand G; /G &2 Z.
If n = 0 then the statement holds and we can apply induction on n.
Put H = G,1, then A is strongly graded by G/H = Z over AU =

@H A,. By induction, A is a maximal order, whence by Theorem
oc
IIL1.3., A is a maximal order, too (the same for maximal orders over

Krull domains). o

Now, we will consider the similar problem for tame orders.

III.1.5. Theorem. Let A be divisorially G-graded, where @ is a
torsion free Abelian group satisfying the ascending chain condition on
cyclic subgroups. If A is prime p.i. and if A, is a tame order, then A is

a tame order.

Proof. First, we claim that Z(A.) is an integral extension of Z(A)e.
For, take the graded localization X9 of A, then Z(%9¢) is the field of
fractions of Z(A.) and Z(39). that of Z(A).. We can use the proof of
Theorem IL.3.2. to show that Z(Z¢) is finite dimensional over Z(%9),.

Moreover, this is a Galois extension and Z(A), = Z(Ae) N Z(9)e, so
this finishes the proof of our claim.

In view of Theorem I1.3.21. we merely have to verify that A is gr-tame.
Let g e an height one prime of Z(A),, then by integrality Z (Ae)q
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has only height one primes and is therefore a Dedekind domain. So,
(Ae)q is a hereditary order and A, is strongly graded. But then A, is
gr-hereditary whence tame and Z(Ag) is gr-Dedekind whence Krull in

view of the results of I.1. Therefore,
(%) Ag = n{Apipe XP(Z(A): PN Z(A)e = ¢}

We will first show that A is a reflexive Z(A)-module.

Since :

A Cn{Ag g€ XD (Z(A).),

and both rings are divisorially graded with the same part of degree e, so
they are equal. The reflexivity property now follows from (*). But then
it also follows that Z(A) is a Krull domain since Z(A) = ﬂ{Z( 4);q €
XM(Z(A))} and all Z(A,) are Krull domains.
We are left to prove that graded localizations at graded height one prime
ideals of Z(A) are gr-hereditary. Take such a prime p and consider
Pe N Z(A)e = q. But A, is gr-hereditary by the argument above and
A, is a graded localization of A, , so, A, is gr-hereditary too, finishing

the proof. o
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II1.2. Orders Graded by a Finite Group.-

In this section we aim to prove similar results as in III.1. when the
grading group is supposed to be finite. Let us first fix notations. A
will be a prime p..-ring, divisorially graded by a finite group G and
suppose that A, is also prime. Let A be the center of A, and L its
fields of fractions. The classical ring of fractions ¥. of A, is a central
simple L-algebra. If we invert all central non-zero elements of A, we
obtain a strongly G-graded ring 29 s.t. X¢ = ¥,. Since X is a finitely
generated X.-module, it is Artinian, hence X9 is the classical ring of
quotients of A.

As explained before, we have an action of G on A and this action
extends to an action on L defined by the grouphomomorphism G —

Pic(Z.) — Aut(L). Clearly, L is a finite Galois extension of LS and so

A is an integral extension of AC.

IT1.2.1. Theorem. Let A be divisorially graded by a finite group G
such that tr(ag) = 1 for some aq € A. Assume that A is a prime p.i.
ring whose part of degree e is a tame A-order. Then C = Z(A) is a
Krull domain and A is a tame C-order.

Proof. Since A, is an A-order, A. is integral over A4 which is integral
over A°, so A, is integral over A®. If » € A, then »™ € A, for n = |G|
and so r is integral over A%, Now, let 0 #r =17y + ...+ 7y, be the
homogeneous decomposition of » in A. Let T = A%{r,,,...,74,} be
the Ag-subalgebra of A generated by {r,,,...,75, }. From [42] p. 152
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it follows that T is a finitely generated A%-module, whence integral.
This entails that r is integral over AC.

The extension A® C A satisfies the PDE condition and for every ¢ €
XM (AC) there is a p € X(V(4) lying over ¢. Now, let ¢ € XD (AF),
then A, is the integral closure of (A%), in L. Hence 4, is a Dedekind
domain and even a principal ideal domain (only a finite number of
maximal ideals). Clearly (Ae)g = N{(Ac)p;p € X(W(A) lying over
g} and since A, is a divisorial A-module we have A, = N{(A¢)y5q €
X0(AS). o
Further, for each ¢ € X(M(A%), A, is strongly graded and (Ag). = (Ac)q
is hereditary, so by the results from IL5., A, is hereditary, too. (Here,
we use tr{ao) =11).

Clearly, A = N{A;;¢ € XMV (A) since both sides are G- divisorially
graded with the same part of degree e. It remains to show that A is a
tame C-order. Since A® C C is integral, it satisfies lying over and the
PDE-condition. Since A is a reflexive A9-module, it is reflexive as a
C-module. Finally, since A, is hereditary for ¢ € X(¥)(4%) and A, for
p € XD(C) is a localization of some Ag, A, is hereditary, too. Finally,
C is a Krull domain since C = N{Cy; ¢ € X(4%)} which follows from
A=n{A,: g€ XB(A4%)}. Each C, is a Dedekind domain, being the
integral closure in a finite field extension of the discrete valuation ring.
Ay o
The corresponding situation for maximal orders is more complicated.
This is clear from the Auslander-Goldman-Rim result (which we will
generalize in the next theorem) which states that the skew group ring
S oG is a maximal R-order (R and S Dedekind domains) if and only if
S/R is unramified, that is if and only if the discriminant ideal d(S/R)
is equal to R.

ITL.2.2. Theorem. Let A be divisorially graded by a finite group
G such that tr(ag) = 1 for some element ay € A. Assume that A is
a prime p.i. ring whose part of degree e is a maximal order over the
Krull domain A. Suppose further that for every height one prime ideal
g of A® we have that (gA.)** = (Py...Py)** where the P; are distinct
height one prime ideals of A, then A is a maximal order over the Krull

domain C.
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Proof. In Theorem III.2.1. we have proved that C is a Krull domain
and that A is a tame order. Therefore, it suffices that the localizations
Agq € X(l)(AG) are maximal orders. So, we aim to prove that every

twosided I' = Ag-ideal is invertible. So, consider a maximal I-ideal M, -

then M N (4%), = q(A%), and ¢(4%),T.=P,...P, =P, N...N P,
where the P; are distinct maximal ideals of I',. Now, I’/ (Mn Af). r
is a strongly graded ring, hence by a result of Cohen and Montgomery
[CM], it follows that (M N AZ)T is a semiprime ideal of T, but then
(M n Af),l" = M N J where J is an ideal of T' not contained in M
and it is easily seen that (M N AZ).I' = M.J = J.M. The inverse of
(M NAE)T. in £ is then used to construct an inverse for (MNAS)T
in X9, Thus, JM = MJ has an inverse in ¥9 and this entails that M
is invertible in 9. It is well known that an hereditary order such that
every maximal ideal is invertible is maximal, finishing the proof. o
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IIL.3. Generalized Crossed Product Azumaya Algebras.

In Section II.4. we have seen that it is possible to construct the ram-
ification Rees ring over a maximal ‘order (which is not an Azumaya
algebra) to obtain a reflexive Azumaya algebra or sometimes even an
Azumaya algebra. In the case of group rings, such phenomena do not

exist, in fact one may prove the following result :

IT1.3.1. Proposition. Let R be a ring, G a group. The groupring
RG is an Azumaya algebra if and only if :

1. Risan Azumayd algébta.
2. |G'] is finite and |G'|! € R.

3. [G: Z(G)] < co.

Proof. cf. F. De Meyer, G. Janusz {18}, Theorem 1. o

Taking into account the phenomena described above it is clear that the
determination by strongly graded Azumaya algebras of properties of
the group and of the part of degree e cannot be as nice as in the case of
group rings. In fact the natural question to ask is the following : if 4
is strongly graded by G over 4. such that A, is an Azumaya algebra,
what conditions on G' make A into an Azumaya algebra 7. We will
deal with this problem in the quasi-inner case. A gradation of type
G on the 4 is said to be quasi-inner if Z(4.) C Z(4) i.e. if A4 is
an A.-bimodule over Z(A4.). If A is morever strongly graded then the
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gradation is quasi-inner exactly when the canonical morphism
G - Pic(4.) — Aut(Z(4.))

is trivial.

I11.3.2. Theorem. Let A be a strongly graded ring of type G such

that A, is an Azumaya algebra. Assume that |G|™! € 4, (i.e. G is

finite) and that the gradation is quasi-inner. Then 4 is an Azumaya

algebra.

Proof. Since A is an A.-bimodule centralizing the Z(A.)-action it
follows that A = A, (® )C’A(Ae), where C4(4.) = {a € A,ab =
Z(Ae

ba for all b € A.}. It is obvious that C4(A.) is a graded ring of type G

and from A, ® A -1 = A, it follows that A(UAQ) ® Ag‘ii) = Z(4.),
Ae Z(Ae)

where the functor (—)(4<) : A4.-A.-mod — Z(A.)-mod associates to
an A.-bimodule M over Z(A.) the Z(A.)-module M(4) = {m ¢
M,am = ma for all a € A.}, because the functor (—){4<) defines an
equivalence of categories. Consequently, C4(A4.) is strongly graded by
G over Z(4.), Ca(4e) = @oeccdSi). It C4(A.) is separable over
Z(A.) then it will also follow that 4 is separable over Z(4,) hence over
Z(A) and then A will be an Azumaya algebra.

Consider a maximal ideal m in Z(A.) and look at the strongly graded
ring B = Cu(A.)/mCu(Ae) over Z(A.)/m. The field Z(A.)/m is
central in B, so B = (Z(A.)/m)G" is a twisted group ring with respect
to some t € H*(G,Z(A.)/m). Because |G|™! € Z(A.)/m we may
conclude that B is separable over Z(A4.)/m. The local-global property
for separability, cf. F. De Meyer, E. Ingraham [17], entails that C4(A4.)
is separable over Z(4,). o
The next theorem extends Corollary I1.3.6.

I1.3.3. Theorem. Let A be a P.I ring strongly graded by G such that
A, is semiprime. Assume that G' is finite and that each torsion element
of G has an exponent not divisible by char (A4.). If A is gr-semisimple
gr-Artinian then A is an Azumaya algebra.

Proof. Let S, be the set of regular elements in Z(A.). Since A, is
semiprifne and a P.L ring it is a semiprime Goldie ring. By Proposition
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11.1.4., S, is a left Ore set in A and as such it must be invertible in A.
Obviously an s € S. has inverse s~! in A, hence S;'lA(G') = A
is a gr-semisimple gr-Artinian ring over the semisimple Artinian A,
where A(S) = @,cq As. Since |G'|™! € A, it follows that AG) is a
semisimple Artinian ring. Indeed, that A(G) is Artinian follows from
the fact that each A,,0 € G is a finitely generated projective A.-
module (left and right), hence A(%) is finite dimensional over Z(A4.);
from J(A(G)) = J9(AG)) it follows that J(A(F)) = 0 because the
Jacobson radical is generated by J9(4()), = J(4.) = 0. Now, 4 is
strongly graded by G/G' over AG) = 455 € G/G' being the zero
element. Let Sz be the set of regular elements in Az, then S la=4
because SzA = A because Sz is invertiblein A5. Again from Proposition
I1.1.4. it follows that A is gr-semisimple gr-Artinian as a G/@' -graded
ring too ! So we may write 4 = 4; § ... & A, where each A; is
gr-simple gr-Artinian in the G/G'-gradation. The fact that G/G' is
abelian entails that each Z(4;) is a G/G'-graded field.

Since G is finite we have that G' C G¢ where G'¢ is the torsion subgroup
of G. Tt is clear that Z(A;)(®) is semiprime and then so is' Z(4;)
because G/G; is torsionfree abelian. Therefore A4; is semiprime and so
we may pick a nontrivial central polynomial and proceed as in Corollary
I1.3.6. in order to deduce that each 4; is an Azumaya algebra. ]

IT1.3.4. Corollary. The foregoing applies to twisted group rings and
group rings. If G is a group such that [G : Z(G)] < o0, |G| € k
and kG? is the twisted group ring with respect‘ to the twocycle ¢ :
G x G — k* then, if kG? satisfies polynomial identities it follows‘d that
[Z(Q) : Z(G)reg] < o0 where Z(G);eg is the central subgroup of t-
regular elements « in Z(G), where « is t-regular if ¢(a, 8) = (8, @) for
all B € Z(G). Therefore kZ(G);},, is in the centre of kG* and kG"* is
finitely generated over it. :

In the sequel we will just write G for Gy with respect to the cocycle
c¢. When considering a quasi-inner graded ring, there are two ways
to make the cocycle describing the graded structure visible. One is
to look at the generalized crossed product structurei. e.. consider
the A.-bimodule isomorphisms, for : Ac ®4, Ar = Aor, determining
the factor set {fo.r,0,7 € G} which in turn determines an element of
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H?*(G,U(Z(A.))). The other is to look at the graded ring of fractions
Q@9(A) and the subring kG° where k = Z(Qci(4.)) (this is a subring
in the quasi-inner situation because the ¢(o,7) will be G-invariant).
So, if we refer to "the” cocycle of a quasi-inner graded ring we mean
the cocycle (up to equivalence) obtained in the natural way indicated
above. With these conventions it is unambiguous to refer to the group
G. in G associated to a quasi-inner gradation of type G (G, will be the
group generated by the c-regular elements in G). '

In the sequel of this section we consider quasi-inner G-strongly graded
rings A over an Azumaya algebra A.. The quasi-inner property entails
that ideals of A, extend to ideals of 4 in this case. In particular I =
A rad (A.) is an ideal (and a nil ideal contained in rad (4)) and 4/

is strongly graded by G over A./rad (4.) = 4.. Since Z(4.) = Z(4,)

it is clear that A/I is quasi-inner graded by @ too.

If we know already that A4 is a finite module over its center then A will
be an Azumaya algebra if and only if 4/I is an Azumaya algebra over
Im(Z(A)) = Z(A)/IN Z(A) because for every m maximal in Z(4) we
have that m D rad(Z(A.)) hence A/mA is an epimorphic image of A/
and consequently A/mA is an Azumaya algebra with centre ImZ (A / I)
(note : Br(Z(A)) = Br(Z(A)/IN Z(A))).

In order to check that A is an Azumaya algebra whenever A, is one
we may reduce the problem to the situation where 4, is commutative
because 4 = A4, z(® )O’ 4(4.) follows from the quasi-inner property

and, just like in the proof of Theorem II.3.2. we may replace A by
Ca(A.) which is then quasi-inner strongly graded C4(A.)s = (A, )4,
However for generality’s sake we present the following theorem in its

more natural form. ul

IIL.3.5. Proposition. Let 4 be a semiprime P.L ring quasi-inner
strongly graded by G over A.. Let ¢ be the two-cocycle describing the
gradation of A. The set of c-regular elements in G has finite index and
they generate a normal subgroup G. of G such that [G : G,] < co

Proof. First note that A, is semiprime to. Indeed, if rad (4.) were
nonzero then E = rad(A4.)NZ(A.) # 0 hence from the quasi-inner prop-
erty it follows that for z € E, Az is a nil-ideal of A and Az # 0 ifz # 0.
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Since A is a semiprime P.I. ring there 'are no such nil-ideals, hence
rad (4) = 0. Put Q9 = Q9(4), C = Z(Q9); since there is no action on
Z(A.) we have that Q9 = KG° where K = Q(Z(A.)) (note: Q(4.)is
obtained by inverting the regular elements of Z(A4.)). As a K-module,
C is freely generated by the ray class sums p; = Egec /Co(as) Ygthas u;l
where «; is a c-regular element of G. Recall that «; is i-regular if
c(ai,B) = ¢(B,;) for all B € G that commute with a; and that
every conjugate of a c-regular element is again c-regular. Note that
we assume that ¢ is normalized, i.e. ¢(3,871) = 1 for all B € G,
in writing this formula, indeed if ¢’ = gz with 2 € Cg(a) then

o = oz a)c(za)e(za, 27 ugug,uyt = oz, 27 uguauy? so

UgiUg, Uy
¢(z,271) = 1 is necessary to make ¢; well defined. However the nor-
malized condition can be avoided either by allowing a free extension
of K as in [54] or by using some more complicated calculations and
formula. Q(A) may be obtained by inverting central elements.in 4 and
Q(A) is finitely generated over Q(C), say by z1,...;zs, which may be
taken in KG? or even in A. Write : z; = Eki‘jgij with ki"./ € Q(0),
; €G.

Take A € C such that }\a:z = X%;Ai50:5 with A, € C and A regular
in C. For ¢ € G we may write g = Xa;z; with a; € Q(C), hence
ag = X;a;z; with a,a} € C and a regular in C. So, Aag = %;Z;al\;;a;;
with Aa # 0 in C and @j);; € C. Using the fact that Aa and a});; are
K -linear combinations of ray class sums we obtain that a;g = ;504
for certain c- regular elements a; and «;;. This establishes that the set
of c-regular element R, has finite index in G (i.e. G is a finite union of
cosets of R.). It is clear that z € G, entails z~! € R, and grg~t € R,
for all g € G, hence R = R, U{1}UR;! = R.. Lemma 2.3. of [41] p.
182 yields that R'ck is a subgroup of G (where k is the number of 'g,{j in

a decomposition G = U R.g;;). Since a conjugate of conjugates in R,
4

in the obvious way, it is clear that G, = R,ﬁk is a normal sﬁbgroup of

finite index. D

IT1.3.6. Corollary. If ¢ is normalized then we have that R. N.Z(G)
equals G, N Z(G). We refer to [54] for the proof.

IIL.3.7. Theorem. Let 4 be a P.L ring quasi-inner strongly graded
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over the semiprime ring A, which is supposed to be a ) -algebra. Then
A is an Azumaya algebra if the following conditions hold.

1. A, is an Azumaya algebra.

2. |G' < .

Proof. Since |G'| < oo we may consider G; = {g € G,¢" = e for
some n € IN} as a normal subgroup. Since 4 is a @ -algebra A(C*) is
easily seen to be semiprime; since G//G is torsion-free abelian, rad (4)
is G/Gy-graded hence rad (4) N A(®Y) is nonzero whenever rad (4) is
nonzero. Consequently A is semiprime. Suppose that A satisfies the
n X n-identities but not the n — 1 x n — 1-identities and assume that
for every finitely generated subgroup H of G, AH) does satisfy these
identities. If f is an n — 1 x n — 1 identity not satisfied by 4 then
f(ai,...,a.) # 0 for certain a; € A. The degrees of the homogeneous

components of those a; generate a finitely subgroup Hy of G such that

AH?) does not satisfy the identities of n — 1 x n — 1-matrices. We
claim that 4 is an Azumaya algebra if A (write H s = H again) is
an Azumaya algebra. Indeed, let g be a multilinear central polynomial
for A then it is also a multilinear central polynomial for A) and
it does not vanish on the (semiprime !) ring A since the latter
does not satisfy the identities of n — 1 x n — l-matrices. If A is an
Azumaya algebra then the Formanek centre of A(H) equals Z(4(H)). By
multilinearity it follows that g(A4(*)) generates the Formanek centre of
A additively. Since g(4) D g(A®) it is clear that 1 is in the additive
group generated by g(A) in Z(A4), hence the Formanek centre of A
equals Z(4) or A is an Azumaya algebra. So we reduce the problem to
the situation where A4, is commutative and G is finitely generated. Then
G = A(G) and hence Z(G) has finite index in G in view of Theorem
I1.3.2. Put Z = Z(@). = Z(G) N G.. Then 49 is commutative and
central in A (we have denoted the algebra obtained after the reductions
we described above by A again). Since G/Z is finite and |G/Z|7t € 4.
it follows from Theorem IIL.3.2. that 4 is an Azumaya algebra. o

IT1.3.8. Remark. If k is a field and kG is semiprime then kG is an
Azumaya algebra if and only if [G : Z(G)] < co. Indeed, then kG is a
P.I ring and from [G : Z(@)] < oo then |G'| < oo follows. Moreover
since £G is semiprime either char £ = 0 and ¥ D Q, or G has no finite
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normal subgroups H with char k|| H|, hence |G'|~! € k and the theorem

may be applied, so the above statement results. o

In the following A is a @ -algebra.

I11.3.9. Theorem. Let A be a prime P.I. ring ring which is strongly
graded by a group G such that the action of G in Z(A.) (via the
morphism G — Pic(4,) — Aut(Z(4.)) makes Z(A.) into a finitely
generated separable extension of Z(4.)C. If A, is an Azumaya algebra
and [G : Z(G)] < o0, |G'[7! € 4, then A is an Azumaya algebra too.

Proof (Sketch). Since Z(4) is a domain, Z(4)% is a domain and
Z(A.) is a Galois extension of Z(4.)¢ with finite Galois group G; =
Imy, ¢ : G — Aut(Z(A.)) the canonical morphism. Put H = Keryp,
Gy = G/H. Thering C4(A.) is strongly graded by G over Z(A4.) but in
C4(A)HD the ring Z(A.) is central. Since [H : Z(H)] < oo, [H'| < 00
and |H'|"! € A follow from the conditions on G (note [G : H] < o)
then it follows from Theorem IIL.3.5. that C4(4.)) is an Azumaya
algebra. From C,(zy(Ae) = (Ca(4e)) ™ it is easily derived that AUD
is an Azumaya algebra. Up to another ”commutator ring” reduction we
reduce the problem to a Gi-strongly graded ring over a commutative
ring C such that C is Galois over C®*. Hence one can pass to quotients
modulo maximal ideals of C% and then one arrives at the problem of
proving that a crossed product k * G;, where k is a Galois ring over

the field k%1 is an Azumaya algebra with centre k°*, but the latter is

a classical fact. o
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IH.4. Extensions of Tame Orders and Related Séquences.

In this section B will be a tame order over a Noetherian integrally closed
domain R and A is a ring containing B. It is thus understood that
whenever we mention divisorial B-(bi)modules these will be divisorial
R- la.ttices I' A two-sided B-submodule P of A4 is said to be divisorial in
A if P'=P** where (—)* = Homp(—,p B) and there exists a two-sided
B-submodule @ of A such that Q = Q** and (PQ)** = (QP)** = B.
By the first remark such a B-bimodule P will be reflexive as a B-module
(left) if and only if it is reflexive as an R-module and then it is finitely
generated (and presented) as a B-module and an R-module. The two-
sided B -submodules of A which are divisorial in 4 form a group Dy (A)
with respect to the multiplication P.Q = (PQ)**.

We write Autg(A) for the group of all B-automorphisms of A. Clearly,
Autp(4) acts on Dp(4) by P — P if 0 € Autp(A). ‘Taking iso-
morphism classes of B-bimodules defined a group morphism Dp(4) -»
HMic(B), P s [P], where Ilic(B) is the reflexive Picard group of
the tame order B, defined to be the set of isomorphism classes of re-
flexive B-bimodules M such that there exists a reflexive B-bimodule
N such that (M%N)** = (N%M)** & B as B-bimodules equipped
“with the operation induced by (— (}83) —)*. If A is divisorially graded
by G over B, i.e. with B = A,, then each 4,,0 € G, is in Dp(4)
and the maps G — Dp(4) and Dg(4) — Mic(B) are group mor-
phisms giving rise to the morphism G — Iic(B),o + [4,]. If we
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consider the classes of P € Ilic(B) with the property that the action
of R is centralized, i.e. 2p = pz for all z € R, p € P then we write
[P] € icr(B). With the assumptions on B set forth above it is easily
verified that CI(B) = Ilicg(B). However, since we do not assume that
R C Z(A), we cannot map Dg(4) to CCI(B). In general we may ex-
tend Y. Miyashita’s work, cf. [33], to the case where 4. is a divisorial
R-module cf. [50], but here we restrict at once to the arlthmetlcal
situation i.e. we assume that the A.S. conditions hold :

1. R is integral over RN Z(A) =
2. The extension C — Z(A) satisfies P.D.E.

3. 4 is a tame order over Z(A), in paricular Z(A4) is a Krull domain
(which is not necessarily Noetherian in general).

Put Cp(4) = {z € A,zb = bz for all b € B}. Take P € Dg(4). Since
p € X'(R) is central in B, A, is a B,-bimodule and P, is an invertible
Bp-bimodule. From a decomposition of 1 in (Pp)(Pz,,)_1 = B,, say
1= 37 uv; with u; € Py, Pp,v; € (P,)™* we may derive an explicit
form of the automorphsim op, € Autz(4,)(Cp,(4,)) defined by P,y =
op,(y)Pp (elementwise) for all y € Cp,(4),), i.e. op,(y) = 3, usyv;.
Since A C A, for all p € X¥(R) it follows that Cp(4) C Cg,(4,) (note
that A, need not be a ring a priori). Consequently, for all a € Cp(4),
z € P we have za = op,(a)z because P C P, as P € Dg(A). From
Cp(A4) C Op,(4,) it follows that Cp,(4,) = (Cp(A4)), hence, for
all z € P we obtain za = op,(a)z = op,(a)z for all ¢ € X'(R).
Consequently (op,(a)—~0op,(a))P = 0, but then, (op,(a)~0p,(a))PQ =
0 for some @ such that (PQ)** = B yields that op,(a) = op,(a) forall
g € X1(R) (for clarity’s sake all localizations appearing here are to be
interpreted in K % A where K = Q(R)). We established that op,(a) €
N{(CB(4))¢,9 € X*(R)} C A and thus op,(a) € Cp(A). In this way we
obtained a uniquely determined o(P) € Autz4)(C5(4)) corresponding
to P such that za = o(P)(a)z holds for all a € Cp(4),z € P. It is
easily verified that we may replace 4 by any A-bimodule M which is
R-compatible. So we obtain : '
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IIL.4.1. Proposition. Let P € Dg(A) and let M be an A-bimodule

which is R-compatible (i.e. rm = mr for all r € R, m € M), and

divisorial as an R-module. To P we associate o(P) in Autz(4)(C5(4))

which may be induced by choosing any decomposition 1 = >0, uiv; in

P,Qp = B, for some p € X'(R), in the sense that ¢(P)(a) = 3 u;av;
(2

and Pa = (P)(a)P elementwise, for all a € Cp(4).

In a similar way one obatins a map op(P) : Cp(M) — Cp(M) Which
is a semilinear (left and right) Cp(A4)-automorphism.

Proof. An easy elaboration of the preceding remarks; note that a(P)
as defined in the statement does not depend on the choice of the de-
composition 1 = Y, u;v;. ’ o

III.4.2. Corollary. Let there be given a group morphism @ : G —
Dp(A),g — P,, for some group G.. Then thereis a canonical action
of G on Cp(4) given by ¥4 : G — Dp(4) — Aut(Cp(4)),g — P, —
o(Py) = og4. This action of G is compatible with the canonical action
of G on Cp(M) defined by the composed group morphism : ¥zs : G —
Dp(A) — Auty,(Cp(M)), where the latter group is the group of left
and right ¥ 4-semilinear Cp(4)-bimodule automorphisms.

In [50], M € Dp(A) is defined to be centrally controlled if for every
P € X*(R) localization at p = P N Z(4) yields M, € Pic(B,). In the
A.S. situation the condition that R is integral over C entails that each
M € Dp(A) is in fact centrally controlled so we do not consider this
notion further (cf [50] for some more general results in the weak AS
case). A further consequence of the A.S. condition is that the double
dual of an R-module or a B-bimodule coincides with the double dual of
it as a C-module ! The importance of this being that C is central in A
and so for P € Dp(4) left and right does not matter when calculating
Prx,

IIL.4.3. Proposition. For P € Dp(A) we have 4 = (PQ A)* =
i ‘ B
(AgP—l)**.

Proofi Let us establish the first equality, the other may be proved in a
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very similar way. The B-bimodule map 4 % P71 5 AP71 C Ayields a
B-bimodule map 7 : (A%P“l)** — (AP~1)** = A (because P C A).
Put K = Kery. Localizing at ¢ = QN Z(4) for some Q@ € X*(R) yields
P! € Pic(By), hence K, = 0 for every Q € XY(R). 1t follows that
K, = 0 and thus v is injective. On the other hand Imy D AP~ and

Imy is reflexive, hence v is surjective too. o

I1.4.4. Examples.

A. Let B be a tame order over R and let A be a prime ring divisorially
graded by a finite group G such that |G|™* € 4 and B = 4.. Results
of Section IIL.2. yield that A is a tame order over Z(A) and both
R and Z(A) are integral over RN Z(A) = R, hence we are in the

A.S.-situation.

B. Let B be a maximal R-order and suppose that A is divisorially
graded by a torsionfree abelian group G over B = A.. By results of
section IIL.1., A is a maximal order in Q. (4). In this case Z(4) is
G-graded over Z(A)y = RNZ(A) = C and one easily checks that Z(A4)
is integral over some subring D (assuming that 4 is a P.L ring) whichis
divisorially graded over Z(A)o. Localization at ¢ € X*(Z(4)o) makes
A, strongly graded and Z(A4,) will be a scaled Rees ring. Consequently
R and Z(4) will satisfy the P.D.E. condition over Z(4)o = R®. Weare
in the weak arithmetical situation considered in [50]. If R is integral
over RS then we are in the A.S. situation considered above.

C. Let A and B be tame orders over Noetherian integrally closed do-
mains Z(A), Z(B) resp. assume that A is divisorially graded by an
arbitrary group G. We will show that we are again in the a.s. situation

by proving the following :

I11.4.5. Proposition. Let A and B be tame orders over Noetherian
integrally closed domains Z(A4), Z(B) respectively, and assume that A
is divisorially graded by an arbirtrary group G over B , l.e. B = A..
Then B is finitely generated over Z(A)NZ(B) =C. -

Proof. If the statement is false we may consider a strictly ascending
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chain of C-modules in B, say
(%) Cmy CCmy+Cmy C...CCmy+...+Cmn C

This chain extends to a chain of Z(4)-modules in 4,

(%)
Z(A)ymy C Z(A)ymi + Z(A)yms C ... C Z(A)my + ...+ Z(A)m, C

 We claim that this chain is strictly ascencing. Indeed, Z(4)N B =
Z(A)e = {ze,x € Z(A)} C Z(A) is a direct factor of Z(A) because
ifz = 2o, +... 4+ 2,, € Z(A) then we may decompose & as z =
Yoreq Trogr-1+. -+ cG Tro, -1 for some oy,.. ., 0, appearing in the
homogeneous decomposition of z. Clearly each part ETE»G Tror-1 €
Z(A) as one easily checks from the relation z,z = zz, for any z, €
Ay,v € G. Therefore, (Z(A)my + ...+ Z(A)m,) N B = Z(A)em; +
.+ Z(A)emy, = Cmy + ...+ Cm, and the claim follows. Since 4

is a Noetherian Z(A)- module, the sequence (**) terminates hence (*)

terminates, a contradiction. o

That we are in the A.S. situation in Example C above is now clear
except that we have to verify that ¢ < Z(A) satisfies the P.D.E.
condition but this follows from the fact that A4 is divisorially graded
over-B,

Next we consider B-bimodules P, P’ and A-bimodules Q,Q’ together
with left and right B-linear maps ¢ : P — Q,¢' : P! — Q'. An
isomorphism between ¢ and ¢' is given by a commutative diagram :

P % 9
fJ lg
Pl ? QI

where f is a B-bimodule isomorphism, g an A-bimodule isomor-
phism and all bimodules and isomorphisms are compatible with the
C-structure. We now extend some results of Y. Miyashita to the di-
visorially graded case but restricting, as before, attention to the A.S.
situatioh. Let Rp(A) be the set of isomorphism classes [¢] of ¢ : P — Q
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as introduced above, where P € Ilicg(B) and @ is such that the mor-
phism (4 % P)** — @ induced by e ® p — a¢(p) is an isomorphism. We

may introduce an operation in Rp(A4) denoted by L (or by (— ® —)**
by "abus de symboles”) where [§].[¢'] = [¢ L &'] is defined by the

composition :
P& P n**B Py
(PEP)™ - (Q0Q) " - (QaQ)

Since (4 ®(P ® Py )y = (4 ® P ® Py =((4 ®P) ®(A ® PH)** =
(@ ®Q)**, Where *% at the end of a formula refers to %% in A mod it
follows that [¢ L ¢'] is in Rp(4). The inclusion B < A is the identity
element for this operation and if ¢ : P — Q represents [¢] € Rp(A4) then
one easily verifies that [¢*] with ¢* : P* — Q*, P* = Homg(gP,g B)
and Q* = Homy4(4Q;4 A) and ¢*(p*) for p* € P* is defined by sending
ag(p) to ap*(p) for all a € A4, p € P, yields an inverse for [¢] in Pg(4).

ITII.4.6. Theorem. Consider A D B as before and assume that we
are in the arithmetical situation, then we obtain the following exact

sequences.

(2) 1 = U(Z(4)) - U(Ca(B)) — Dp(4) — Hice(B)

(b) 1 = U(Z(4)) — U(Ca(B)) - Autp(4) — Hico(A4)

(c) 1 - U(C) — U(Z(A)) = Dp(A) => Rp(4) =5 Micc(4)
(d) 1 — U(C) —» U(R) £+ Autp(4) -5 Rp(4) =2 Irce(B).

Proof. Once that all maps are defined the verification of the exactness
of the sequences is straightforward and boring, so we leave the details to
the reader and we just point out how the non-obvious maps are defined.

(a) For'd € U(C4(B)) define a(d) = Bd.

(b) For d € U(C4(B)) define B(d)(a) = dad™* and note that the inner
automorphism of 4 given by d maps to the trivial element in Hico(4).

(c) If P € Dp(A) then (P) = [i] where i is the inclusion i: P — A. If
¢ : P — Q represents [¢] € Rp(A4) then m4([¢]) = [Q]-
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(d) To f € Autp(A) we associate [¢],% : B — Aug,b — buy, where
Aus =1 Ay i.e. Aup.a = Af(a)uy forall a € A.

If [#] € Rp(A) then 7p(¢) = [P] where ¢ : P — Q represents [¢]. o

We consider the following situation throughout the sequel of this sec-
tion. Let B be a tame order over the Noetherian integrally closed
domain R and let A be divisorially graded by a group G over 4. = B
such that B < A verifies the A.S. condition. For B-bimodules N and
M we say that N|M if N is a direct summand of a finite number of
copies of M. We say that IV is similar to M, written N ~ M, if
N|M and M|N. We say that N||M if there exists a B-linear surjection
M@&...& M — N which splits locally at every p = P N R® for each
P e XI(R). We say that M is divisorially similar to N, written
N~ Mif N|M and M||N.

II1.4.7. Lemma. Let M be divisorially similar to N over B, then
1. If [N] € Iic(B) then [M] € Tic(B).
2. If [N] € Tic,e(B) then [M] € Wic,c(B).

Proof. In thesituations described in 1. or 2. we have that Np is finitely
presented and then sois Mp, forall P ¢ X'(R) and Np ~ Mp holds too
because localisation at P is a further localization at p = PN R®. Hence
Mp € Pic(Bp) for all P € X'(R) in case 1 and Mp € Pic(ge(Bp) in
case 2. The local-global characterization of finitely presented divisorial
modules entails the statements in the lemma. o

We define I'p(4) to be the set of graded isomorphism classes of divi-
sorially graded rings of type G, EB H, over B = H,, such that for

all ¢ € G we have H, ~ A,. The mu1t1p11cat10n of ®ycq H, is given
by a factor system {ho,r : (Hy ® H,)** — H,.,0,7 € G} consisting
of B-bimodule isomorphisms. We will write (H, h) for this divisorially
graded ring and [H, h] for its graded isomorphism class; e.g. 4 = (7, 7]
~ will be used (for symmetry in notation) with J, = 4, forall o € @ and
J given by the B-bimodule isomorphisms j,, : (4o ® A - Aor.
Consider [V, v] and [W,w] in I'p(4) and define their product [U,u] by
putting U, = (V, %) Jyo1 (1%) Wo )™, tor = (vVor ® Jo-1,r-1 @ We )**.
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I11.4.8. Lemma 1. 1. If M is a divisorial R-module such that

M]||R then (Endp(B (182) M) = (B (I%) Endr(M))* and (B %M)**HB

Moreover Cg(B'® M) = M and if [M] € CI(R) then B%M € CCI(B).
B

2. I M]|B then M = (B.C5(M))** (B @ C5(M))*" and C5(M)||R.

Moreover, Rndr(Cp(M)) = Endp(gMp), Endp(gM) =
(B®Endp(M))**. If M||B and M'||B then M and M' are isomorphic
R

B-bimodules if and only if Cp(M) = Cp(M') are R-isomorphic.

3.If M||B and M'||B then (Cg(M %M'))** = ((Cp(M)) % Cp(M"))**
and then there exists an isomorphism ¢, ¢ : (M %} M"Y — (M' % MY,
m@m' — m'@m,m € M,m' € Cg(M') (extended by right linearity
to the whole (M%M')**)

Proof. If M||B then the existence of a B-linear morphism B®...®¢B —
M proves that M is finitely generated as a left (and right) B-module
and M is generated as a left (and right) B-module by Cg(M), i.e.
M = BCg(M). All statements in the lemma are now derived from

Lemma 2.3., Lemma 2.4. and Corollaries 1, 2, 3, in [33] (modifying by
o

%% where necessary).
For the definitions of (U, u) we note :
(Vs % Jo-1 % W, )** g(v, % Jr-1 % W, )**)**
=Voe® -1 QWoQV, ® J -1 W)™
B B "B B B
Furthermore (V ®J -1)**||B and (J,-1 ®W )**[|B, and

(Ja—1 %Wd)** %’(VT % J‘r‘l)** ;;'?(VT % J'r‘l)** %(Jc-l ®WU)**

By localizing vg,r ® jr-1,5-1 @ Wo,» (note (—)** = Pe)?i(R)(_)P) we

obtain a B-bilinear map, (vo,r %j}-x’a-1 ® Wo,r )™ :

(Vs ? V. @ Jo-1 % J,-1 % w, % W,) =25(V,, % J(O,T)—x»% W, )™
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which defines the map, uo - :
o o~ We )"V @ J .- W, ) = Vor J Ty Wor )™
(Ve §70ms G W) " QYo @ T, s @W:)") 5(Vor @Tiorys § Wor)

It is easily checked that {us,r,0,7 € G} is a factor system and (using
the transposition map ¢ frequently) one may check that we have defined
an associative multiplication on I'g(4) such that [A] = [J,j] is the
unit element. The inverse of [V,v] is defined by considering W, =
(Jo ® V) @ Jy-1)** where V} = Homp(pV,,p B) € Ilic(B) and the
map v . : (Jo®@Vy @I Q@ @V @I )™ — (Jor ®V, @ Jor )™ is
! B B B B B B

obtained via the transposition map because the first term is isomorphic
to (Jo % J. % vy % vy %) Jo % J)™* as a B-bimodule. Note that [V*] is
indeed the inverse of [V] in Ilic(B); this can easily be checked locally
at P € X*(R). Using the transposition again one easily proves that
I'p(A) is an abelian group. In the foregoing argumentation we freely
use (implicitely) that the "local properties” at P € X*(R) also hold
at p = PN RY and that we may replace Ilic(B) by Hic,e(B) where
appropriate. We write I'5(A) for the subgroup of I'5(A) consisting of
the divisorially graded rings over B which are isomorphic to A as a
graded ring i.e. those [V,v] such that V, & J, = A, as B-bimodules
for all o € G with v equivalent to j.

We define an action of G on Ilie(B) by °[P] = (J,@P® Jy-1)**
(writing unadorned tensor products for those over B). We put :
ico(B)¢ = {[P] € Hico(B),” [P] = [P] for all ¢ € G}. Hice(B) D =
{[P] € Hice(B),(P®Js ®* P)* =~ J, for all 0 € G}, where *P
is the right dual of P, *P = Hompg(Ps,Bg),C = R®. We have
(P ®* P)*™* = B. If [P] € Tico(B)® then (J,@ PQJ,-1)** = P
for all ¢ € G, hence (J,~1 @ P®J, ®* P)** = B. Thus we obtain :
Jo®(Jo-1 @ P®J, ® P)* = J,, or (PR J, @ P)** = J, and there-
fore [P] € icg(B)(®). We define a group morphism Hice(B) —
Ip(A4),[P] = [®occ(P®J, ®* P)**,5F ], where jE_ : (P ® J, ®*
PRP®J,®P)* - (PRJ,®J, @ P)* = (P®J,»,@*P)**, defines
the multiplication of the divisorially graded ring ag?a(P ® Jg ®* P)**.

So we proved :

II1.4.9% Proposition. With conventions as before, there is a commu-
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tative diagram of abelian groups :

Micg(B)® — T%(4)

|

Mico(B)(® — Tp(4)

In Rp(A) we define Rp(A)® = {[¢] € Rg(4)¢ : P — M,
(Jod(P))** = (¢(P)J2*) for all o € H}. Note that the divisoriality of
A over B entails that P — A% P, hence (A(IXB) Py =M, ie we may

identify P and ¢(P) in M. Obviously [¢] € Rp(4)(® exactly then when
there exists a B-bimodule isomorphism fo : P — (Jo® P® Jo-1)**

making the following diégram commutative :

(D) f,,J 7

(Jo®PQJ,-1)**

where (2, @ pQz! 1) = z,¢(p)z, 1 for all 2, € J,,p € Pz, _, €
Jo-1. Indeed, if for all o € G we have : (J,¢(P))** = (¢(P)J,)** then
from (J, ® P)** — (A ® P)** we obtain that (J, @ P)** = (J,¢(P))**.
On the other hand if K is the kernel of $(P)® J, — M,pQz — pz,
then by localization at p = P .n R® with P € X!(R) it follows
that ($(P)®J,)™* = (¢(P)J,)™, ie.  we obtain ($(P)®J,)** =
(B(P)To)™ = (J4(P)™* = (7, ®$(P))*™. ldentifying P and ¢(P)
in M we obtain : P = (P®J,®@Jp-1)** = (P®Jo)* @ Jp-1)** =
(PIs)* Q@ Jo-1)** = (Jo @ P®J,-1)**, what defines the B-bimodule
isomorphism f, used in the diagram above. Again by localizing at all
p = PNC for all P € X'(R) it follows that the diagram leads to
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(PJs)** = (JoP)** for all ¢ € G. Considering ((D)® J,)** we obtain :

(P®Jo~)** (¢®Ja)*"> (M®Ja')** _ﬂ~) MF*

(aqs ® Ja)**

(Je @ P @ Jp-1 ® T )**

(Ja ®P)**

where u is obtained from mQ®z, — mz,, m € M,z € J,, and
v is the composition (¢ ® J,)**. We have Impy = Imy. Clearly
(Imu)*™ = (PJ,)**. On the other hand, the definition of ¢ is such that
(Imv)** = (J,P)** is evidently true, so Iy = Imv entails (JoP)** =
(PJo)**. (Note that these results also follow from Miyashita’s results
in [ ] by the usual ”local” argumentation). The foregoing argument
also applies to *P, representing the inverse of [P] and it is not hard
to check that &* : P* — M*, where M* = Hom(4M,4 A), is again
representing an element of Rp(A4)(%®). Therefore Rp(4)(® is closed
under taking inverses and it is a subgroup of Rg(4) (this can also
be checked ”locally” in the usual way). Let us write Autg(A4)(P for
{a € Autp(4),a(J;) = J, for all o € G}. We have now established :

IIL.4.10. Proposition. With conventions and notation as before, we
obtain an exact sequence :

0 — U(C) — U(R) L Autg(4) -5 Rp(4)® 2 Hicy (B)(S)
Proof. This sequence is a subsequence of the one in Theorem III.4.6.,

d and it suffices to establish that an f € Autg(4) maps to Rg(4)(®,
Now 7n(f) : B —; Ay is in Rp(4)® if and only if f(J,) = J, forall

g€ G. o

I1.4.11. Lemma. The maps in Proposition II1.4.9. yield an exact
sequenct : Rp(A4)(®) — Mico(B)(® —5T%(4). -
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Proof. Let ¥ : P — M, represent some [¢p] € RE(A)®, then
[P] € Wico(B) and it maps to [(P Q@ Jo ®* P)**, P;]. Now (P ® J, ®*
Py = (J ® P® J,-1)** ® J, ®* P)**, since [¥] € Rp(4)(?), and
the latter is further isomorphic to : (J,® P®J,-1 Q@ J, ®* P)** =
(7, @ P&(Jpo1 ® J,)™ ®* P)** = (J, ®(P ®* P)**)** = J, (as B-
bimodules). Let A, : (P ® J, ®* P) — J, be the isomorphism of B-
bimodules just defined then we may fit ks, H; and Ay, in the following

commutative diagram :

(Pol, &' PY* 8Pl & P)") 5 (PO, P)"

Jo,T

| l

(Jo ® T )™ . > Jor

o7

If [P] € Mico(B) is in the kernel of ¢ then, Al = (O?G(Péi)]q ®"
P** P;) = (& J,,j)=A. First we establish that A' = End 4((P ® 4)%")
and then it is evident from A! = A that (P A)** € Iicc(4),
provi‘ng that the canonical ¢ : P — (P® A)** determines an ele-
ment [¢] € Rp(4)(? that maps to [P]. For all 7 € G, and for
pR2®p € PRJ, ®* P we define : ’

pQ@z®p : PRJ - PRJsr,q®y — p@zp'(q)y.Thus (pQz @ p')**:
(PRJ)* — (P®J,r)*™ determines an element of degree o in
HOM4((P ® 4)**,(P ® A)**)and we have Homy((P ® A)**,(P @ A)**)
= HOM4((P® A)**,(P ® A)**) since (P ® A)** is finitely generated as
an A- module. It is straightforward to check that we have actually de-

fined a graded ring morphism (of degree zero) : § : ?G(P@) Jr ®F

P)* — HOM4((P® A)%, (P ® A)Y), where both rin;s are divisori-
ally graded by G over B. Let us first check that Q is a monomorphism.
Pick z,y € (P ® J, ®* P)** such that §}(z) = Q(y). Then we obtain :
QPR J,-1 ®* P)*z) = Q((PQJ,-+ ®* P)**y). Since the restriction
Q| B is an isomorphism it follows that : (P ® J,-1®*P)**(z—y) = 0 and
further that (P® J, ®* PO PQ® J,-1 ®* P)*(z—y) = 0,i.e. z—y = 0.
Now, divisorially graded rings over the same ring in degree zero such
that one contains the other are necessarily equal, so  has to be an

isomorphism. o
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Let Bp(A) be defined by the exactness of the sequence : Iico(B)(%) —
Ts(4) > B5(4).

II1.4.12. Proposition. With conventions as above, the following

sequence is exact :

Tico(B)'® — TE(4) — Ba(A).

Proof. Semi-exactness is obvious. If | @G H,,hs ] is in the kernel of
oE '

¢ then there exists a [P] in Wico(B)(®) such that [P]— [ @ H,,ho ]
ceqG

under the map Iico(B)(®) — I'g(4). Therefore, (P ® J, ®* P)** = J,
and (J,-1 ® P® J,®*P)** = B hence (J,-1 ® P® J,@*P)* @ P = P,
and finally (J,-1 ® PQJs)* =Por P ¢ Hz'co(B)(G) follows. o

Put Iico(B) = {[P] € licc(B),P =~ B}. Since this group consists of
B-bimodule classes [1M] where M is of the form M = (B @ Cp(M))™ =
BCg(M) it is obvious that we have : Ilico(B) = Iico(R). It is
now possible to define a group morphism I'g(4) — Z(B,Iicy(B)),
[a?a Vo, 0] = (0 = (Vo ® J,-1)**), which obviously gives rise to the

exact sequence :
0 — T%(4) - I'p(4) — ZY(G,Miey(B))

If we define the group H:(G, Ilico(B)) by the exactness of the following

sequence :

ico(B) — Z1(@,Micg(B)) — H;(G,Micy(B))

N\

I'p(4)

then we obtain an exact sequence :
I'p(A) — Be(A) — OY(G,Iico(B)) — H*(G,U(R))

Combining all of these sequences we obtain a long exact sequence
generaliging the Chase-Harrison-Rosenberg sequence for the (reflexive)

Brauer group of a Krull domain :
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I11.4.13. Theorem. Let B be a tame order over the Noetherian
integrally closed domain R, let 4 be divisorially graded by some group
G over B = A, such that the A. S. conditions hold. Then the following
sequence is exact : (C = R® = RN Z(A)) where we put :

0 — U(C) — U(R) — Autg(4)% — Rp(4)® — Ilice(B) —
- T%(4) — Bs(4) — H (G, ico(B)) — H(G,U(R))

The groups in this sequence may deserve further attention e.g. in case B
is commutative. Note that in the case where B is a Galois extension of
C and a maximal commutative subring of a reflexive Azumaya algebra
A then the sequence in the theorem (with G being a finite group) does
indeed reduce to the reflexive version of the Chase-Harrison-Rosenberg
sequence as explained in [12] and in [61].

In the particular case where B «— A is an extension of tame orders i.e.
Z(B) C Z(A) or R = C then the above reduces to a sequence including

some more familiar groups.

I11.4.14. Corollary. If in the situation of the theorem B — A4 is an

extension then the exact sequence given reduces to :

0 — Autp(4)® — Rp(4)® — CCUB) - TL(A) — Br(4) —
H'(@,CcCyB)) - H*(G,U(R))
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IV. Regular Orders.

IV.1. Moderated Gorenstein and Regular Orders.

In this first section we will recall some basic results on orders having
finite global dimension. Since we will freely use results from homological
algebra, the reader is referred to [13] for more details.

Since regularity is a local condition, we will always assume that the
order A is a finite module over a commutative base ring R, which is a
local Noetherian domain with maximal ideal m and such that R is'a
subring of the center of A, which we will denote with C.

Let us briefly recall some standard definitions and results from com-
mutative ring theory. Let M be a finitely generated R-module and let
{z1,...,2,} be a sequence of elements from m.

If we denote

M= M/(z1M + ...2:M)

Then we will say that the sequence {z;,...,z,} is M-regular if the
short sequences
0— Mi f’—t—li Miv

are exact for all 0<% < 7, i.e. 241 i$ @ non-zero divisor on M;.

The depth of the R-module M, depthg(M), is defined to be the supre-
mum of all integers r such that there exists an M-regular sequence

{z1,...,2,} of elements from m.
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Recall that a primé ideal p of R is said to be associated to a finitely
generated R-module M if there exists an element z € M such that p is
the annihilator of z. With Ass(M) we will denote the set of all prime
ideals of R associated to M.

The dimension of the R-module M, dimg(M), is the infimum of the
classical Krull dimensions of the quotients R/p where p € Ass(M). A
classical result from commutative ring theory, asserts that

depth p(M) < dimgp(M)

A finitely generated R-module M is said to be Cohen-Macaulay, if
deptha(M) = dimg(M). The local Noetherian ring R is said to be
a Cohen-Macaulay ring if it is a Cohen-Macaulay module over itself.
The order A is said to have selfinjective dimension n < oo if there is an
exact sequence

0—»A—Fy—..—-E,—0

where all E; are injective left A-modules and n is the least integer for
which such an injective resolution exists.

Because A is a finite module over the local ring R, A is semi-l_ocal in
the sense that it has only a finite number of maximal two sided prime
ideals {Py,..., P} all lying over m. If M is a ﬁnité genefated left A-
module, we define the A-Ext dimension to be the last integer p such
that Extf (M, A) #£ 0. e

IV.1.1. Definition. The order A is called a moderated Gorenstein
algebra if and only if :

1. A has finite selfinjective dimension n, where n = dimgA, which
coincides of course with the Krull dimension of A.

2. For all 1 <4 < k we have that A — Ext dim(A/P;) =n
The first major result on moderated Gorenstein algebras is :

IV.1.2, Theorem. (d’aprés Vasconcelos). A moderated Gorenstein
algebra over a local Noetherian ring R is a Cohen-Macaulay module

.
over its center C.
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Proof. The result follows if we prove that A is a Cohen-Macaulay R-
module. So, assume that z € m is a A regular element, then it is well
known, cf. [63], Th. 9.3.7 p. 248, that :

depthp(A) = 1+ depthy(A/2A)

dimp(A) = 1+ dimg(A/zA)

ida(A) = 14idpjea(A/zA).

So, by induction we can reduce by as many elements as there are in
a regular A-sequence, i.e. we may assume that m is an associated
prime of the R-module A. If we can prove that the injective dimension
of A is zero, then A has to be Artinian, whence both depthg(A) and
dimpg(A) will be zero, yielding the result. Therefore, let us assume that
ida(A) =t > 0 and let 0 # z € A s.t. mz = 0. Then, it follows that
the A-submodule Az of A has finite length and so it will be contain a
simple submodule S. From the short exact sequence

0—-8§—-2A—A/S—0
we derive the part of the long exact homology sequence
Exth (A, A) — Ext}(S,A) — Ext{™(A/S, A)

By the fact that idA(A) = ¢ and [63], Th. 9.8, p. 236, we get
that Ext{"(A/S,A) = 0. Since we have assumed that ¢ > 0, also
Exti(A,A) = 0{ollows, yielding that Ext} (S, A) = 0. Sinceids(A) = ¢,
there exists a finitely generated A-module M s.t. Ext{(M,A) # 0. If
mm is not associated to M, then we can find an element a € m such that

0> M2 M—MjaM —0
is exaét. This provides us with a lbng exact sequence :
Ext? (M, A) - Ext} (M, A) — Exti (M /aM, A)

where the last term is zero since ida(A) = . So, m.Ext{(M,A) =
Ext} (M, A) and since Ext’ (M, A) is finitely generated as an R-module,
Nakayama’s lemma entails that Ext{(M,A) = 0, a contradiction.
Therefore, m is associated to M which therefore must contain sim-
ple submodules. Let N be the submodule consisting of all elements
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which are of finite length, i.e. which are annihilated by some power of

m. Then, we obtain the exact sequence :
Ext} (M/N,A) — Exth (M, A) — Ext} (N, A)

Here, Exti(M/N,A) = 0 because M/N has no elements of finite
length and then one can apply the Nakayama-argument as above. Fur-
ther, N is an extension of simple modules S;, and for all S; we have
Ext} (S;, A) = 0 since Ext} (M/N,A) = 0 and condition (ii) of Defini-
tion 4.1.1. Therefore, Ext}(N,A) = 0 and we obtain a contradiction.
Therefore, we have shown that dimp(A) = idy(A) = depthr(A) i.e. A
is a Cohen-Macaulay module over R and hence over C. o

Next, we want to investigate the behaviour of moderated Gorenstein

algebras under localization.

IV.1.3. Theorem. Let A be a moderated Gorenstein algebra over the
local Noetherian ring R and let p be a prime ideal of R, then Apis a
moderated Gorenstein algebra over R,,.

Proof. By induction we only have to prove the result for prime ideals
of height n — 1, where n» = Kdim(R). Because A is a Cohen-Macaulay
module over R, we can apply a result of J.P. Serre to obtain a regular
A-sequence {aj,...,an_1} of elements in p. By this it follows that
ida,(Ap) 2 n—1 and we have to verify equahty So, assume that
there is a finitely generated left A,-module M/ with Ext} (M, Ap) #
0. Let Ny be a finitely generated left A-module such that No ®R

M and define N to be Ny/Kery where ¢ : Ny — M is the natural
morphism. Then, of course, N % R, =2 M and m is not an associated
prime ideal of N. By the Nakayama-argument of Theorem IV.1.2.,
we obtain that Ext}(N,A) = 0, implying that Exty (M,A;) =0, a
contradiction. We still have to verify condition (ii) of Definition IV.1.1.
So, let @ be a maximal two sided ideal of A,, then we have to check
that Extj‘fl( p/Q,Ap) # 0. Again, let {g1,...,9n_1} be a regular
A-sequence of elements in p, then it is also a regular A,-sequence of

elements lying in Q. By an iterated version of the Rees’ shifting lemma,
cfr. [63]; Th. 9.37., p. 248, we get :

’ Ext}-'(A,/Q, A,) = Homp(T'/Q',T)
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where I' = A,/(q1,...,9t—1)Ap and Q' the image of @ in I'. But, I’
is a self-injective Noetherian ring and hence Homp(I'/Q',T") # 0, what

proves the claim. : ‘o

In Definition IV.1.1. we started with an order, i.e. in particular a prime
ring, A. This condition can be removed if we replace semi-local by local.
We now want to investigate the structure of the center of A, C, say if

A is moderated regular.

IV.1.4. Definition : The order A is called a moderated regular
algebra if and only if

(1) A is moderated Gorenstein.

(2) A is of finite global dimension n = KdimA.

IV.1.5. Proposition : If the the order A is moderated regular, then

its center C is an integrally closed domain.

Proof. By assumption, C is a domain. To prove that it is integrally
closed, we use the Serre normality criterion, see for example [9]. Let
p be a height one prime ideal of C, then by Theorem IV.1.3., A, is
a moderated Gorenstein algebra which is of global dimension 1. But
then, A, is hereditary, so its center Cp, must be a discrete valuation
ring. Finally, let z € C then we have to show that Cz has no embedded
primes. But since C/Cz — A/Az and A is a Cohen-Macauley module
over C' by Theorem IV.1.2., this follows. ‘ o

Provided that the p.i.-degree of A is a unit in R of C, a more strict

result may be deduced.

IV.1.6. Proposition : If C is a C-direct summand of A, then C is a
Cohen-Macaulay ring. :

Proof. Since C is a C-direct summand of A we get depthpA <
depthzC. By Theorem IV.1.2. we know that depthg A = KdimC and
one has always the inequality depthrC < KdimC, is always verified,
thus finishing the proof. , '

If the condition on the p.i. degree is not satisfied, the conclusion fails
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too. Furthermore, it is well known that the center of a moderated
regular (even @-) algebra, must not be regular. Skew formal power se-
ries are the easiest counterexamples. For example let A = € [[X,Y; o]
where o denotes the complex conjugation, then the center of A is equal
to IR[[X?,Y?, XY]] which is not regular. Ramras has shown that reg-
ularity of the center is equivalent to A being free over the center. ‘

IV.1.7. Proposition : If A is a moderated regular order, then A is a

tame order.

Proof. Since A is a Cohen-Macaulay module over its center, which is
integraly closed, it follows that A is a reflexive C-module. Furthermore,
as observed above, localizations of A at height one prime ideals of C.

are hereditary so the claim follows. o

It follows from a result of Vasconcelos [59], Th. 4.3., that one may con-
sider maximal orders instead of tame orders at the cost of considering
a local order A and not only a semi-local one.

Next, we want to investigate when a moderated Gorenstein algebra
is moderated regular. For any order A we say that a left A-module

is Cohen-Macaulay if it is Cohen-Macaulay over R. We include the

following well-known result.

IV.1.8 Lemma. (Peskine - Szpiro acyclicity lemma)
Let R be a local Noetherian ring and let there be given a complex of
R-modules of finite type :
0—-Ls—~L,3—~...—L =Ly —0 (L)
Assume that the following conditions hold :
(1) : depth(L;) >
(2) : depth(H;(L)) =0 or H;(L) =0
Then H;(L) =0 for all ¢+ > 1.

Using this lemma, it is possible to prove the next result due to H. Bass :

IV.1.9. Theorem : Let A be a tame order Which is a Cohen-Macaulay

module over R, then gldim(A) = Kdim(A) if and only if every left

Cohen-Macaulay A-module is projective.
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Proof. As always, n = Kdim(A) = Kdim(R). Passing to a subring of
R if necessary, we may assume that R is a regular local ring. Over this
ring, left Cohen-Macaulay A-modules are R-projective. Let M be any
left finitely generated A-module, then since A is Cohen-Macaulay, the
n-th syzygy module N in a resolution of M :

0= N-oA™1 5 A 5 M-S0

is projective as an R-module, i.e. it is a Cohen-Macaulay A-module.
Therefore, gldim(A) < n if every left Cohen-Macaulay A-module is
projective and gldim(A) > Kdim(A) = n, is trivial. Conversely, assume
that gldim(A) = n then, if we can realize every left Cohen-Macaulay
A-module as an n-th syzygy, then this would prove its projectivity
as an R-module. First, let us show that whenever M is torsion-free
of depthp(M) > 2, then M = M**. It suffices to prove this for the
localization M), at an height one prime p of R. Because A is tame, A,
is hereditary 50 M, is projective, finishing the proof of the claim. Or,
to realize M as an n-th syzygy, take a left resolution

0P A™ 1 5 =A™ S M* 0

where P is necessary projective since gldim(A) = n. Consider the dual

sequence
0> M—-A™ — ... =A™t - P*—0 (%)

By induction on the Krull dimension of R, we may assume that the
localization of M at any prime ideal of height less than n is projective.
Therefore, the localization of M* is projective, too. So, (*) is locally
exact, whence the homology has finite length. We are now in a position
to apply the acyclicity lemma of Peskine and Szpiro to obtain that (*)
is actually exact, finishing the proof. o

In the next section, we will use generalized Rees constructions in order
to give examples of moderated regular orders of Krull dimension two

with a nasty ramification divisor.

139



IV.2. Orders of finite representation type.

First we will review Morita equivalence for reflexive modules. Let A
be a tame order over a Noetherian local domain R 'in a central simple
algebra %, and let M, N be a left and a right A-module. Since A is
a tame order, M, and N, are left resp. right projective A,-modules,
whence (N ®M )p is torsion free. We denote by the modified tensor

product N .J_ A M the reflexive hull of N ® M, it is a reflexive R-module

and the canonical morphism :

N%M—)N.LAM

has kernel and cokernel of finite length Given a nonzero right reflexive
A-module N, then T' = Ends (V) is a tame order and there is a Monta
equivalence : left reflexive A- modules « I-modules

M — N* 1, M
Nilp M +— M

which follows immediately from reflexivity of the A-modules and the
usual Morita equivalence after localizing at height one prime ideals of R.
Note that the equivalence can also be defined by M —— Homy (N, M)
- since Homp (N, M) & N* L), M.

IV.2.1. Definition. An order A which is a Cohen-Macaulay mod-
4 . . . . .
ule over R is said to be of finite representation type if the set of
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isomorphism classes of finitely generated, indecomposable left Cohen-
Macaulay A-modules is finite.

Of course, by Theorem IV.1.9. it is clear that having finite representa-
tion type is a necessary condition for an order to be moderated regular.
From now on we will assume that R is complete. Actually, it would be
sufficient to assume R to be Henselian since we want a Krull-Remak-
Schmidt-Azumaya decomposition for reflexive modules over R. In Krull
dimension two, one has the following important result due to M. Aus-

lander and I. Reiten.

IV.2.2. Theorem : Let R be a complete normal domain of Krull di-
mension two. Let A be a tame order over R, in a central simple algebra
%, of finite representation type and let M be a left Cohen-Macaulay
A-module containing every indecomposable left Cohen-Macaulay. A-
module as a direct summand, then I' = End, (M) is of global dimension

two.

Proof. Let M = 69 M; be a decomposition of a left A- module M into
indecomposable m(_)dules which are Cohen-Macaulay R-modules, each

isomorphism class occuring at least once. Then we can write

[ = Endp(M) = Z Ty = Z e:;.T.e;
. 3,j=1 t,j=1

where T';; = Homy(M;, M;) and e; is the projection of M onto M;.
By the Morita-equivalence for reflexive modules between A and T';;,
it follows that the i-th row I';1,...,I';, lists all indecomposable left
T;;-modules which are Cohen-Macaulay over R. Since the situation is
symmetric with respect to a permutation of the indices ¢, it suffices to
show that §; = TI'y;/J(T'11) has projective dimension two.

Let P; = T'.e; be the j-th column of I', then P; is clearly a projective
left I'~module and I';; = Homy (M1, M;) = Homp(P;, P;). Now, take a

two-step resolution of S as a left I'-module :

O—>N—>?ij—>P1—>Sl—>0

Considering its top row, we obtain

0—>L—>%Mik—>M1—>Sl—>0
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as left A-modules. Therefore, L is a left Cohen-Macaulay A-module,
whence L = elaMie as left A-modules. Because P; = @T';; = @ Homy
% (]
(M;, M;) = @ Homy (M, M;) as left A-modules and Homy (M, —) is left
k2

exact it follows from the exact sequence
0— ﬂ?Mi, “"%th — M,

that ; ‘
0— G?Pi, —~@F, - P ——>',S'1 —0
k
is the required resolution of S;. The converse implication follows from

Morita-equivalence and Theorem IV.1.9. o

That these rings are even moderated Gorenstein, follows from the next

observation :

IV.2.8. Lemma : If A is a tame order of global dimension two, then

A is moderated regular.

Proof. Let M be a maximal twosided ideal of A such that A-Ext dim
(A/M) < 2. Then, the exact sequence :

0>M—>A—A/M~—0
gives rise (for every left A-module B) to a sequence :
— Ext} (A, B) — Ext} (M, B) — Ext}(A/M,B) —

Here, the last term vanishes since A-Ext dim (A/M) < 2 and the first
term because A is projective. Hence Ext(M,B) = 0 for all B, so M is
projective. But then M has to be reflexive and hence of height one, a

contradiction. o

The above lemma and Theorem IV.2.2. allow us to replace the prob-
lem of classifying moderated regular algebras of dimension two by the
equivalent one of classifying tame orders of finite representation type
and indecomposable (left) Cohen-Macaulay modules.

Before we can give our construction of tame algebras of finite represen-
tation type, we put forward some remarks on the invariance of finite
represeﬁtation type under change of ring.
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IV.2.4. Lemma : Let A C I'" be an extension of tame orders which
are both Cohen-Macaulay modules over R and assume that A is a A-
bimodule direct summand of T'. If I has finite representation type, then
so has A.

Proof. Assume that I' & A @Iy as A-bimodules. Let M/ be an inde-
composable left Cohen-Macaulay A-module, then :

F_LAMEM@(I‘O_LAM)

By the Krull-Schmidt theorem, M is isomorphic to a A-direct sum-
mand of an indecomposable I’-summand N of I' Ly M. If I has finite
representation type, there are finitely many possibilities for N and for
M.

o

IV.2.5. Lemma : Let ACT be aﬁ extension of tame ordérs both of
which are Cohen-Macaulay R-modules. Assume that the natural map

Fia,T->T

splits as a I'-bimodule map. If A has finite representation type, then so
does T'. :

Proof. Let M be an indecomposable left Cohen-Macaulay module and
let M = @ M; be a decomposition of M in indecomposables over A.
Because

TLlaM=T1,T 1+ M
and taking into account the assumption on the splitting, we may deduce
that M is a I'-direct summand of T' L, M. This entails that M is a
T-direct summand of one of the I' Ly M;, so there can only be a finite

number of possibilities for M. o

IV.2.6. Lemma : If A is a reflexive Azumaya algebra over a finite
commutative extension S of R, then A has finite representation type if
S has.

Proof. Let M be an indecomposable left Cohen-Macaulay A-module,
then M Lg A is a Cohen-Macaulay A-bimodule. Let M Lg A = @ M;,
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be the decomposition of M Lg A in indecomposable Cohen-Macaulay
A-bimodules, then it is a direct summand of some M;. Because there
is an equivalence of categories between reflexive R-lattices and the re-
flexive A-bimodules, there are only a finite number of different M;’s,

whence a finite number of possibilities for M. o

Let G be a finite group. If A is a G-graded ring we may form the
groupring AG and we equip it with a G-gradation given by the formula
deg(Ao.7) = 7. Then, the ring § = Y, .o As.0 is a G-graded subring
of AG which is graded isomorphic to A. From Chapter II we recall that
there is a Maschke-type theorem between S and AG.

We say that a graded ring (by an arbitrary group G) is of graded finite
represention type, if there are only a finite number of graded isomor-
phism classes of graded indecomposable, graded left Cohen-Macaulay

modules. An immediate consequence is :

IV.2.7. Proposition : Let A be graded by a finite group G such that
|G| € A*. Then if A is of graded finite representation type, A is of finite

representation type.

Proof. If R is of graded finite representation type, then so is S be-
cause they are graded isomorphic. It is easy to verify that the natural
morphism AG %) AG — AG is graded split. So, by a graded version of
Lemma IV.2.5., AG is of graded finite representation type. In view of
the natural category equivalence between AG-gr and A-mod, it follows
that A is of finite representation type. ui

Now, let R be a complete (or Henselian) local normal domain; D =
{p1,...,pn} C XD(R) are torsion elements of the class group CIU(R)

of R. If ¢ = {g1,...,9n} is a set of natural numbers, we recall that

R[D,g] is the Z{™-graded subring of K[Xy, X]?,....X,, X1] where
deg(X;) = (0,...,1,...,0), whose part of degree (my,...,my) is given
by :
\ Tty [22]\ vm m
R[Ds glms i) = (2" %k pa® )X X

where [’%] is the least integer > %.
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It is easy to verify that R[D, g] contains the Z(")—graded Rees rin
g

— - - . k3 .
T = } (p{lll) % ... % p{‘llelllgl . Xg)‘nlngn
(.il’"")jn)ezn

where we take [; to be the order of [p;] in CI(R). So, pﬁ‘ = Ra; for some

element a; € R.
Then we define the roll-up of R[D, ¢] to be the ring

R[D,gl = R[D,g)/(1 - a1 X;¥%,..., 1 — apn X'9")

which is clearly a (Z/lg1Z) X ... X (Z/lngnZ) graded ring in the
natural way. :

Further, one verifies easily that there is an equivalence of categories
between R[D, g]-gr (as Z(")-graded) and R[D, g)-gr (as XZ/e;9;Z-
graded). We now aim to investigate the relation between (graded) finite
representation type of R, R[D, g] and R[D,g)i. By Proposition IV.2.7.
we know that graded finite representation type implies finite represen-
tation type for R[D, g]: provided that the L.c.m.(g:1ly,...,gnln) € R".
Recall from the foregoing chapter, that whenever A is a tame order,
there are only finitely many ”prime”-divisors P € X(D(A) s.t. P #
A.(PNR)**. This finite set was denoted by P and called the ramification
divisor of A. With P° we denote PN R. Further, for every P; € P there
is an e; € IV s.t. (Pf)** = A(P; N R)**. The set ¢ = {e; : P; € P}is
said to be the set of ramification indices.

We can now state and prove the main result of this section.

IV.2.8. Theorem : If A is a tame order over a complete (or Henselian)
local normal domain R satisfying (Et;). Then A is of finite representa-
tion type if and only if R[P¢, e]: is of finite representation type, provided
l.e.m.(e) € R, v

Proof. Suppose first that A is of finite representation type, then the
usual generalized Rees ring A[P] is of Z(™-graded finite representa-
tion hype by the equivalence of categories between left reflexive graded
graded A[P]-modules and reflexive left A-modules. By the fact that
A[P] is a Z™-graded reflexive Azumaya algebra and using a graded
version of Lemma IV.2.6., this entails that R[P°, €] is of Z(™-graded
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finite representation type. By the equivalence of categories between
R[P°, e]-gr and R[P®, e]i-gr, the roll-up is of (xZ/e; Z) graded finite
representation type, whence of finite representation type by Proposition
Iv.2.7,
Conversely, if the roll-up R[P,e]; is of finite representation tyre, then
R[P,e] is of Z'™-graded representation type, whence so is A[P] by a
graded version of Lemma IV.2.5. . Finally, the equivalence of categories
between A-ref and A[P]-gref entails that A is of finite represehtation
type, done what establishes the claims. o

We will now apply this result to construct tame orders of finite repre-
sentation type having a nasty ramification divisor.

IV.2.9. Example : Let F be a field of characteristic d1fferent from 2
or 3 and consider S F[[z,y]]. Consider the group

Sy =<o,7:02=1,7° =1l,010 =712 >

then S3 acts in a natural way on S by the representation :

0 1 £ o
0‘——><1 0>and7'——>(0 52)

where ¢ is a primitive 3¢ root of unity. Then, the algebra of invariants
Fllz,y]l> = R = Fl[a® + ¢*, zy]]
is a regular algebra
If we denote u = z* + y® and v = 2y, then :
du = 3z?dz + 3y’dy
dv = ydz + zdy
whence the ramification divisor of the extension R C § is given by

3z2  3y?
d t — 3 _ 3 —
( y - ) 3z 3yw=0

3 __ 6 __ u® . . . .
Therefore, v° = ° = %= and therefore the ramification divisor has a

cusp.
Now, consider the skew group ring A = S % S i.e. with commutation
rule 5.0 = 0.0(s), then A is an order in a matrixring and has the same
ramification divisor as R C §. Furthermore, as A is strongly graded
over the regular domain S, A has global dimension two and is tame
whence’moderated regular.
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IV.3. Regularizable Domains.

In this section we aim to characterize thése normal domains over R such
that for some subset D ¢ X()(R) and for some set of natural numbers
geIN (") the scaled Rees ring R[D, g] is a graded regular domain in the
sense that every finitely generated graded R[D, g]-module has a finite
resolution by graded projective modules.

If the Krull dimension of R is two we will give a complete description
in terms of finite representation type.

Let us start by investigating the connection between regularity of R
and graded regularity of R[D, g].

IV.3.1. Lemma : Let R be a Noetherian graded local domain with
unique graded maximal ideal m. Then R is graded regular if and only
if the (graded) dimension of m/m? over the graded field R/m is equal
to the graded Krull dimension of R.

Proof. Clearly, it is sufficient to prove that Ry, is a regular domain. In
order to do this we have to prove that P is graded projective if P.is a f.
g. graded R-module such that P,, is Ry,-projective. So, we have shown
that Hompg (P, —) is exact in R-gr. Let f: M — be an epimorphism
of graded R-modules and let T' be the cokernel of the induced map
Hompg(P, M) — Hompg(P, N) then it follows from our assumption that
T, = 0. Now, let ¢ be an homogeneous element of T', then there is an
element p € R —m such that ut = 0. Decompose p in its homogeneous
components g = Uy, + ... + Ko, then at least one of the po, is not in
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m. But this implies that ¢ = 0. o

IV.3.2. Lemma. If Ris a regular (local) domain, then the genera.iized
Rees ring R[D)] is graded regular for every set of divisors D.

Proof. This follows trivially from the equivalence of categories between
R-mod and R[D]-gr which exists since every element of D is invertible
(R is factorial !). k o

We can now give a complete solution to the question when a scaled

Rees ring R[D, ¢] is graded regular.

IV.3.3. Theorem : Let R be a regular local domain. Let D =
{p1,...,Pn} C XO(R) and g = {g1,...,9n} with all g; > 1. Then the
scaled Rees ring is regular if and only if the generators of the principal
prime ideals p; from part ‘of a regular system of parameters of R.

Proof. Define Sy = R and by induction
' i
Sip1= Z Ei'fl] Si- X},
i€z

Let M;1; be the unique maximal graded ideal of S;.;. The reader can
easily verify that

[ g
z+1 Z I zi’fl S X
i€z '
where I; = M; if ;44 +j and I; = S; if g;41|7. Calcula.ting the graded
dimension of M1 /M7, over S;y1/M;1 gives us

1 + dimg, /ar, (M: /M7 + pit1Si)

and therefore S;1; is graded regular if and only if \S; is graded regular
and piy1 ¢ (M})o. Calculating (M7, ,)o yields (M?) + p;4+1 whence
(M2)0 = Mg +3; pj. Therefore, Siy1 is graded and pir; ¢ M2 +py +

. + p;, finishing the proof. .o

As we will see below, there exist non-regular normal domains such that

R[D, g] is graded regular for some suitable choice of D and g. The next
4 : '

theorem characterizes those normal domains.
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IV.3.4. Theorem : Let R be a local normal domain containing an
algebraically closed field of characteristic zero. - ; -
There exists a set of divisors D C X (R) representing torsion elements
in the classgroup CI(R) and a set of natural numbers g such that the
scaled Rees ring R[D, g] is graded regular if and only if there exists-a
regular overring S of R, finitely generated as R-module and a finite
Abelian group G acting on S such that S = R '

Proof. Let S be the roll-up of R[D,g]. Then § is graded regular
because of the equivalence of categories of R[D, g]-gr and S-gr contains
a field of characteristic zero. It follows from the results of the foregoing
chapter that 'S is regular.

Bécause R contains all roots of unity, the gradation of S may be changed
into a group action having the required properties. '
Conversely, because S is a regular ring, it is a direct sum of regular
domains each containing R. Therefore, we can replace S by a domain
and G by a subgroup of G. Since R contains an algebraically closed
field, the group action of G may be turned into a gradation of § by G*.
Therefore, S = éBG* I, with I, = R. Since S is a reflexive R-lattice
each of the I, is(; reflexive R-lattice. Further, since S is a domain this
entails that every I, has rank either zero or one. If rank g($) = n,
then the class group of R is n-torsion. Let D = {p;,...,pr} be the set
of prime factors occuring in the decomposition of all I,,o € G* and
let D' = {(p18)*,...,(prS)**}. Since each (p;S)** is invertible, it is
clear from the category-equivalence between S-mod and S[D]-gr that
S[D'] is graded regular. Further, S[D'] is a graded extension of R[D]
entailing that R[D] is graded regular. o

If the Krull dimension of R is two, we can give an intrinsic characteri-

zation of regularizable domains.

IV.3.5. Theorem : Let R be a local normal domain of Krull dimen-
sions two. There exists a set of divisors D = {p1,...,pn} C X (R)
representing torsion elements of CI(R) and a set of natural numbers
g={91,--.,9n} such that the scaled Rees ring R[D, g] is graded regu-
lar if and only if R has only a finite number of isomorphism classes of
indecomposable reflexive modules, all of which are of rank one.
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Proof. Since each one of the p; is torsion in CI(R), the graded Krull
dimension of R[D,g] is two, whence every graded reflexive R[D, g]-

module is graded free. Therefore, if My is an indecomposable re--

flexive R-module, then (MyR[D,g])** is graded free, yielding. that
M, = (MyR[D, g])* is a direct sum of divisors which are products
of the p;’s. Therefore, each indecomposable reflexive R-module has
rank one. Since every p; is assumed to be torsion, there are only a
finite number of isomorphism classes.

Conversely, if R has only a finite number of isomorphism classes of
indecomposable reflexive ideals, CI(R) is finite. Let D = {p;,...,pr}
be the prime factors of these indecomposable reflexives. Since there is
an equivalence of categories between R-ref and R(D]-gref, every graded
reflective R[D]-module is gr-free, yielding that R[D] has graded global

dimension two, finishing the proof. . ' o
This provides us with a list of examples of non-regularizable domains.

IV.3.6. Example : Let R be the local normal domain € [[z,y, z]]
(XY —Z?), then it is well-known that CI(R) & Z /27 and is generated
by the ruling p = (Y, Z). The Rees ring R[D] can be visualized as

O TX P epT X 9. .0 ROpX: &(Y)X] @ p(Y) X} @

and using Lemma IV.3.1. one easily shows that this ring is graded
regular.
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IV.4. Smooth Tame Orders.

We have seen in Section IV.2. that moderated regular orders can have
a weird ramification divisor, even in dimension two. In this section we
aim’ to study the Zariski and étale local stucture of moderated regular
orders with an extremely nice ramification divisor : smooth orders.

IV.4.1. Definition : A tame order A over a normal local domain R
is said to be smooth if there exists a set of divisors D of A such that
the generalized Rees ring A[D] is an Azumaya algebra over a graded

regular center and if every element of D is invertible.

Clearly, in-view of the equivalence of categories between A-mod and
A[D]-gr, it follows that A has finite global dimension and is even mod-
erated regular. Furthermore, it is trivial to verify that the class of
smooth tame orders in closed under taking matrix rings and polyno-
mial extensions. In most applications D = P the ramification divisor
of A. However, there are smooth, tame orders A such that A[P] is not

Azumaya.

IV.4.2. Example : Let R be the normal local domain €' [[z, y, z]]/(zy—
2%) and let p = (Y, Z) be the ruling which generates the classgroup. Let

A be the reflexive Azumaya algebra :
R
A =Endp(R®p) = [p_l IZ;J
Now, let D = {A( ¥)} which is clearly an invertible twosided A-ideal.
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Then A[D)] is seen to be the Z-graded ring

AD] = A [( ((1) g)).Xl, (2_1 (1)) Xfl}

which is easily checked to be an Azumaya algebra since its center is a

graded regular domain of graded dimension two :
oY HYXPep X ToRepX oY) X0 p(V)X ...
So, A is smooth, whereas A[P] = A is not an Azumaya algebra.

For the rest of this section, we will impose the following extra assﬁmp-
tions : D = P and A is an order in a p*-dimensional division algebra
A, p being a prime nuinber. Furthermore, we assume that the ramified
height one primeideals of A are generated by a normalizing element. We
believe that this condition is often (if not always) satisfied for smooth
tame orders. The first consequence of the dimension assumption is that

not too many primes can be ramified.

IV.4.3. Lemma : If A is a smooth tame order over a local normal
domain R in a p?-dimensional division algebra A, then #P < 2.

Proof. Let n = #7P, then A[P] is a Z(™-graded Azumaya algebra over
its center R[P¢,e] which is a graded ring with unique maximal ideal

m[P°,e]= Y m.R[P,el,® Y - R[Pel,
cEH c€G\H

where G = Z™ and H = pZS...0pZ. | But thén{ we must have that
A[P]/A[P].m[P¢, €] is a Z(™-graded central simple algebra of dimen-
sion p? over the Z(™"-graded field

R[P°,e]/m[P°,e] 2 R/m[X], X[ ?;...; XB, X ;7]

Since we may assume that every prime ideal P;,1 <i < n, is generated
by a normalizing element, an easy computation shows :

AP]/A[PIm[P*,e] = o< A/(Am+ Pt ..+ Py )X X
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the isomorphism being one of graded R/m[X?, X% ..., X2 X 7]
modules. Calculating the dimensions on both sides yields : :

P’ = pn-dimR/m(A’/(Am +P+...+F))

which immediately implies that n < 2. o

If dim(A) # p® one can have a worse ramification divisor. For example,
it is perfectly possible to have smooth maximal orders over regular local
domains of dimension 4 in division algebras of dimension 16 with 4
central ramified height one primes, each having ramification index 2.

Let us recall from algebraic geometry the definition of a set of regular
divisors with normal crossings. We say that a set of divisors D =
{D;;t € I} has strictly normal crossings if for every prime ideal ¢
of R lying in U Supp(D;) we have the next property : if I, = {z 1 q€
SuppD;} then for i € I, we have that D; = ), div(z;») with z;x € R,
and {z;3}:;» part of a regular system of parameters in R;,. We say
that the set D has normal crossings if for every ¢ € USupp(D;)
there exists an étale neighbourhood of ¢ in Spec(R), Spec(S) say, such
that the family of inverse images of D on Spec(S) have strictly normal
crossings. Finally, a divisor D of R is called regular at ¢ € Supp(D)
if the subscheme D of Spec(R) is regular at g. The divisor D is called
regular if it is regular everywhere. For more details, the reader is
referred to the monograph of Murre and Grothendieck [34].

Combining the foregoing result with the characterization of regulariz-

able domains we get.

IV.4.4. Theorem : If A is a tame order over a local domain R in a

p?-dimensional division algebra A, then A is smooth if
(a) R has a regular ramification divisor with normal crossings in Z.

(b) One of the following three cases occurs
case 0 : P =0 ie. A is an Azumaya algebra
case 1 : P ={P} and dimp/p(A/Am + P)=p

case 2 : P ={P,Q} and dimg/p,(A/Am + P+ Q) =1
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Let us give some explicit examples of smooth maximal orders in

quaternion-algebras.

IV.4.5. Example : Let A = @ [[X, —]] be the ring of skew formal
power series over €', where — denotes the complex conjugation. It is
clear that A is a maximal order with center R = IR[{]] where t = X?
and that P = {(X)}. So, A[P] is'the Z-graded ring.

L ®(XTHX? @(X"li)Xl‘l dABX)X; o(X) Xl e...
and R[P°, e] is the Z-graded ring :
L BETHXTPORXT O RO() X, ea(t)vaea‘(tz)Xf ®...
Furthermore, we have
dimpyry/(o(@ [[X, ~]I/(X)) = dimpC =2

s0, A is smooth over R and in case 1.
Further, R[P°, e]/m[P°, €] = IR[t;, ;'] where t; = tX? and A[P]/A[P)
m [P¢,e] is the Z-graded central simple algebra € [V1,Y;7%,...] with

Y: = XX, over IR[t;,1]"].

IV.4.6. Example : Let R be a regular local domain of dimension
two such that # and y generate the maximal ideal m. Let A be the
quaternion-algebra (”I’{y) and let

A=R1®Ri®RjORij

with the obvious relations, i.e. 2 = 2,5 = y and ij = —ji. Then
one can verify that A is a maximal R-order. Clearly, P° = {(z),(y)}
which is a set of regular ramification divisors with normal crossings.
The generalized Rees ring A[P] is a Z @ Z-graded ring which can be

visualized as (omitting powers of X; and X,) :
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& (%% e (5% e (%) e () e (P7) e
(3] 57] 7] ® 57)

@ (2%) o (Y) e () e () e (%) e
7] 7] 7] ® @

® ("% o (@Y © A e (1) e () e
5] @ . [37] 5] ®

@ (%) e (YY) e (7YY e (W) e (P57Y) e
7] 5] @ 57 @

® (%% o (%) e (577 e () e (P57 e

and its center R[P, e] is the Z & Z-graded ring which looks like :

& (X' o (y o () o (=) o (=) o
® ® ® ® ®
& (X' © (v o () o () © (2v) o
® ® ® ® &
® (X)) ¢ R ©® R o (X)) o (X)) o (X3 o
® ® ® ® &
e (X)) © B © R o (X) o (X e
& ® ® ® ®
® (X)) e (v) © (v) © (sw!) © (s @&

Further, dimpg /m(A/(Am4()+(5)) = dimp/m (R/m)i-e. Aisasmooth
maximal order of case 2. R[P°,e]/m[P°,e] = R/m[Y2, Y, 2, Y7, Y2
where ¥; = iX; and Y = jXo, whereas A[P]/A[PIm[P*,¢] is the
7Z @ Z-graded central simple algebra R/ m[Y1, Y [Ys, Y, b, o) where
o(Yy) = =Y;. Its homogeneous part of degree (0,0) is equal to R/m‘
corresponding to the fact that A is local with unique twosided ideal

M =(5,5)-

IV.4.7. Example : Let F be any field with characteristic unequal to
2. Let R be F[X,Y]x,y) where X and Y are indeterminates. Let A
be the quaternion algebra (X }{"'Y) and let ‘

A=R1®ORi®.j®Rij
then A is a maximal order. Here P = {(¢)} and the central ramification
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divisor is P, = {(X)} and (X) ¢ m?. Since
dimppm(A/Am + () = dimp(F & F) = 2

A is smooth of case 1. We have that R[P°,e]/m[P°,e] & F[Y?,¥;"?]
where Y7 = ¢X; and the quotient A[P]/A[P].m[P¢,¢€] is the Z-graded
algebra

(F$ Fe)[lfhyvlulﬁp] = M2(F[}q271/1_2])

where ¢(a,be) = (a, —be) and « is given by

w5 7) o= (5 5)
w-(ha)

Therefore, A[P]/A[P¢, €] is a Z-graded central simple algebra over
F[Y2,Y;72]. However, its homogeneous part of degree zero is F'@ Fe
corresponding to the fact that A'is not local. Each factor corresponds
to one of the two maximal ideals of A lying over m = (X,Y) :

My = AG,j— 1) My = A(iyj +1)

In Theorem IV.4.4. we have characterized smooth tame orders with
a regular local center. We will now study their Zariski local structure
over such a domain. By this we mean the number of conjugacy classes
of smooth orders. One of the basic ingredients in the proof will be the
following result of A. Grothendieck [34, 2.5.8.].

IV.4.8. Theorem : Let R be a Noetherian (semi) local ring, A an
R-algebra, which is & finite R-module and M;, M, finitely generated
left A-modules. Let ¢ : R.— S be a faithfully flat morphism where
S is also Noetherian. If M1 ® S = M, ® S as left A ® S-modules, then
M, = M, as left A-modules.

In view of this result, it will be sufficient to calculate the conjugacy
classes of the extended orders A ® R where A is a smooth maxi-
. 4 ‘ LI

mal R-order and R** denotes the strict Henselization of R. Case 0
is easy. For, if one maximal order over R in A is Azumaya, then ev-
ery smooth maximal order A is Azumaya, too. Since Br(R**) = 0 we
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have A%(Rs}‘) > M,(R) = I‘% R} and by descent A = T as R-
algebras (apply Grothendieck’s descent result to the conductor of A in
I'ie. {z € A: Az CT}), so by the Skolem-Noether theorem they are

conjugated.

Before we can look at the the other cases, we have to recall some re-
sults on graded Brauer groups, see [12]. Two Z(")-graded Azumaya
algebras over a Z(”)—graded ring T' are said to be graded equivalent
provided there are finitely generated Z (=) -graded projective T-modules
P and Q such that there exists a gradation preserving isomorphism of

T-algebras :
I 9 END7(P) = 08 END7(Q)

where the endomorphism rings and tensor products are equipped with
the natural gradation, see loc. cit. for more details. The set of all
graded equivalence classes of z™ -graded Azumaya algebras from a
group with respect to the tensorproduct, Br9(T'), the so-called graded
Brauer group of T'.

IfTis a Z(n)-gra,ded normal domain, one can verify, cf. loc. cit., that

the natural (i.e. gradation-forgetting) morphism Br?(T) — Br(T) is

monomorphic.

A graded local ring 7 is called graded Henselian if every finite graded
commutative T-algebra is graded decomposed in the sense that it is
a direct sum of graded local rings. It is easy to verify that a graded
local ring is graded Henselian if and only if its homogeneous part of
degree (0,...,0) is Henselian. Further, if T' is graded Henselian with
unique graded maximal ideal m, then the natural morphism BréT —
Brf(T'/m), is monomorphic by a similar argument as in the ungraded
case.

The following result describes the étale local structure of smooth max-

imal orders.

IV.4.9. Theorem : Let A be a smooth tame order over a local

normal domain R in a p?>-dimensional divison algebra A such that char

(R/m)#p
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(1) If A is of case 1, R*® splits A.
(2) ¥ A is of case 2, R** does not split A.

Proof. The ring A['P]%RSh is a graded Azumaya algebra over
R[’Pc,e]gRSh, both equipped with the natural gradation. R[P¢, e]®
R

Rt = Rh[P] is graded Henselian because its part of degree (0, ... ,0) is
Henselian. Its unique maximal graded ideal will be denoted by mh[P].

(1) : In this case, RS"[P]/m**[P] is easily scen to be the graded field
Rsh/msh [Ylp7 Y;’—-l]

where Y¥ = nXF,(r) being the unique ramified central height one
prime ideal. Now, B

T = (A[P1@ B*")/(A[P]®@ R**).m™[P]

must be a Z-graded central simple algebra of dimension p* over
B2 /mb [VP Y,"P]. Using the formula at the end of Lemma IV.4.3,, it
turns out the homogeneous part of degree zero of I’ has to be an algebra
of dimension p over R*"/m*2. Since Rsh /ms? is separately closed and
by assumption char(R®**/m®) # p, we have to conclude that

T = R’Sh/mSh ®...0 R /m - (p copies)
Therefore, T’ contains zero divisors whence
T = M (B /m™ (Y7, ¥,77))
with an appropriate gradation on the matrix ring.
Finally, using the injectivity of the natural morphsim
Bro(R*{P]) — Bré(R*[P]/m*[P])

we find that o 4
s A[P] ® R 2 END gouyp) (P)
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for some finitely generated graded projective (free) R**[P]-module P.
If we calculate the parts of degree zero on both sides we get a'monomor-

phism
A ® R s M,(K*Y)

finishing the proof of (1).

(2) In this case, R}[P])/m*[P] is the Z @ Z-graded field R*"/msh
(Y7, Y, Y2, Y, ?) where Y7 = nXJ, Y = ' XF with {(r), (")} = P*
and degY? = (p,0) and degYy” = (0,p). Further,

T = A[P]® B /(A[P]® R").m™[P]

is a Z @ Z-graded central simple algebra of dimension p* over R*} /m"
(YP,Y; 2, Y], Y, ?]. Again, using the formula of the proof of Lemma
4.3. we obtain that all homogeneous parts should be one-dimensional.
In particular, :
_IT(O,O) = R /m*?

Let X be a generator of the _f(o,o)—module -I—‘(1,o) and Y a generator
of the Ty ¢-module f(0,1)9 then it turns out that T’ is a graded cyclic

algebra determined by the relations
X? =aY?, a € (R®/msh)*
Y? = bY{, b€ (RSP /msh)*
(XY =¢YX for1<i<p-—1

where £ is any primitive p—fh root of unity. Because R*®/m*® is sep-
arably closed and char(R*t/m®*) # p, this algebra does not depend
upon the choice of a or b, showing that T is graded isomorphic to the

Z @ Z-graded cyclic algebra determined by . .

X? = YP
Y? = Y7
XY = ¢YX

and if we calculate its norm, it follows that this algebra is a do-
main. But then, clearly, A[P]® R*® represents a non-trivial element
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in Br¢(R**[P]) and so its part of degree (0,0) cannot be an order in
a matrix ring since R[’Pc,e]%)RSh is graded regular and there is the

monomorphism

Bré(R2[P]) — BrI(K**[P])

whilst K*8[P] is strongly graded. This finishes the proof. o

IV.4.10. Theorem : All smooth tame orders over a local normal

domain in a p®-dimension division algebra are conjugated.

Proof.
Case 1 : Let A be a smooth maximal order in A. In the proof of the
foregoing theorem we have seen that there exists an étale extension §
of R such that : ' o

' A[P] % S= ENDS[p](P)

where P is a initely generated graded projective S[P] = R[P°,e]® S-
; R
module. Since S[P] is graded local, P is graded free i.e. of the form

P2 S[Plo1)®...®S[P)(o,)

where o; € Z and S[P](o;) is the Z-graded S[P]-module determined
by taking for its homogeneous part of degree & : S[P)(0;)a = S[P]o;4a-
Therefore,

A[P] % S = My(S[P))(o1;...,0p)

where the homogeneous part of degree a of the ring on the right hand
side is given by allowing as an entry on the (i, j)-place an element of
S[Pla+to: —oj+ ’

An easy computation shows that up to conjugation in degree zero, all
o; may be chosen to be elements of the set {0,1,...,p—1}. Further, we
may assume that o3 < g5 < ... < o, for otherwise one simply has to
conjugate by a permutation matrix. Because all isomorphisms occuring
in the foregoing are gradation preserving we can look at the degree zero
part : A®S = My(S)(o1,...,0,) Only a few rings M,(S)(o1,...,0p)
can actually occur. For example, o = o = ... = op, then
Mp(S)(o,...,0p) = Mp(S) which is an Azumaya algabra, contradicting
the fact That A is ramified. . :
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Further, if 67 < 02 < ... € 0, and if 0; = 0341 for some i, then
M,(S)(o1,...,0p) is no longer a tame order because it has the following
matrix-form : the upper triangular entries are S, the lower triangular
entries are either () of S and at least one of them, namely the entry at
the position (i+1,7) equals S. If we localize this ring at () and use the
characterization of hereditary orders in [22], it follows that (A ® §)(x) is
not hereditary, whence A ® S is not tame. But this is impossible since
S is étale over R.

The only remaining possibility is therefore M,(5)(0,1,2,...,p—1) and
we may now use Grothendieck descent to finish the proof.

Case 2 : From the foregoing theorem we rétain that A[P] cannot be
split by an étale extension of R. Nevertheless, mimicking the ungraded
case, A[P] can be split by a graded étale extension of B[P, e| since
this ring is graded local. Denote R[X]/(XF — ) by S, then S(®)
will be defined to be the Z & Z-graded ring whose (Z,0)-axis is the
strongly graded ring S[(X)] and (0, Z)-axis is the extended (0, Z)-
axis of R[P¢,e]. For example if p = 2 we get the following pictural
description of —S(®).

® (X% e (X)) e (o) & 'X) o (~'X?) e

® ) ® &

& (X% e (¢X') o () @ ((X) o (~'X?) @
@ @ & @ @

@ (X7 e (X)) © S e (X) e (X)) e
® ® o ® &

@ (X% e (X)) © S o (X) o (X e
@ o o & ®

) (ﬂ.l—-lx—Z) =) (WI—1X<-1) <) (7‘_1—1) @ (ﬂ.l—lX) ® (W'—IXQ) o

It can be shown that S(®) is a graded étale splitting ring for A[P].
Running along the lines of the argument given above for the first case

we obtain :

AP § S(8) My(S@)(er,..-,0)

where the 0; € Z @ Z may be chosen to stem from the set {(0,1),...,
(0,p — 1)}. Furthermore, as in the first case the only possibility which
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yields a (graded) tame order is graded isomorphic to
M,(5(2))((0,0)(0,1),...,(0,p— 1))

Applying a graded version of the Grothendieck descent mentioned
above, it follows that A[P] = I'[P] for any smooth maximal orders
over R in A, the isomorphism being one of graded R[P¢, e]-algebras.

As always, such an isomorphism is necessarily conjugation by a unit,
o say, where o € A[X1, X7, Xo, X;7}]; because the latter ring is a
Z @ Z-graded domain, « is homogeneous i.e. o = 6X111X212 with § €
A*. Finally, we calculate the homogeneous parts of degree (0,0) in
the generalized Rees rings and then we arrive at : A = §~1.1.6, thus
finishing the proof of the theorem. a
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IV.5. Weak Brauer-Severi Schemes :

As an application of the graded techniques introduced before, we will
construct here a big open subset of the Brauer-Severi scheme of a
smooth maximal order. First we outline the general problem.

Let A be an order over a normal R in a central simple algebra % of
dimension n?, then one can define a functor from the category of all

commutative R-algebras to the category of sets
Fy : Comm Algp — Sets

which associates to an R-algebra A the set of all left ideals of A%)A
which are split projective A-modules of rank n. The main problem is
to determine whether this functor is representable. By this we mean
the following : does there exist a scheme BS, over Spec(R), called
the Brauer-Severi scheme of A, such that for every commutative
R-algebra A there is a natural one-to-one correspondence between el-
ements L of F5(A) and scheme homomorphisms ¥y from Spec(4) to
BS, making the diagram below commutative :

BS,
Uy
o
Spec(4) —  Spec(R)
pA —
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where ¢ and ¢4 are the natural structural morphisms. Therefore, one
may view the Brauer-Severi scheme as parametrizing the commutative
R-algebras which split £. A first step in this study consists in deter-
mining the étale structure of the Brauer-Severi scheme, i.e. suppose
that a point @ € Spec(R) has an étale neighbourhood S which splits X,
then one calculates a representation of the functor

Frgs:Comm Algg — Sets

This étale local structure has been dertermined in several cases.
Grothendieck showed that the étale local structure of the Brauer-Severi
scheme of an Azumaya algebra in hboz P . Artin and Mumford cal-
culated the Brauer-Severi scheme of a maximal order over a smooth sur-
face in a ramified quaternion algebra with a regular ramification-divisor.
Recently, Artin calculated the étale local structure of the Brauer-Severi
scheme for a maximal order over a Dedekind domain, see [2].

If one restricts attention in the first case to Azumaya algebras over
regular domains, it turns out that all rings for which a description of
the Brauer-Severi scheme exists in the literature, are smooth maximal
orders. Therefore, one can ask whether the functor Fy is representable
for every smooth maximal order. We will show in this section that the
restriction of Fj to some nice subcategory C of Comm Algp, which
includes all étale and smooth extensions of R, is indeed representable.
"To be more precise, C will be the full subcategory of Comm Algp con-
sisting of all R-algebras A such that A[P] = R[P°, ] %A is a regular

domain.
Let us first reformulate the question in a graded context. Denote by
F{ the functor : ’ ‘

F{: _C:% R[P°, e] — Sets

which assigns to an algebra A[P] where 4 € C, the set of all graded
left ideals of A[P] % A which are graded split projective A[P]-modules

of rank n.

IV.5.1. Lemma . If A is a smooth maximal order over a regular local
domain R, then there is a natural one-to-one correspondence between

Fp(A)'and FY(A).
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Proof. We claim that the following maps establish the one-to-one

correspondence :
¥, Fr(A F{(A;L—-L ® (A[PI®A
L Fa(4) > FANI L @ (API9A)
‘I"z . FX(A) — FA(A),M - Me

where e is the neutral element of the grading group. Since A[P] %) Aisa
strongly graded ring, ¥; and ¥, clearly define a one-to-one correspon-
dence between left ideals of A® A and graded left ideals of A[P]® A.
Further, since A[P] % A is a graded Azumaya algebra over the graded
regular domain A[P], grgldim(A[P]® 4) < oo whence gldim(A%A)
< oo view of the equivalence of categories. Therefore, A® A4 is a reg-
ular order over the regular domain A. Because both projectivity and
splitting are local conditions,” we may as well assume that 4 is local

regular.

Now, let L € Fj(A), then we claim that L is split as a left A ® A-
module. Consider the exact sequence of left A ® A-modules :

0 >L—->AQA—-(A®A)/L—0

Since L € Fj(4), this sequence splits as a sequence of A-modules. So,
(A®A)/L is a left A® A-module which is free as an A-module, but
then, regularity of A® A entails that (A® A)/L is projective as left
A ® A-module, finishing the proof of the claim.

It follows that ¥;(L) is a graded split projective A[P]® A-module. Fi-
nally, an easy localization argument shows that ¥;(L) has graded rank
n. The proof that ¥, maps elements of F{(A) to Fy(A)is easy. ~ o

Our strategy to represent the full subgenerator of F, will be to represent
first the functor FY by a graded scheme which is relatively easy because
A[P] is a graded Azumaya algebra, so we have to modify Grothendieck’s
arguments in the graded case. Subsequently, we will derive from this
graded scheme a usual scheme which represents the subfunctor of Fj.

The actual computations are carried out for smooth maximal orders
in quaternion-algebras, i.e. p = 2. However, using the structural re-
sults of the foregoing section the reader may easily verify that a similar
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approach is possible for smooth maximal orders in a p?-dimensional
division-algebra, p being a prime number. All graded schemes we will
encounter have the property that their homogeneous part of degree e
is a usual scheme. Let us give an example :

1V.5.2 Example : Let R[D,g] be a scaled Rees ring associated to
the set of height one prime {p;,...,p,} and natural numbers g =
{915-..19n}. We will denote G tobe Z'™ and H = 9, Z ® ... ® g, Z.
There is a natural one-to-one correspondence between Spec(R) and
Specy(R[D]) the set of all Z(™-graded prime ideals of R[D, g] with
the induced Zariski topology.

1 Spec(R) — Spec,(R[D, g])
m— Y mR[D,gl, + Y. RID,gl, = m[D]

oceH cEG\H
P2t Spec(R[D, g]) — Spec(R)
M—sm= Me

.+,0) is the neutral element. It is verified that these
maps actually define a homeomorphism.

where e = (0,.
Moreover, for any m € Spec(R) we have :

(R[D) g]i—,,[p’g])e = Rm

so the part of degree e of the affine graded spectrum of R[D, g] is iso-
morphic to Spec(R).

We will now give a graded representation of FY if A is smooth of case 1,
i.e. P = {P} and dimp;m(A/Am + P) = 2 (quaternionic case). From
Theorem IV.4.9. we retain there exists an étale extension S of R which
splits A. First, we like to represent the functor

Fles: Q%S['P]———)Sets

by a graded scheme over SPECY(S[P]), i.e. we will define a graded
scheme X such that for any S-algebra A in C there is a natural one-to-
one correspondence between elements of F o 5(A) and graded scheme
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morphisms x

SPECY(S[P ' .y X

\ /‘
SPECYS[P

where ¢ and 4 are the structural morphisms. In the proof of Theorem

1V.4.10. we have shown that

A[P] % S = M,(S[P])(0,1)

o

So, if A is any Z-graded S[P]-algebra, then (A[’P]%S) S({%)’]A

M3(A)(0,1) hence we aim to represent the functor
G : gr Comm Alggp) — Sets

which assigns to a Z-graded algebra A the set of all split projective
graded left ideals of M2(A4)(0,1) of rank two. Take such a graded left
ideal L € G(A4), then L = ennL & e22 [ and since all matrix elements
e;; are homogeneous, it follows that e;1 L is a graded split projective
rank one submodule of A@® A(—1). Conversely, if M is a graded split
projective one submodule of A @® A(—1) then

L=M@621M

is a graded split projective rank two left ideal of M>(4)(0,1). So, it

will suffice to represent
Grass?(0,—1) : gr Comm Alggp) — Sets

which assigns to a Z-graded S[P]-algebra A the set of all graded split
rank one submodules of A @® A(—1). As in the ungraded case, this can
be achieved by representing the subfunctors Gr{,: = 0,1, which assigns
to A the set of all elements M € Grass{(0, —1) such that the gradation

preserving composite morphism
A(—i) Th A A(~)) — M
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is an isomorphism where, ¢; is the natural inclusion and u is the
uniquely determined gradation preserving map for M. Suppose we

have :

A A(—7)
Pi U

A(=2) 2 M
such that u o p; is an isomorphism and let w be its inverse and v =
w o u which satisfies vop; =1 4(—1)- Conversely, suppose we have a
gradation preserving morphism v which satisfies v 0 ¢; = 1 A(~3), then
it is clear that M = A@® A(—1)/Ker(v) is an element of Gr?(A4). One
can therefore identify Gr{(4) with the set of gradation preserving split
morphism of ¢;, if one defines mappings

i : HOM4 (A @ A(—1), A(—3))o — HOM.4(A(i), A(=1))o
v — v0p;

Bi : HOM4(A @ A(-1), A(~1))o — HOM 4(A(~1), A(—3))o
v —> 1A(—i)

then Gr{(A4) may be viewed as the kernel of the couple (a3, 8;) and we
claim that the functors

A; : gr Comm Alggp) — Sets; A;(4) = HOM4(A® A(-1), A(-1))
B; : gr Comm Alggp) — Sets; B;(4) = HOM4(A(—1),A(—1))o

are representable by graded schemes. Before proving this we need to
define graded vector fibres.

Let A be a Z(™-graded commutative ring and let E be a graded A-
module. The tensor algebra T(E) = & (EM) is given the natural
=0

Z(™ -gradation, i.e.

T(E)y= Y, En®..QF,,

o1+t om=y

Thg symmetric algebra S(E) over E is obtained by taking the quotient
of T(l’? for the homogeneous twosided ideal generated by all elements
z®Yy —y®z; z,y € h(E), i.e. S(E) has a natural Z(™_gradation.
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By the universal property of S(E) one can check that every gradation
preserving A-linear morphism E — B, B being a Z-graded commu-
tative A-algebra factorizes through S(E). Furthermore, S(E® F) =
S(E)® S(F) a Z ™ -graded rings.

The graded vector fibre VI(E) of the Z (") _graded A-module E is then
defined to be the graded affine spectrum Spec?S(E) which is a graded
SPECY(A)-scheme representing the functor HOM_(E %) —,—)e where e

is the neutral element of Z(™.

IV.5.3. Example . Let 0 = (01,...,0,) € Z™ then there is an
isomorphism of graded A-algebras

S(A(61)® ... ®A(0n)) = [t1y--+rtm)
where deg(t;) = —o;.

Clearly, the functors A; are represented by the graded schemes
V9(S[P](3) ® S[P](—i)) whereas the B; are represented by V4(S[P]).
The maps «; correspond to the graded scheme morphisms :
ag — fo : SPECYS[P][X,Y] — SPEC?S[P][X]
(deg X=0,deg¥=1) ‘
a; — f1 : SPECYS[P][X,Y] — SPECYS[P][Y]
(degX=—1.degY =0)
And these morphisms arise from the natural algebra inclusions. The g;
correspond to the morphisms :
Bo = go : SPECYS[P][X,Y] — Spec? S[P][X]
degX=0,degY =1
B1 — g1 : SPECYS[P][X, Y] — Spec? S[P][Y]
degX=~1,degY =0
coming from the graded algebra maps sending X to 1 (resp. Y to 1).
Therefore, the functor Gr is represented by the kernel of the diagram

below

SPECYS[P|[X,Y] L% SPECIS[P|X]

A

SPECYS[P|[X,Y]
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which is equal to X9(X —1) = SPECYS[P][Y] where deg(Y) = 1. Sim-
ilarly, Gr{ is represented by SPECYS[P][X] with deg(X) = —1. It rests

us to glue the subfunctors to represent Grass{(0,...,1). Let us calculate .
the fundamental modules for the subfunctors Gr{. That is an element

My € Grass{(0,...,1)(S[P][Y]) resp. M; € Grass{(0,--1)(S[P][X])
such that for every graded commutative S[P]-algebra A, the natural
one-to-one correspondences between HOM(SPECY(4), SPECYS[P][Y))
and Gr§(4) (resp. HOM(SPEC?(4),SPEC?S[P][X]) and Grf(4)) are
given by assigning to a scheme morphism 1, I‘(‘SPECg(A),‘zA*‘(MO))
(vesp. T(SPECH(A).4*(My))).

It is easy to verify that :

Mo = S[P][Y](0) = (S[PIY]® S[PIY](-1))/(-Y, 1)S[P][Y]

My = S[PI[X])(-1) = (S[PI[X](1) ® S[PIX])/(1, - X) [P X](~1)

The open set of SPECYS[P][Y] over which we have to glue
SPECYS[P][Y] with SPECYS[P][X] is then the set for which the com-
position « is an isomorphism : :

SIPI[Y](c) @ S[P][Y](-1)
yFo0ey ' / (=Y, 1)S[P][Y]
y € S[PI[Y](-1) — M,

ie. X9(Y) is the desired open set. Similarly X9(X) is the open
set of SPECYS[P][X] over which one has to glue SPECYS[P][X] with
SPEC?S[P][Y]. Now we have proved the following result.

IV.5.4. Theorem. The functor FY g ¢ is represented by a graded
scheme GRASS{(0....,1) over SPEC(S[P]) which is obtained by glue-
ing SPECYS[P][Z], dg(Z) = 1, together with SPECYS[P][Z~1] over
SPECYS[P|[Z,Z7*].

Note that the graded scheme Grass{(0, ~1) may be interpreted as the
graded one dimensional projective space over $[P]. We have seen above
that the part of degree zero of a graded scheme is often a scheme. The
part of the graded scheme Grass{(0,—1) is the S-scheme obtained by
gluing Spec(S[P]>0) with Spec(S[P]<o) over SpecS[P]. This scheme is
never régular. For example, if A = @' [X, —] then S can be taken to be
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@ [t] where t = X2, In this case, the part of degree zero of Grass?(0, -~1)
is the scheme obtained by gluing two affine cones over the complement

of a ruling.

Now, let us briefly look at the second case, ie. P.= {P;Q} and
dimp/m(A/Am+P+Q)=1. In Theorgm IV.4.9. we have seen that
there is no étale extension of R which splits . However, one can find
an étale extension R; of Rsuchthat AQ Ry = R;. 1D R;.:® Ry ® Ryij
with 2 = p, j2 = g where P? = (p) and Q? = (q). Moreover, there ex-
ists an extension S = R;[X]/(X? — p) which splits & and such that the
ring S(®) as defined in the proof of Theorem IV.4.10. is a graded étale
(even Galois) extension of R;[P], in particular S(®) is graded regular.
This entails that

(A® Ry)[P]® S(®) = M(5(2))((0,0),(0,1))
Our first objective will be to represent the functor
F§ : gr Comm Algggy — Sets

which assigns to any graded commutative S(&®)-algebra A the set of all
split projective graded left rank two ideals of M,(S(®))((0,0),(0,1)).
As in case 1, it is readily verified that this is equivalent to representing

Grass((0,0),(0,—1)) : gr Comm Alggs) — Sets

Extending the argument of case 1 to the ZZ @ Z-graded case, one ob-

tains the following result :

IV.5.5. Theorem : The functor Grass{((0,0),(0,—1)) is repre-
sented by a graded scheme GRASSY((0,0),(0,—1)) over SPECYS[P]
which is obtained by glueing SPECY S[P][Z], where degZ = (0,1), with
SPECYS[P][Z~1] over SPEC?S[P][Z, Z~1),. ...
Using graded Galois descent, it is then possible to find a graded scheme
over SPECY R [P] which represents the functor

f%:gr Comm Alg‘m[,,] — Sets

Having found a graded representations for the functors Fy, we like to:

use this information to represent F)y. We will restrict attention to case
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1. If one calculates the explicit form of the graded scheme representing
f9, one can mimick easily the argument below.
If A € Cg, it follows from Lemma IV.5.1. that there is a natural
one-to-one correspondence between elements of Fj g s(A) and graded
SPECYS[P]- scheme morphisms from SPECYA[P] to GRASS{(0, —1).
Any such scheme morphism ¢ is determined by graded S[P]-algebra
morphisms :

¢1: S[P][Z] — A[P]

w2 : S[PI[Z27] — A[P]

such that their localization (¢1)z and (p2)z-1 coincide. Clearly, ¢ is
completely determined by ¢1(Z) € A[P]; = A, so there is a one-to-one
correspondence between S[P]-algebra morphisms from S[P][Z] to A[P)]
and S-algebra morphisms from S[X,Y]/(X — pY) to A.

Similarly, ¢, is completely determined by ¢2(Z7') € A[P]_; = 4
so there is a one-to-one correspondence between graded S[P]-algebra
morphisms from S[P][Z~1] to A[P] and S algebra morphisms from
S[X~1] to A. Further, there is a one-to-one correspondence between
graded S[P]-algebra morphisms from S[P][Z,Z71] to A[P] and S-
algebra morphisms from S{X,X™1,Y]/(X — pY) to A. Therefore, if
X denotes the S-scheme obtained by gluing SpecS[X,Y]/(X — p¥)
with SpecS[X,X1,Y]/(X — pY) then there is a natural one-to-one
correspondence between graded SPECYS[P]-scheme morphisms from
SPECYA[P] to GRASS](0,—1) and Spec(S)-scheme morphisms from
Spec(A) to X. This concludes the proof of :

IV.5.6. Theorem. Let A be a smooth maximal order of case 1 over
a regular local normal domain R. The étale local structure of the
weak Brauer-Severi scheme, i.e. the scheme represeﬁting the scheme
SpecS[Y'} with SpecS[Z] over SpecS[Y, Z]/(1 — pY Z).

Iv.5.7. Example. The scheme X over Spec( [t] associated to the
smooth order A = @ [[X, —]] has fibers which can be visualized as a
family of conics, degenerating to a pair of distinct affine lines. The
‘étale local structure of the full Brauer-Severi scheme was computed by
M. Artin. Its fibers can be visualized as a family of conics, degenerating
to a pair of projective lines meeting transversally at one point.

It is eady to give an open immersion of X in BS, ® Aé .
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The weak Brauer-Severi scheme misses one point corresponding to the

left ideal of rank two L in

s <= (e o)

where
L=(@ﬂm %>
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V. Two-dimensional Tame
and Maximal Orders of Finite Representation Type.

V1 introductiqn :

In Chapter IV we have already touched upon the matter of orders of
finite representation type. In this chapter we show how the methods
developed there, maybe used to rederive some of the results in {3]. In
particular, a variant of Theorem V.2.10 tells us that the representation
theory of two dimensional tame orders is, in the case of finite repre-
sentation type, determined by a rational double point together with a
cyclic group action on its module category. This allows one to compute
the ranks of the Cohen Macaulay modules. We then prove a struc-
ture theorem for tame orders with the above hypothesis. Each such
tame order is of the form A = k[[z,y]] . G where G acts linearly on
the two dimensional space V = kz + ky and c takes values in k. We
then relate the C.M modules of A to the projective representations of

G corresponding to c.
We also give a criterion for A to be a maximal in terms of ¢ and G.

An important part of [3] and [4] is the classification theorem. This
theorem describes the Brauer class of maximal orders of finite repre-
sentation type in terms of ramification. Our methods can duplicate
some parts of Artin’s arguments. An important tool used by Artin
however is the computation of the Brauergroup of the function field
of a rational singularity. So far we have not been able to give a ring
theoretic treatment of this result. We therefore follow Artin, stating
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the geometric results without proof.

Finally we give an overview of the recent paper [46]. In this paper
two-dimensional orders of finite representation type are classified too.
This time the classification is in terms of generators and relations. The
methods in loc. cit. rely on representation theory and fall outside the
scope of this book. Hence we state the results without proof. We also
outline how the classification in [3,4] can be related to the classification
in [46]. (The classifications are in terms of very different invariants.)
In this chapter all modules will be left modules and will be finitely
generated unless otherwise specified.

To avoid confusion later on we redefine the notions of order and ten-
sorproduct we will use here. An R-order is as introduced in IL5 i.e. a
reflexive module over a central Krull domain R. A tame R-order
is an R-order which is tame over its center in the usual sense. If A
is an R-order and M, N are right and left reflexive A-modules then
M Lo N=(M®yN)*. If Ais tame and I and J are fractional ideals
then IxJ is the fractional ideal (IJ)**. The biduals are always taken
with respect to R. :
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V.2. Rational Double Points ,
Associated to Two-dimensional Tame Orders of Finite
Representation Type.

There are different divisorially graded rings that can be associated to
a tame order in the way of Theorem IV.2.8. There is one however
that deserves the epitet canonical. It is the analog of a well known

construction in the commutative case.

V.2.1 Definition : Let A be an Rg-order and assume furthermore
that Ry is factorial and contains a field k. Then we define the reflexive
canonical module as wy/; = Homp,(A, Ry). This is a A-A bimodule in

a natural way.

V.2.2 Lemma : Let A be a tame Ry order.

(a) wask is independent of Rq.

(b) wa/k is Z(A) commuting.

(¢) If Aistamethen wy/p = Pf(l_el)*P;(l—ez)*. o pr—ea) | WAk
where the P; represent all the ramified divisors in X()(A) and the

e; are the corresponding ramification indices (See chapter IV).

Proof : (b) is clear. (a) and (c) follow from local computations using

[46]. ‘ o
V.2.3 Corollary : If A is a tame order with the above assumptions
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and if wp/r & A as bimodules then A is a reflexive Azumaya algebra

over a commutative ring R with wp/; & R.

From the above lemma, it follows that we can represent w, /& by a two
sided fractional ideal I in Q(A). If I represents a torsion element in
Cl.(A), i.e. if I*" = aA, where we take n minimal, then we can form
Ay = All,n] = A[I]/(1 — aX™) where AlI] = ©2__ I**X* does not
depend on the choice of I but does depend on a. In important cases
however A; will also be independent of a (i.e. in the case that R, is
complete local with an algebraically closed residue class field of char.
zero). We have therefore chosen to exclude a from the notation. We

will define Alwy i) = A[I, n):.

V.2.4 Proposition : Let A be tame with assumptions as above and
assume furthermore that k has char. zero. Then A; = Alwy /] is a
tame order and wy, /5 = A; as A;-A; bimodules.

Proof: That A; is tame follows as in [38] once we have shown that A,
is prime. This follows from the fact that we can choose a not to be a p'th
power for all pjn. Then Q(A1) = Q(A)®q(Z(A))Q(Z(A))[X]/(1—aX™)
which is prime. That wy, /& = A; follows by direct computations. o

Let us now restrict to the following situation. Ry will be a powerseries
ring in two variables over an algebraically closed field of characteristic
zero. A will be a tame Ry-order of finite representation type, i.e. A will
have a finite number of indecomposable reflexive left A-modules. In
this case the prerequisites for defining Afw, /k] are clearly present and
thus we put A; = Afw, ;] (Corollary V.2.3 and Proposition V.2.4 then
already tell us that A; is a very special tame order but in this case we
can do more).

The following proposition is basically due to Artin.

V.2.5 Proposition : A; & Endg, (M) where R; is the complete local
ring of a rational double point and M is a reflexive R;-module.

Proof i Put Ry = Z(A;). R; being a direct summand of A; clearly

178

has finite representation type. Since R; is C.M. wp, /k coincides with
the usual dualizing module (see [23]). Hence R; is also Gorenstein
because by V.2.3 and V.2.4 wg,/x & R;. So R; is the complete local
ring of a rational double point. To finish the proof of the proposition
it suffices to show that the reflexive Brauergroup B(R;) is zero. Recall
that the reflexive Brauergroup of a commutative ring S is defined as
the similarity classes of reflexive Azumaya algebras with composition
1s. A and B are called similar if there are reflexive S-modules M and
N such that A Ls Ends(M) = B Lg Ends(N) as S algebras. o

V.2.6 Lemma : Let S be a two-dimensional complete local ring con-
taining an algebraically closed residue classfield of char. zero. If S has

finite representation type then 8(S) = 0.

Proof : It is well known that S may be written as S'C where S' is a
formal power series ring in two variables and G acts linearly without
pseudo reflections (see [6]) for an almost completely ring theoretical
proof). Hence S'/S is unramified in codimension one and therefore
reflexive Galois. So we can use the Chase Harrison Rosenberg sequence

[11,12].

Cci(S') — H*(G,Smi) — B(S") — HY(G,CI(S"))
Since CI(S') = 0 we obtain (§) = H%(@,5'*) and since §' is complete
of char. zero H%(G,S'*) & H?(G,k*). Now note that since G acts

without pseudo reflections, G must be contained in Sl,(k). Hence the

following lemma finishes the proof. o

V.2.7 Lemma : ([3]). Assume that G is a subgroup of Sl(k). Then
H2(G,k*)=0.

Proof : It is clear that we may replace G with its Sylow p-subgroups.
Now a small p-group is either cyclic or binary dihedral. It is well known
and easy to prove that in both these cases one has H*(G,k*)=0. o

Using the notation of Proposition V.2.5 we will call R; (the local ring

of) the rational double point associated to A.

V.2.8 Remark : To complete his classification in [4] Artin needs a
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much stronger theorem than V.2.6. This theorem will be stated in
Section 3. The methods to prove this theorem fall far outside the scope

of this book however.

It is useful to analyse the connection between A and A; a little more
closely. This will be useful if one tries to employ the method outlined
in section V.4 and V.5 to compare the classifications in [3,4] and [46]
of maximal orders of finite representation type. So let A be a tame Ry
order of finite representation type and R = Z(A). Using Lemma V.2.2

we know that
wpsE = Pl*(l_e‘)* . --*P:(l_e") L wr/k

where the (P;); are the ramified prime divisors in X(*)(A) and the
(e;); are the ramification indices. Let P = Pl*(l_ei)ag ‘e -*P,:(l—e’“) and
define e = lemme;. Then if m is the smallest positive integer such that
wi'/",: &~ A we must necessarily have ¢|m. Hence let ef = m. Since
P*¢ = (pA)** for some divisorial R-ideal p : w;{'/k =pl eijijk Lr A
Hence f is the smallest number such that (p Lr wﬁjk)if ~ Ras R-R
bimodules. Define J =p L, wji;k Let R, = RoJdJ 2 ... J+(F-D)
where as usual the multiplication is defined via a bimodule morphism
J4f — R. It is easy to see that R, is independent of the particular
choice of the isomorphism. Let A, = A Lp R,. It is then easy to
see th@t wp, & wp ®r Rp as bimodules. Furthermore one verifies that

A1 = Az[wa,/k]- Hence we have proved the following.

V.2.9 Lemima : Let A be a tame Rg-order of finite representation
type and R = Z(A). Let e be the lcm of the ramification indices of
A/R. Then there is an unramified extension R, /R such that if we define
Ay = A Lgp Ry then wf’:/k = Az and Ay = Asfwy, /i)

The structure of C.M. modules over rational double points is well un-
derstood. See e.g. [5]. Now by Proposition V.2.5 we know that A; is
reflexive Morita equivalent with R;. Furthermore A; is reflexive Galois
“over A. It is therefore tempting to try to describe the reflexive modules
in terms of reflexive modules over R;. This can sometimes be done. In
fact it&was the method employed by Artin to determine the reflexive
modules in case Z(A) is regular.
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, One always needs some extra information however. We can compare

this with the methods we will outline in section V.5 There one finds the
ranks of the Cohen Macaulay modules essentially as a free extra result.
After choosing a character of H = Z/nZ welet H = Z[/nZ act
on Ai/A. This makes the extension reflexive H-Galois (the reflexive
equivalent of I1.5.15.). We then use the following result :

V.2.10 Proposition : Let I'/A be a reflexive Galois extension of Ro-
orders for a finite group G. Let M be an indecomposable reflexive
T-module and define Hyr = {a € G|oM = M} and |Har| = har. Theén
the decomposition of M as A-module consists of hps indecomposable

non-isomorphic A-modules My,...,Ms, and T' Ly M; = Ozec/a « M.

Proof : This is a standard application of extension and restriction of

scalars (see for example [45]). , o

From this proposition it should be clear that if one knows the action
of H on Aj-ref one can compute the ranks of the indecomposable A-
module. Since A; is reflexive Morita equivalent to R; and one knows the
indecomposable reflexive R;-modules we have to determine the action
of H on Ri-ref. If ¢ is a generator of H the functor M — ;M can
also be written as M — ,(A); ®, M. 5(A); is an invertible Ay — Ay
bimodule and hence it corresponds to a reflexive invertible By — R
bimodule I'. By Lemma II.5.3.5 we see that I, induces the action &
on Z(A). Hence I', = ;(I,)1. So we see that o acts on R;-ref through
M —, (I, Lr, M). ‘

For H to generate a H-action one easily verifies that the condition
I, Lo(I;) L.+ L o™ (I,) = R, must be satisfied.

We give a simple example :

Let
R R R
A={ps R R
pg pg R

where R = K{[z,3]l, p = (2), ¢ = (). Then Rs = kl[z,,2)/(z* - 2v).
Hence R; corresponds to the rational double point Ay with extended

Dynkin diagram
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If I is the reflexive R; ideal (z,y) then the indecomposable reflexives
of By are given by Rq,I,I*%. :

Clearly if o € H then ;M & M if M € {Ry,I,I"?}. Hence the action
of H on R;-ref is determined by the invertible bimodule I, for ¢ a
generatorof H. I, = I, I 2 then Proposition V.2.10 implies that A has
only one indecomposable reflexive module which is clearly impossible
since there are three non-isomorphic projective A-modules. Hence I,
is R and consequently there are 9 indecomposable reflexive A-modules

all of rank three over R.

It does not take a big effort to actually find these modules. They are

given by :

. R R R
R R P
R P P
R R R
R R P
q Prq pq
R R RY
q q Y4l
q rq pq

#
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V.3. Skew Group Rings and Projective Representations
Associated to Two-
Dimensional Tame Orders of Finite Representation Type

As in the previous section let A be a tame Ry-order where Ry is a
formal powerseries ring in two variables over an algebraically closed
field of characteristic zero. We will show that A is reflexive Morita
equivalent to S *; G where S  k[[z,y]], G acts linearly on kz + ky and
¢ takes values in k.

As before let R = Z(A), Ay = Alwa/s] and Ry = Z(A1). Since Ry is
the complete local ring of a rational double point (Proposition V.2.5,
R, = SC where S = k[[z,y]] and G acts without pseudo reflections.
S/R; is unramified in codimension one and hence it is reflexive Galois.
Then T = A; Lg, S is a reflexive Azumaya algebra. Furthermore from
11.5.1.13 it follows that I'/A; is reflexive Galois.

V.3.1 Lemma : There is a group G acting on § such that 8¢ =R.

Proof: Asin [3lemma 4.2]. Let K, K, L be resp. the quotient fields
of R, Ry, 8. It suffices to show that we can extend the automorphisms
in H to L since L/K will then be Galois. If G = Gal(L/K) then G
will leave S invariant since S is the integral closure of R in L. Let
o € H. We denote by S° the R;-algebra isomorphic to S as a ring but
with an embedding Ry —oR; C S. Then § Lg, S" is unramified in
codimension one over S and is therefore totally split (by purity of the
branch locus). But this also means that L 1g, L° is totally split which
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implies that o extends to L by classical Galois theory. .

Now let us continue with the proof of Proposition V.3.2 below. Lemma
V.3.1 has given us a group G acting on S. We claim that we can extend
the action of G to T'. To this end we simply define o(y®s) = 7(7)®(s)
where 7 is the image of ¢ in H. Since I'/A is reflexive G-Galois. T' is
reflexive Morita equivalent to A % G. On the other hand since 5(S) = 0
and every reflexive S-module is free we see that A = M,(5). It follows
then from Proposition I1.5.3.7 that A is reflexive Morita equivalent to
S *. @ where ¢ € H%(G,S8*).

It is now well known that we can make the following simplifications :

(1) The action of G on k[z,y]] can be linearized in z and y.

o

(2) The cocycle ¢ can be given values in k* since H %@,8*)
H?(G,k*).

So let us summarize what we have shown :

V.3.2 Proposition : With A as above, A is reflexive Morita equivalent
to k[[z,y]] *. G where G acts linearly and faithfully on kz + ky and ¢

takes values in k.

Proof : The action of G on k[[z,y]] and hence on kz + ky must be
faithful since otherwise Z(A) ¢ k[[z,y]]. ' o

In view of the above proposition it makes sense to study the inde-
composable reflexive modules of k[[z,y]] * G. This can be done by
studying the projective representations of G' [25]. Recall that a projec-
tive representation of k is a homomorphism a : G — PGLy,(k). The
exact sequence 0 — k* — GL,(k) —» PGL,(k) — 0 induces a map
§ : Hom(G,PGLn(k)) = HY(G,PGLA(k)) — H*(G,k*). If 6(c) = ¢
then we say that o corresponds to c. If we form the skew group ring
k.G then o may be used to define a left k.G module structure on k™.
Hence projective representations of G correspond to representations of
k.G for some c. R

A ‘projective representation is said to be irreducible if it corresponds

to an irreducible representation of k.G.

&
V.3.3 Proposition : Let A = k[[z,y]] *. G with assumptions as in
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Proposition V.3.2. Then the indecomposable A-modules are in one-one’
correspondence with the projective representations corresponding to c.

Proof : Since gl. dim. A = 2 every reflexive A-module is projective.
Projective A-modules are in one-one correspondence with projective
k.@ = A/radA-modules. These are by definition the projective repre-

sentation of G' corresponding to c. .

Suppose now that A = k[[z,y]] *. G as above. It is then a natural
question to ask whether there is a criterion for A to be a maximal
order in terms of ¢ and G. Such a criterion was found by Artin in [3].
Here we give a modified proof not using any geometry or sophisticated
cohomology. ‘

Let S = k[[z,y]], R = Z(A) = S¢. We will use the following criterion
for A to be a maximal order : :

If p e XO(R) then A, is a maximal order if and only if rad(pA) is a
prime ideal if and only if A’ = A/rad(pA) is a prime ring if and only if
A' = Q(A/rad(pA)) is a prime ring.

It is easily verified that rad(pA) = rad(pS) *. G and hence A' =
A/rad(pA) = (S/rad(pS)) *c G. If p does not ramify in S/R then
G acts X-outer on S/rad(pS). Hence A’ is prime. :
This means that we can restrict attention to elements in X(*)(R) that
do ramify in S. It is easy to see that the primes in §, that are ramified,
come from lines of pseudo reflections in V' = kz+ky. Furthermore, lines
of pseudo reflections, that correspond to the same height one prime in
R, are conjugate.

Let p, € X(I)(S) correspond to a line of pseudo reflection L and define
the following groups : Hy, is the stabilizer of L, H is the subset of Hy,
that leaves L pointwhise fixed. Let L' be a Hy complement of L in
V. Then Hy acts faithfully on L @ L' and hence Hy, C k* x k*. This
implies that Hy, is abelian. Furthermore Hj acts faithfully on L' and
therefore HY C k*. This implies that H} is cyclic. Let Hy, = Hy/Hj.
Then by the definition of H, H} must act faithfully on L. This again
implies that Hj is cyclic.

Now A’ = Q(S/ Noea pr) *« G will be Morita equivalent to A" =
Q(S/pr) *o Hp where ¢' is the restriction of ¢ to Hyr. Since
H?(Hp,k*) = 0 we may assume that o7 = 7o in A" if 0,7 € HJ.
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The cocycle ¢’ will then give rise to a pairing w : Hy x Hp — k*
following the rule Vo € Hy, 7 € Hy : 70 = w(0,T)oT.

It is clear that w is well defined. Hence A" = (Q(S/pr)H}:) *» Hy,
where H} acts on A" = §/pr * Hy through w. c" is some cocycle
irrelevant for the sequel.

Now we have one more step to make. Let h},h} be generators of Hy,

H! respectively. Then w(h®,hl) is some root of unity, say of order .-

Clearly t < N{m(]HL[, |HL1). Furthermore A" = @lfle(S/pL) Then
the action of 2}, on the components of T is given by cycles of length <.

There are now two possibilities :

(1) ¢ < |H3|. In that case Hy does not act transitively on the compo-
nents of I' and hence A" will not be a prime ring.

(2) t=|H3|. In this case A" will be Morita equivalent to Q(S/pr) *&
HY for some subgroup Hf of Hj. Now remember that Q(S/pr) is the
function field of L and H} acts faithfully on L. Hence Hj acts faithfully
on L and Q(S/pr) *¢ H will be a prime ring.

Hence we have proved :

V.3.4 Theorem : [3, Theorem 4.16]. Let A = k[[z,y]] * G with
assumptions as in Proposition V.3.2 Then A will be a maximal order
if and only if for every line of pseudo reflection of order #(= |H3|) the
restriction of ¢ to Hy, has order ¢.
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V.4 Classification of Two Dimensional
Maximal Orders of Finite

Representation Type.

In this section we summarize Artin’s classification of two dimensional
maximal orders finite representation type [3]. The basic technical tool
is the computation of the Brauergroup of the function field of a 2 dimen-
sional rational smgulamty Unfortunately we have no ring theoretical
proof for this theorem and hence we will state it without proof

In this section we keep the notation and conventions of the prev1ous
sections, i.e. Ry = k[[z,y]], k algebraically closed of char. zero, R is an
integrally closed Noetherian local ring, finite as a module over Ro. K
is the quotient field of R. '

Now we introduce some new notation. For n € Z let p, denote the

group of n'th roots of unity in k. There is a natural map fmn — Hn :

¢ — z™. We then define p = lim p,. This is a profinite group, non
— 7

canonically isomorphic to Z, the profinite completion of Z.

Fix a certain prime p € X(U(R) and define K = Q(R/p). Then K
is isomorphic to k((u)). Furthermore it is easy to see that there is a
canonical isomorphism between Gal(K) and p. Now let [A] € Br(K)
and choose a maximal order A in A. Define I = Q(Z(A/rad(pA)).
It is well known that L/K is cyclic of order e, where e, is the rami-
fication index of p in A and furthermore there is a canonical element
of Gal(T/K) obtained by conjugation with the uniformising element
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of A,. Hence there is a canonical homomorphism Gal(K) - Z /e, Z
where e, is the ramification index of p in A. It is easy to see that this

bomomorphism is independent of the choice of A in A. [A] defines an

element of

Horm(Gal(E), 7/ ey %) = Hom{y, Z /ey Z) C Hom(s, @ | 7)
2%t p(-1)

Let’s denote this element by u,({A]). By taking the sum over all p €

X®)(R) we obtain a map ¢ : Br(K) — ©pexymyp(—1) : [4] —

®,ex(r)tp([4]). (Note that this direct sum is well defined since A is

ramified only in a finite number of height one primes.)

V.4.1 Theorem : [4] Assume that R is the complete local ring of a

rational singularity. Then there is an exact sequence
0 — Br(K) — ¢ ®pexy(my #(—1) — Zp(-1) = 0
Wiiere 3 denotes the sum map.

For us it is sufficient to know that if R is of finite representation type

then R is the local ring of a rational singularity.

In the sequel we follow [4] closely.
Denote by C, 4 the cyclic subgroup of GLy(k) generated by

"=[g <0q]

where ( is a primitive n’th root of unity and (n,g) =1.

V.4.2 Theorem : Let A be a maximal order of finite representation

type with center R.

(i) There is a cyclic subgroup Gg = Cp 4 of GL, such that R is isomor-
phic to the fixed ring R'G° of the power series ring R' = k[[u,v]] under
the action of Gy. '

(ii) Let A' = A Lr R'. Then A’ is a tame order over R' and with
suitable &hoice of u, v its ramification data has one of the forms listed

188

in table V.4.4. The integers n, g satisfy the congruence relations listed
in that table.

V.4.3 Theorem : Suppose given a triple consisting of

(a) a choice of ramification data (V.4.4).

(b) a cyclic group Gy = Cp,q satisfying the congruences V.4.4.
(¢) a generator of the cyclic vg:roﬁp pe(—1) = Hom(pe, Q@ / Z).

Let R = k[[u, v]]°° and let K be the field of fractions of R. Then there
is a unique class [D] € Br(K) of period e such that the maximal R-
orders D have finite representation type and such that the ramification
data and cyclic group they determine as in Theorem V.4.2 are the given

ones.

V.4.4 Table :

I e=d f=uv
II; e=2 f=v(v—-1u%) ¢=d(modn)
IIl; e=2 f=u(v?—u%) 2¢2d(modn)and

; g% (1/2)d, if d is even
IV e=3 f=v(v—u?) ¢=2 (modn) '
14 e=2 f=v(v®-u?) 27=3(modn)

Here e denotes the ramification index of the ramified primes in X(*)(R).
As we will see below, these are all equal. The divisors of f generate

these ramified primes.
Proof of theorem V.4.2 :

Since R has finite representation type R = R'®° where G acts without
pseudo reflections. As above let A’ = A 1Lp R'. A' will be of ﬁni’t‘e
representation type by IV.2.5 and I1.5.1.13. A/R and A'/R' will be
ramified in finite sets of height one primes : {p1,...,pr} and {p},...,p}}
respectively. Purthermore R' is factorial and hence p} = (f;), f; € R.
As in V.2 we can construct A] = A'[wps/i] and define R} = Z(A]). Let
H=2Z/nZ. We let H act on A} /A’ via the primitivé root of unity ¢
(i-e. Tam = ("am). .
To summarize we have the following diagram :
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A——)A'———-)Ag_

.

V.4.5 Lemma : A}/A is reflexive Galois.

Proof : We already know that A'/A and A} /A’ are reflexive Galois
so we will try to apply II.5.1.14. This means that we have to lift the
action of the elements of Go to A}. Since wyr/x = Hompy(A', Ro) we
can define an action on Gy on wyry; and consequently on all powers
Wi e Let n= |H| and let f denote the A" — A' bimodule 1somorphlsm
f: w;{-,’; , — A used for the definition of A;. Now look at the following
diagram :

where o € Gy. If this diagram were commutative then ¢ would lift to

{ in the obvious Way ‘In general however there will be a, € R such
that (flooof)(—)= a,(a®'"( —))- The (@0)o determine an element
of H*(G,R™) and since R' is complete, H*(G, R"™) = H*(G,k*). This
means that we can change f by an element of R™ such that a, € k*.
Assume that this is the case. Then take b, such that b2 = ¢, and define
o*(u) = byo(u) for u € wpr k. Then o* extends to a ring automorphism
of A} which we also denote by o*. It is easily verified that the conditions
of Proposition I1.5.14 are satisfied and hence A} /A will be G-Galois for
some finite group G with G/H 2 Go. '

V.4.6 Lemma : The number of ramified prime divisors in A'/R" is

either 2 or 3.

Proof : As in IV.2.8 we conclude that the ring R" = R'[s1,...,81]/
(s& — f;) has finite representation type. Since R" is a complete inter-
section, it is also Gorenstein and hence it is a rational double point.
Since a rational double point has embedding dimension 3, we deduce
that ! < 3. The fact that [ > 2 follows from the fact that I > k and
k > 2 by Theorem V.4.1. : o
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V.4.7 Lemma : The group Gy is cyclic.

Proof : Since 2 < k <1< 3 by Lemma V.4.6, there is.an ¢ such that
rad(p;R') is prime. Since Gy is small, G acts faithfully on Q(R'/p;R').
Hence Gy is cyclic since Q(R'/p; R') is a powerseries ring in one variable.

[m]

V.4.8 Lemma : The ramification indices in A'/R' are equal. If [ =2
then the group Gy fixes the primes p},p,. If I = 3 then G, fixes one of
the p;’s and interchanges the other two. In this case the ramification

indices are equal to 2. In either case k = 2.

Proof : The assertion for I = 2 follows from V.4.1. Assume that
I = 3. The ring R" (constructed as in the proof of Lemma V.4.6) is a
rational double point and hence has embedding dimension 3. Therefore
two of the variables u, v, s; can be eliminated and since e; > 1 we
can eliminate u,v. This means that two of the elements f; are local
parameters. Adjusting coordinates and reindexing one obtains s{* = u,
$52 = v, 83° = f(u,v). We substitute into the third equation and
write this neutrally as ¢(s7*, 337, 53°). Reindexing again if necessary we
may assume e; < ez < ez. Since this locus defines a rational double
point, e; = 2 and the coefficient of s? is not zero [26, Theorem 4].
Cha.ngmg coordinates again we may assume that the equatmn has the
form s3 = g(s52,55%).

Again since this is a rational double point the locus g(s5%, s3%) can have
at most a triple point with an infinitely near double pdintv [26, 2.6, 2.7].
Therefore the possible values of the e; are (2,2,n) and (2,3,r) where
n is arbitrary and » = 3, 4, 5. ‘The exact sequence V.4.1 rules out all
values except (2,2,2). : ‘ S e]

Let f = fif:fs. Then R} = R'[w]/(w® — f). This is a rational double
point. This happens precisely if f is as in table V.4.4. Note that the
case where [ is 3 is contained in III54

V.4.9 Proposition : The coordinates %, v can be chosen in.such a
way that the action of Gy is linear and diagonal and such that the
ramification locus has one of the standard forms listed in table V.4.4.
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Proof : This is a case by case verification using the following idea :
Since R} is a rational double point R} = S, § = E[[',v']]¢" and G*
acts faithfully without pseudo reflections. Again one can show that
there is an action for a finite group G on § such that S = R. This
action maybe taken to be linear on ku' + kv'. The subgroup G' of G
that stabilizes R' is generated by pseudo reflections. Groups generated
by pseudo reflections have been classified. The invariants of S under G'
are generated by homogeneous polynomials in u',v' of known degrees.
One can then use this information together with the shape of f (see
table V.4.4) to bring the action of G in the desired form.

Proof of theorem V.4.3 : Let f = fi1fs of fifafs and let Go = Cryq.
The restrictions on n and ¢ imply that Gy fixes one of the f; and fixes
the other or interchanges the other two depending on whether ! = 2 or 3.
Define R = R° and let p; = (f;)N R. Then there are two different p}s.
Then theorem V.4.1 implies that the classes in the Brauergroup Br(K),
which have period e, are in bijective correspondence with generators of
the cyclic group pe(—1). Choose such an [4] in Br(K) and let A be a
maximal K-order in A. Then the ramification of A’ = A®g R’ is given
by (f;).. Hence A' has finite representation type and therefore A has

finite representation type. , .o

To finish this section we include a word on the rational double points
associated to the algebras in table V.4.4. A first step in their determi-
nation is the computation J = pt(1=¢) | wﬁ?k (see Lemma: v.2.9). J
determines an element of CI(R). We can use the exact sequence

0 — HY(Go,R*) — CI(R) - CI(R")

since R'/R is unramified. Hence CI(R) = H'(Go, R*) = HY(Go, k*) =
Hom(Go, k*) 2 p, using the given generator o = (C) Coq of Gy. Itis
easily verified that wg/; corresponds to o(f)/f. Hence J corresponds
to ((1+a)e ﬁ,ﬁ(l_e) . This quantity can be computed for ,each of

the algebras listed in table V.4.4. From this, one can compute the
associated rational double points for each of the algebras in table V.4.4.

, ,
V.4.10 Example : Let A be a tame order with type III; with

192

d = 2k =even. Then o(f)/f = ¢*¢*!. Hence ((1+9¢(o(f)/f)1 =
¢?9*t272¢=1 = (. Therefore J has order n and hence R, & R' (see
Lemma V.2.9). Hence the rational double point associated to A is given
by the local ring R'(1/f) which corresponds to the rational double point

Dd‘+2 .

193



V.5. Appendix
Recent Work of I. Reiten and the Second Author.

In the recent paper [46] tame and maximal orders of finite representa-
tion type were classified also. The methods employed are representation
theoretic and hence they fall outside the scope of this book. We will
however introduce the necessary notation to state one of the main clas-
sification results. From this it will be clear that the classification is in
totally different invariants compared to table V.4.4.

The job of matching up the two classifications has not been completed
yet. We outline the method that - in principle - should do it. However
we do not carry out the procedure since the computations involved seem

to be tedious.
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V.5.1 The main classification result.

Let us briefly recall some definitions. A quiver @ is a directed graph.
Q ma,ybe'formaﬂy defined as a quadruple (Qq,Q@1,b,€) where Qos @1
are sets denoting resp. the vertices and the arrows of Q. b,e: @1 — Gy
are maps assigning to an arrow its beginning and its end. A priory,
there are no restrictions on Qo,Q1,b, e i.e. we allow loops and multiple
arrows. With @ one can form the path algebra kQ. kQ has a k-basis
consisting of directed paths in Q. Composition of pathsis concatenation
if this is possible and zero otherwise. kQ becomes a k-graded algebra
by giving the arrows degree one. .

A pair (@, ) where Q is a qmver and 7 : Qo — Qp isa bljectlon is
called a stable translation quiver if for each vertex ¢ in Qg there is
a bijective map between the arrows ending in ¢ and the arrows starting
in 7q. If ¢ € Qo let us denote with By, E, the vector spaces with basis
{f € Q:6(f) = ¢} and {f € Qile(f) = ¢}. Suppose that (Q,7)is a
stable translation quiver. We say that w € (kQ)2 is a quadratic relation
ending in ¢ € Q¢ if w = 3 i, a;Y; such that every ¥; is a path of length
two starting in 7¢ and ending in ¢, and if w induces a nondegenerate
pairing between the vector spaces By and Ej. We say that W C (kQ),
is a set of quadratic relations in Q if W contains exactly one quadratic
relation ending in ¢ for every ¢ € Q.

If A is a tree then there is a natural way to construct a translation
quiver ZA from A. Fix an arbitrary orientation on A. The vertices of
ZA are (z,n) where ¢ € Ag and n € Z for each arrow a : 2z — y in
A there are, for every n, arrows (y,n) — (z,n + 1). The translation is
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given by 7(z,n) = (z,n — 1). It is an interesting exercise to show that
A does not depend on the chosen orientation on A.

Let A be a two-dimensional tame Rg-order where Ry is as before a
two-dimensional power series field over an algebraically closed field of
char. zero. Assume that A has finite representation type. Then from
chapter IV we know that A is reflexive Morita equivalent to an order
A of global dimension 2. We can also assume that A’ is basic (i.e.
A'/radA' 2 k@ --- @ k). The following proposition is a very short

extract from [46].

V.5.1.1 Proposition : Let A be basic and of global dimension two.
Then A = kQ/G where Q & ZA/G wWith A = Aco,e0, Dy Es, E1, Es.
G is a group acting freely on ZA such that ZA]G is finite, W is a
set of quadratic relations on @ and"denotes completion at the positive

part.

V.5.1.2 Remark : It is easy to see that Q is uniquely determined by
kéTW This is not the case for W. In [46] L.Reiten and the second
author classify exactly which W's occur and they describe when they
are "equivalent” i.e. give rise to the same algebra. In V.5.2. it will
be useful to know which quivers occur for Ends(M) where § is the
local ring of a rational double point. This is answered in the following

proposition [46]. -

V.5.1.3 Proposition : Assume that A is a basic tame order of global
dimension two and A & k@TW as above. Then A = Endg(M) where S
is the local ring of a rational double point and M is a reflexive S module
if Q = A’ where A is an extended Dynkin diagram corresponding to
S and A' is obtained from A by replacing [¢ —e] by [o_':: o] and
taking the identity for .

196

V.5.2 The dualizing module

Let A be a tame Rq-order. In V.2 we have defined wy /, as the bimodule
Homp,(A, Ro). An exercise in local duality however shows that (as M.

Artin pointed out to us)

wA/E = lifnHom(Ewti_mod(A/rad"A,A), k) (%)

This description of wy /, is ideal if A is of the form kQ/W, i.e. in the
case that A is basic of global dimension two. In that case wa will
be left projective and hence wy /g is an invertible bimodule. Since A
is basic , wa/r is right free and hence wy/x = gA1 where f is some
ring automorphism of A defined up to an inner automorphism of A.
Furthermore since wy/; is Ry commuting we see that f must be the
identity on Z(A). The order of wp g, i.e. the smallest n such that
wA/k >~ A as bimodules, is g1ven by the smallest n such that f7" is
inner, i.e. such that f*(—=) = v — u™!. As we will see below fis
obtained from a graded automorphism of kQ/W. From this one can
easily see that one can take u to be in (kQ/W)o. Then Alwy k] & A[X]
where aX = X f(a) and X™ = u~!. We now want to change X by an
element of (kQ/W), to obtain X™ = 1. It is easy to see that this is
possible if and only if f(u) = u. Since f is trivial on Z(A), f = v~ e
where v is some element of the quotient field of A. Lo
Then f* = v™ — v~" and hence v"u~! € Q(Z(A)). From this it easily
follows that f(u) = u. Hence we may assume that X™ = 1 and thus
Alwpsk]) 2 A% Z[nZ. Asin [RR] it follows that A « Z |nZ is Morita
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equivalent to kQ77W’ where @' and W' can be obtained from @ and
W by a well defined procedure. This means that we can compute
the rational double point associated to A once we have computed the
automorphism f. This can be done from (*) but the computation is
long and tedious. We just state the result. We also restrict ourselves
to the case with single arrows. This is not such a big limitation since
there are very few double arrow cases. They are all of the form

PRI

\ !
\\ ',/
N

The double arrow cases can be treated in a similar way as the singie

arrow cases but the notation is more complicated.

" Assume that (Q, 7) is a stable translation quiver with single arrows. If
g, ¢' € Qo then we denote with X 4 the arrow starting in ¢ and ending
in ¢, if it exists. If W is a quadratic relation then W is of the form

. W = Z aqlq.XquIquq

q'—q
where agy € k*

V.5.2.1 Proposition : Let ké/\W as in Proposition V.5.1.1 Then
wa/k & §A1 where a possible choice of f is given by

a,’
f(quf‘rq) = T2 2 Xorg

Tqq’

V.5.2.2 Example : In [46 p. 4.16] the maximal orders are classified.
Case (2) is given by A = kQ/W where Q = ZD,,/(%ps) with m even,
(—"—‘2:-%-,t) =1, %Tl — tis odd and W is arbitrary. pg acts on Dy, as
follows
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Oqz\ ® gn+t1
[ Je— o
*q; ® qn

pe(91) = qn, P6(qm) = ¢2,6(42) = dm+1, Pe(gm+1) = q1. The relations
on @ may be taken to be of the form :

Z quq'Xq'q

q'—q

i.e. all agrg are one. Then f(X;q7q) = —Xypg-

Since the period of 7 is even we can replace Xrakgrrang with — X,k grrong
for all k. Then f(Xrq7q) = Xg14. Hence the order of wy i is the order
of 7 which is 4%.

Applying [45] we find that Afw, ] = kQ”‘/\W' where Q' is

Hence the rational double point corresponding to A is Dip,. Comparing
this with example V.4.10 it is tempting to assume that A is in the
category IIl;, d even. This is indeed the case since one can show that
no other algebra in the classification of [46] gives rise to a dualizing
module with even period and with an associated rational double point
D,,, m even.
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