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0. INTRODUCTION :

These notes are a transcript of lectures given as a third cycle course for the
contact group algebra-geometry-number theory of the Belgian NSF (NFWO) in
the fall of 1988. The initial goal of these lectures was to give an account of the
negative solutions to the Emmy Noether problem for Abelian groups over @ by
Hendrik Lenstra (1974) and for arbitrary groups over € by David Saltman (1984)
as well as some of the surrounding theory. Unfortunately (for the audience) i be-
came graduately more interested in the determination of the stable equivalence
classes of tori-invariants and the connection between this problem and represen-
tation theory (integral and modular). For this reason, the present set of notes is
not the most consistent possible. A totally rewritten version (preliminary title ”the
tori-junglebook”) will be compiled shortly. As the notes of the next trimester will
be junglebook-compatible a quick introduction is added at the end of these notes.

Let us give a brief survey of the results proved in this first set of notes :

In the first section we fix the main problems (1): The Noether-Saltman prob-
lem asking when lattice invariants are rational (2): The Noether-problem asking
when permutation lattice invariants are rational and a seemingly generalization
of both problems (3): The tori-problem asking when tori-invariants are rational.
The historical root of this problem (the realizable Galois group problem) is re-
called as well as the first results in the area (Fischer 1916 : permutation lattice
invariants are rational over ¢ for Abelian groups). Then, Saltman’s procedure
is given to derive counterexamples to the Noether-problem starting from certain
non-rational lattice invariants. Further, some connections are given between the
Noether-Saltman problem and the Merkurjev-Suslin theorem. In particular, sta-
ble rationality of the centers of generic crossed products (resp. generic division
algebras) would imply Merkurjev-Suslin. And these problems are just particular
Noether-Saltman settings. At this point we should warn the reader that Saltman
gave non-stably rational centers of generic crossed products and this result will be
explained in the next trimester. However, for the center of the generic division al-
gebras no counterexamples are known but Mowgli conjectures that 8 by 8 matrices
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“should be one. A thorough discussion of this example is also postponed.until the-
next trimester.

In the second section we introduce a conceptual tool to visualize the tori-
problem : the Lenstra forest. The G-lattices are classified by isomorphism according
‘to their rank (by the Jordan-Zassenhaus result each rank has only a finite number
of classes) and an edge is drawn between two lattices M and N whenever we have

an exavt sequence of G-lattices
0-M—->N-—-=P—0

where P is a permutation lattice. It is easily checked that this defines an equiv-
alence relation on the G-lattices. Moreover, we prove (following Masuda,Endo-
Miyata,Voskresenskii and Colliot-Thelene,Sansuc) that the ’trees’ (they can have
loops and more roots !) in this forest correspond one-to-one to the stable equiva-
lence classes of tori-invariants (and some weaker implications are given for lattice
invariants).

In the third section we give an explicit description of the easiest forest of all
namely that of a cyclic group of prime order. In this case one has as many trees as
there are elements in the ideal classgroup of the p-th cyclotomic field giving a lot
of non-rational tori-invariants. It also follows from the argument that all trees are
isomorphic in this case.

In the fourth section we recall some of the basics of group cohomology theory
which is indispensable before going into the forest. Proofs of all this material can
be found in several excellent texts such as Serres 'Local Fields’.

In the fifth section we begin our main task i.e. counting the number of trees in
the Lenstra forest of an arbitrary group. We follow here the approach by Coilliot-
Thelene and Sansuc pending on the notion of flasque and coflasque resolutions
of lattices. We introduce the Sansuc-semigroup (lattices modulo isomorphism upto
adding permutation modules) and look at various subgroups : the Colliot-semigroup
(spanned by the classes of flasque lattices) , the Coco-semigroup (spanned by the
flasque-coflasque lattices) and the permutation classgroup PCI(G) (the invertible
elements in Sansuc). It turns out that the number of trees in the forest is equal to
the number of elements in the Colliot-semigroup and the tree-invariant is the class
of the end term in a flasque resolution.

In the sixt section we prove the Endo-Miyata result stating that the Colliot-
semigroup is actually a group if and only if the group is metacyclic. Further we
give Lenstras lunatic proof of the finiteness of the forest in the cyclic case and state
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- the Endo-Miyata classification of all finite forests. We do not prove this result
“here-but refer to the junglebook where it will be proved as a:consequence-of Dress’
computation of the rank of the permutation classgroup.

In the seventh section we begin this Dress computation. Along the way we
give the easy but elegant description due to Esther Beneish of invertible lattices as
locally-locally permutation lattices.We give some applications of her results for tori-
and lattice invariants. Using standard descent arguments, Dress reduces the com-
putation of the rank of the permutation classgroup to the ranks of the classgroups
over the p-adic integers and to character theory over @ and the p-adic fields.

In the next section we conclude this computation using some modular repre-
sentation theory. The final result states that the rank is determined by the order
of certain quotientgroups of the automorphism groups of the cyclic tops of hypo-
elementary subgroups of G thereby reducing everything back to the group-level. In
the junglebook a similar local-global investigation will be carried out for the flasque
coflasque and coco-nuts.

In section nine of this first set of notes we introduce a refinement of the Lenstra
forest namely the Saltman forest by replacing the role of permutation lattices by
that of invertible lattices. Our motivation for this new forest is twofold : first its
trees have an analogous rationality-interpretation as in the Lenstra forest by re-
placing stable-rationality by retract rationality and secondly the number of trees in
the Saltman forest coincides with the number of elements in the Saltman semigroup
A(G) wich is the quotiemt of the Colliot by the permutation classgroup. L.e. we
have reduced the problem of counting the number of trees in the Lenstra forest

- (or equivalently, the number of stable equivalence classes of tori-invariants) to the
study of the permutation classgroup (for which we have a pretty good picture by
the Dress results) and to counting the number of trees is a finer forest.

In the last section we do some more flasque yoga. In particular we will show
that every tree contains a coflasque and that those trees which contain additionally
a flasque lattice do contain a coco-nut. More surprisingly we will prove an analoque
of Horrocks method of killing cohomology of vectorbundles by monads. We prove
that any lattice can be obtained as the cohomology of a short complex (a monad)

0—-P—>C—P,—0
with P; permutation lattices and C a coco-nut. In the junglebook we will derive
more consequences of this monadology in particular in the study of self-dual lattices.
Moreover, we give a quick intro to G-jungles. Roughly speaking, the G-jungle
is the Lenstra forest of G together with the dual forest. The edges of the Lenstra
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forest are coloured red, the dual edges i.e. coming from short exact sequences of

the form
0P —-N-—-=M-—0

with P permutation are coloured blue and edges which are both red and blue are
coloured green. The underlying theory of jungles can be found in chapter 7 of
"Winning ways for your mathematical games I” by Berlekamp,Conway and Guy.

In the second trimester the audience will leave me no choice but to work to-
wards the counterexamples to the original Noether-problem. We will choose the
approach via the relation modules and the unramified Brauer group as in Saltmans
"Multiplicative field invariant’ paper. Further we will also have a closer look at the
Sn-jungle and the place of the lattice describing the center of the generic division
algebra.

The third trimester topics will probably center round applications of modular
representation theory to the local jungle picture (which is still a bit misty at this

time).

Finally it is a pleasure to thank the audience for forcing me to study these
topics and at the same time giving me enough room to do some joy-walking in the
forest and in particular Michel Van den Bergh and Christine Bessenrodt for daily
discussions (in our office or via email) keeping me more or less on the right track.
Also, i wonder whether someone can read these notes without playing Michelle
Shockeds ’Anchorage’ over and over again ; it was certainly impossible to write
them without it.
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1. THE NOETHER-SALTMAN PROBLEM :

In these notes we aim (1) to survey the known results on and (2) to develop

some machinary which may be used in the study of :

(1.1) : The Noether-Saltman problem
Let G be a finite group and M a ZG-lattice, i.e. a free Z-module of finite rank
with a (left) G-action. For a fixed basefield k let k[M] denote the groupalgebra

k(M) = k[21, 2%, ooy @y Ty |

and let k(M) denote its field of fractions. Clearly, G acts on k(M) as a group
of k-automorphisms. When is the field of invariants k(M)® rational over k,i.e. is

isomorphic to k(y1, ..., Ym ) as k-algebras ?

This problem extends the ’classical’ rationality problem of Emmy Noether

which is concerned with the special case of permutation lattices :

(1.2) : The Noether problem
Let G be a finite group acting faithfully on a finite set of indeterminates

Ty, .0y Tm. When is k(21 ...,z )¢ rational over k& ?

Without going into the (long) history of this problem,we will here merely scetch
the context in which it first arose. This is one of the fundamental (and still open)

problems in number theory :

(1.3) : Realizable Galois group problem
Let k be a number field and G a finite group. Is there a Galois extension K of
k such that Gal(K/k) ~ G ?

In 1892 David Hilbert proved that the symmetric group on n letters , Sy,
cal always be realized. His argument went roughly as follows : let S, act on the
polynomial algebra k[z1,..., z,] by permuting the variables. The classical theorem

on symmetric functions asserts that the fixed algebra is the polynomial algebra on
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~.the elementary symmetric functions o3, ...,0,. Then, Hilbert showed that if k is
a number field one can specialize the o; to elements a; € k in such a way that
k[z1,...,25] specializes to a Galois extension K = k[z1, .y Zn] ®kloy,...,0n] & With
Galois group Sy.

The idea of Emmy Noether (1915) was to extend this to other groups by letting
G act as a group of permutations on the indeterminates 1, ..., Z,. In this generality
it is fairly easy to give examples such that the fixed algebra is no longer a polynomial
algebra. However, Noether observed that it would be sufficient to know that the

field of invariants k(z1,...,2,)C is rational over k :

(1.4) : Theorem (Emmy Noether 1915)
Let G be a finite group acting faithfully on a finite set of indeterminates
#1,...,2n and let k be a number field. If the field of invariants E(21, .00y 20)C is

rational over k, then G can be realized as the Galois group of an extension of k.

proof : Let k(z1,...,2,)% = k(y1,...,Yn) be a rational representation. Then,
B(Z1, ey @n) = k(Y1, --r Yn )(c) and we let f(ys1, ..., Yn;2) be the minimal polynomial
for o over k(Y1, ...y Yn)- By the irreducibility theorem of Hilbert we can specialize
all the y; to elements a; € k such that the polynomial f(aj,...,@n;2) is irreducible
over k. One can then verify that the splitting field of this polynomial is the required

extension.

In view of this result it was clearly Emmy Noethers intention to show that
the answer to (1.2) is always positive over numberfields. However, in 1969 Richard
Swan gave a counterexample for G = Z/47Z over @ . Taking the basefield to be @
is essential in this example, for Ernst Fischer , a colleque and friend of Noether at
that time in Erlangen , proved already in 1916 that the answer to Noethers problem
is always positive in case the field k contains enough roots of unity and G is Abelian

(1.5) : Theorem (Ernst Fischer 1916)

Let G be a finite Abelian group of exponent e acting on a finite set of indeter-
minates #1,...,2,. Let k be a field of characteristic not dividing e and containing
primitive e-th roots of unity. Then, k(z1,...,2,)¢ is rational over .

proof : Let V = kz; be an n-dimensional k-vectorspace on which G acts
linearly. As G is abelian containing all e-th roots of unity, *G = k& ... ® k whence
V is the sum of one-dimensional G- invariant subspaces V = @&V; with V; = ky;
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and for all ¢ €@ o.y; = x;(0)y; where the x; : G — k* are the characters of G.
‘Then, k(V) = k(¥1, .-, ¥») and the y; are-algebraically independent over:k. Hence,
the subgroup Y of the multiplicative group k(z1,...,%,)* generated by the y; is
a free Abelian group with basis the y;. Let G* = Hom(G,k*) be the character
group of G and define a morphism ¢ : Y — G* by ¢(y;) = xi- Then the kernel
M = Ker(¢) is (as a subgroup of finite index in Y) free Abelian of rank n. Then,
k(M) C k(z1,...,2,,)¢ and one verifies that k[M] = E[Y] and clearly k(M) is the
field of fractions of k[M]. Hence, k(M) = k(my, ...,my) = k(z1, vy )€, done.

In particular, over the complex numbers ¢ any invariant field @ (=4, ..., z,)¢ as
in (1.2) is rational when G is Abelian. The corresponding question for non-Abelian

groups G was only settled (negatively) in 1984 by David Saltman.

There is a standard procedure which enables us to construct from certain neg-
ative solutions to the Noether-Saltman problem a negative solution to the Noether
- problem. This procedure was outlined in 1987 by David Saltman in his "Multiplica-
tive Field Invariants’ paper, but (as mentioned there) the underlying theory at least
dates back to the Endo-Miyata paper of 1973 :

Suppose we have a faithful G-lattice M (i.e. no element of G acts trivially on
M) , a permutation lattice P (i.e. a lattice having a free Z-basis which is permuted
by G) and an exact sequence of G-modules :

0O-M—-P—->N-—-0

- where N is a finite Abelian group with the induced G-action. Assume that the
exponent of N is e and that k contains a primitive e-th root of unity. Then, the

fieldextension

k(M) C k(P)

is a Kummer extension with Galois group A = Hom(N,k*). As G acts on N and
also (trivially) on k*, there is a natural G-action on A. Further, since the G-action
on k(M) extends to a G-action on k(P) we have a Galois field tower :

k(M)® C k(M) C k(P)

with Galois groups G (resp. A). Therefore, Gal(k(P)/k(M)®) = A X, G the
semi-direct product of A with G.
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If V = kv; +...kv, is an n-dimensional vectorspace with a linear G-action ,
then G acts on'k(V) = k(vy, ..., v ) and the invariant field is denoted (as in the G-
lattice case) by k(V)¢. Contrary to the lattice case (as we will see later) we have a
lot of freedom in choosing a particular representation as long as we are interested in
stable equivalence. Recall that two fields K and L are said to be stably equivalent
(over k) if K(21, .oy Tm) = L(y1,...,Yn) as k-algebras. We say that G acts faithfully

on a k-vectorspace V if the G-action induces a monomorphism G — GL,(k).

(1.6) : Theorem (Endo-Miyata 1973)
Let the finite group G act faithfully on two k-vectorspaces V and W. Then,
the invariant fields (V)¢ and k(W)€ are stably equivalent.

proof : We claim that k(V @ W)€ is rational over k(V)€.For, consider
West = (V)W C k(V @ W), then G acts semilinearly on W*** and by Galois
descent (see for example Knus and Ojanguren) one knows that (We=t)C is a k(V)C-
vectorspace having k(V)¥-dimension equal to the k-dimension of W. But then, any
k(V)S-basis of (W)€ forms a trancendence basis of k(V & W) over k(V)C.

Changing the roles of V and W in the foregoing argument one proves that
E(V @ W)€ is also rational over k(W)€, done.

One can extend this result to reductive linear algebraic groups acting almost
freely (i.e. such that the stabilizer group of a generic point is trivial) on finite
dimensional vectorspaces. This extended result is known as the 'no- name-lemma’
to invariant-theorists.

Anyway, an immediate consequence of (1.6) is the following :

(1.7) : Theorem (Saltman 1987)

Let 0 > M — P — N — 0 be an exact sequence of G-modules where M is a
faithful lattice, P a permutation lattice and N a finite Abelian group of exponent e.
Let k be afield containing a primitive e-th root of unity and form A = Hom(N,k*)
and H = A X, G. Then, k(H)H is stably equivalent to k(M)EC.

proof: Let py,...,pn be a Z-basis of P which is permuted by G and form the
k-vectorspace V = kp; + ... + kp,. Then , A acts on V by a.p; = pp; for some root
of unity p. Anyway, A X, G acts k-linearly and faithful on V. As k(P) = k(V') it
follows from Galois theory that k(V)H¥ = k(M)C.

Finally, let W = k[H] with the natural H-action. Then, by the Endo-Miyata




Permutation modules and rationality problems 9
result k(V)H = k(M) and k(W)H = k(H)¥ are stably equivalent.

Thus, even if the Noether-Saltman problem is a drastic generalization of the
classical Noether problem it is closely connected to it and a better understanding
of it may leed to finding the obstruction to the Noether problem. Moreover, there
are several important rationality questions which can be phrased naturally in the
Noether-Saltman setting. We will give two examples which are of great interest in
the study of the Brauer group of fields. They both center round the problem of
finding a purely algebraic proof of the celebrated ‘

(1.8) : Theorem (Merkurjev-Suslin 1982)

If k is a field containing a primitive n-th root of unity such that the character-
istic of k does not divide n. Then, the n-torsion part Br(k), of the Brauer-group
of k is generated by cyclic algebras.

The first approach is due to R. Snider (1979). For any finite group G he
constructs a generic crossed product in the following way : form a free presentation
of G

1> R—-F—-G—1

where F is a free group < 21, ...,@, > and we assume that g > 2. Then, by factoring
out the commutators [R, R] in the first two terms of this sequence we obtain a free

Abelian extension
1— Ag = R/[R,R] » Bg = F/[R,R] - G —1

Then, Ag is a ZG-module which is called the relation module of G. Of course, Ag
depends upon the particular presentation of G but different relation modules have
closely related relation modules as we will see later. The free Abelian extension has

the following generic property : let
1-C—-E—-G—=1

be any extension of G with C' Abelian, then there exists a morphism ¢ : B — F
such that the diagram

1 - Ag — Bg — G — 1

1—+C——->E—>G'—>1
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is commutative.

Now, let A = (K,G, f) be a crossed product with group G such that k C
Z(A),where the characteristic of k does not divide the order of the group G then

we have an extension :
1-K*-E—-G—1

where E is the subgroup of A generated by K* and the elements z, such that
:z:;ltmg = g.t for all ¢t € K. Therefore, we have a morphism ¢ : Bg — E which

extends linearly to a k-algebra morphism :
¢ : k[Bg] — A

where k[Bg¢] is the groupalgebra of Bg which is a domain since Bg is a torsion-free
Abelian-by-finite group. Since k[Bg] satisfies a polynomial identity it has a division
ring of fractions k(Bg) which Snider calls the generic crossed product with group
G. The underlying idea is that any structural result we are able to prove for k(Bg)
will after specialization hold for any crossed product with group G and containing
k in its center.

We will see later that Ag is a faithful G-lattice and that k(Bg) is a crossed
product with maximal subfield k(A4¢). Therefore, the center of the generic crossed
product k(Bg) is equal to the invariant field k(Ag)C. Using these notations we

have

(1.9) : Theorem (Robert Snider 1979)

If k is a field containing a primitive n-th root of unity , n being the order
of a finite group @ and prime to the characteristic of k. Assume that Br(k), is
generated by cyclic algebras. Then, if k(Ag)C is rational over k any crossed product
with group G and center L containing k is similar to a product of cyclic algebras

in Br(L).

proof: In1973 Spencer Bloch proved that whenever (a) k contains a primitive
n-th root of unity (b) n is prime to the characteristic of k and (c) Br(k), is generated
by cyclic algebras, then Br(k(z1,...,Zm))n is also generated by cyclic algebras.
Hence, if k(Ag)® is rational over k then the generic crossed product k(Bg) is
similar to a product of cyclic algebras. But then by genericity and specialization,
any crossed product with group G over an overfield L of k is similar to a product

of cyclic algebras in Br(L).
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The initial Brauer group assumption on k is satisfied if k is either algebraically

«closed,a number field-or a functionfield over a finite field.-Using the fact that every-

element in the Brauer group is determined by a crossed product, the Merkurjev-
Suslin result would follow if all the lattice invariant fields k(4g)® would be rational

thereby establishing a link with the Noether-Saltman problem.

The second approach is due to C. Procesi (1981). He considers, instead of the
generic crossed products the generic division algebras A,,. Here, A, is the division
ring of fractions of the subalgebra of M, (k[z;;,y:; : 1 < 4,j < n]) generated by the
generic matrices X = (z;;);,; and Y = (y;;)i,j. Procesi proved that the center of
A, can be obtained as the field of invariants of a certain S,- lattice :

Let B, be the S,-permutation lattice
Bn = %ml .. an &) %yll &) %ylz D..d %ynn

with S,-action given by : o.z; = 2o(;) and 0(¥:5) = Yo(s)o(s)- Let Un = Zus & ... ®
%, be the standard permutation S,-lattice. Then, we have an exact sequence of

Sp-modules
0—-A4,—-B,—=U,—%—0

"where a: B, — U, is determined by a(z;) = 1 and o(y;;) = us—ujand B : U, — %
is given by f(u;) = 1.
Procesi’s crucial observation is that k(A4,)5* is the center of the generic division

algebra A,. With roughly the same proof as that of Snider’s theorem one obtains :

(1.10) : Theorem (Claudio Procesi 1981)
If & is a field containing a primitive n-th root of unity , » is prime to the
characteristic of k and Br(k),, is generated by cyclic algebras. If k(A4,)"" is rational

2

over k, then any central simple L-algebra of dimension n? is similar to a product

of cyclic algebras in Br(L), L being an overfield of k.

Again, rationality of the lattice invariants k(4,)°* would imply the Merkurjev-
Suslin result as well as some lifting properties for Azumaya algebras which are, at
this moment, unknown. This problem is also connected to some moduli problems

in algebraic geometry. More details on these two examples will be presented later.
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2. THE LENSTRA FOREST

Throughout, G will be a finite group, k an arbitrary but fixed field and ZG
denotes the integral groupring of G. Let us begin by structering the vast amount

of G-modules in some subclasses :

(2.1) : Definitions

A G-module M is a module over the groupring ZG , i.e. M is an Abelian
group with a (left) G-action

A G-lattice M is a G-module such that M as an Abelian group is Z-free (of
finite rank)

A G-module M is faithful if G — Auty M is injective, i.e. no element of G
acts trivially on M

A permutation G-module M is a G-lattice having a Z-basis which is permuted
by G, i.e. M ~ &;ZG/H; for some subgroups H; of G

An invertible G-module M is a G-direct summand of a permutation G- module.
(Lenstra calls them permutation-projective and in representation theory they are

sometimes called trivial source modules)

We will be primarely be interested in (faithful) G-lattices. They are more
tractable than the class of all G-modules by the following fundamental

(2.2) : Jordan-Zassenhaus Theorem
For any n € IN , there are only finitely many isomorphism classes of G- lattices
with Z-rank < n

For a proof of this result we refer to R. Swan ’K-theory of finite groups and
orders’ pp 43-54. This result allows us to picture the isomorphism classes of G-
lattices according to their Z-rank (see the next chapter for a concrete example).

We will now introduce a new conceptual tool which visualizes the rationality

result which we will prove below :
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(2.8) : The Lenstra forest
~~In the picture of all isoclasses of G-lattices (vertically-classified by -their Z-«
rank) we draw an edge between the classes [M] and [N] if and only if there is an

exact sequence of G-modules
0—-M-—-N-—-P—0
with P a permutation G-lattice.

We will see below that this relationship among the isomorphism classes is
transitive so for clarity we will draw only the most necessary edges. The roots of
the trees (in fact, they are more bushes since they can have more than one roots) are
then pictured to lie a a hill supporting the Lenstra forest. For a concrete example
see the next chapter.

Of course, there is an algorithm to draw any part of the forest : the permutation
classes are easily recovered from the subgroup structure of G and then inductively -
on the Z-rank of M , we determine all extensions of permutation lattices by M and
draw the corresponding edges.

In a later chapter we will similarly define the Saltman forest where the role of
the permutation lattices is replaced by the invertible lattices. We will now indicate

the importance of the Lenstra forest in our study of the Noether-Saltman problem

For any G-module M, let M G denote the submodule consisting of all elements
fixed by G. Then , (=) is easily verified to be a left exact additive functor.The
cohomology groups Hi(G,—) of G are defined to be the right derived functors of
()¢ , i.e. whenever we have an exact sequence of G-modules

0O0—-L—-M—N=—->0
we have a long exact sequence of Abelian groups
0— L% - M®¢—>N%—>

— HY(G,L) - HY(G,M) —» H*(G,N) —

— H*G,L) — H*(G,M) —» H*(G,N) —
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Later on we will devote more energy to cohomology groups and what they represent. -
At the moment we will just need them in order to define :

A G-module M is said to be co-flasque if H'(H, M) = 0 for every subgroup
Hof G

In the rest of this chapter we will merely need the following fact which we will

prove later :

(2.4) : Lemma
Any invertible G-lattice is co-flasque

This fact plays a crucial role in the proof of the following characterization of

invertible G-modules :

(2.5) : Proposition For a G-module I the following are equivalent
(1) : I is an invertible G-module
(2) : If My — M, is a G-morphism such that ME — MF is epi for every
subgroup H of G, then we have an epimorphism Homg(I, M;) — Homg(I, Mz)
(3) : If @ is a co-flasque G-module , then every exact sequence

0—-Q—-M-—-I—>0
of G-modules splits

proof :
(1) implies (2) : We have I @ J ~ &;ZG/H; for some G- module J and
subgroups H;. But then

Homg(I,—) ® Homg(J,-) ~ ®;Homa(ZG/H;, —j
and since for every subgroup H of G and G-module M we have
Homg(ZG/H;, M) ~ M?
we obtain from (1) and the above an epimorphism
Homg(I,M1) ® Homg(J, My) — Homg(I, M) ® Homa(J, M)

from which (2) follows.
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(2) implies (3) : Let 0 » Q@ — M — I — 0 be an exact sequence of G- modules

- and let-H be a subgroup of G, then we have the long exact-cohomology sequence--

0-QH > M¥ -1 5 HY(H,Q) =0

i.e. MH — IH is epi for every subgroup H of G. By (2) we then have an epimor-
phism
Homg(I,M) — Homg(I,I)

”

which implies that the sequence splits (just take an inverse image of 1f €
Homg(I,I)
(3) implies (1) : Consider the permutation G-lattice P and the G-epi

b:P=®nc(ZG/HRIF) > 1

where IH is given trivial G-action (is epi for take H = 1). Then, for any subgroup

H of G we have
PH

ZG/HQI¥ — IH
the lower map being surjective, so ¥ is epi too. Let J = Kery, then by the long

exact cohomology sequence we have
0o—JH » pE %, HY(H,J) > H(H,P)=0

whence H'(H,J) = 0 for every subgroup H of G , i.e. J is co-flasque. Then, by
(3)  splits and I @ J =~ P,done.

This result can be used to prove the promised transitivity of the relationship

between the isomorphism classes of G-lattices

(2.6) : Proposition Let L,M and N be G-lattices such that there are exact
sequences of G-modules0 - L - M — Py — 0 and 0 > M — N — P, — 0 where

P; are permutation modules. Then there is an exact sequence of G-modules

0—-L—->N-P®P—0

proof : We have the commutative exact diagram of G-modules
0 - L —- L — 0

! ! !
o - M - N —- P — 0

! ! !
PP - R — P, — 0
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Giving by the snake lemma the exact sequence
0—-P, —-R—P,—0
which splits by the foregoing result, whence R = P, & P;.

We will now extend our basic setting in order to contain tori-invariants. So,
let [ be a field containing k such that G acts faithfully as a group of k-algebra
automorphisms on I. We have two specific situations in mind

(a) : I is a Galois extension of k£ with G C Gal(l/k)

(b) : I = k(F') where F is a faithful G-lattice
Further, let M be any G-lattice, then G acts on the groupalgebra [[M] by
9.(3,. Amm) = 3, 9.-Amg.m and hence also on the field of fractions I(M). Note
that the grouplaw on M is written additively although M is a G-submodule of the
multiplicative group (M )*.

(2.7) : Proposition (Speiser 1919)
Let W be an [-vectorspace with a G-module structure such that g.(Aw) =
g-Ag.w for all A € [,w € W. Then, W contains an I-basis for W.

proof: Letn = EgGG g € ZG be the norm element. The idea to prove that
n.W C WS contains an [-basis for W is to show that any [-linear map ¢ : W — [
which annihilates n.W must be zero. Take such a ¢ and fix a w € W. Then, for
every A € | we have

0 = ¢(n. w) = Z #(g.w)g.A
g9€CG

by assumption on the G-action on W and [-linearity of ¢. By the linear indepen-
dence of the field isomorphisms ¢ € G. Hence, in particular, §(w) = 0 proving the

claim.

(2.8) : Proposition (Masuda 1955)
Let P be a permutation G-lattice. Then, I(P)? is rational over I€.

proof: Let z1,...,2., be the Z-basis of P which is permuted by G. Consider
the I-vectorspace W = > .- lz; C I(P). By definition of the G-action on I(P), W
satisfies the conditions of (2.7). Hence, we can find elements

{Y1y.r ym} C WE C YP)C
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such that W = ly; + ... + ly,. But then, [(y1, ..., ym) = I(P) and because the y; are
‘G-invariant I(P)% = l(y1, s Ym)® =1%(¥1, .-y Ym) , done.

This result illustrates the importance of permutation modules in rationality
problems. The following results illustrates the usefulness of knowledge about the

structure of the Lenstra forest :

(2.9) : Proposition (Lenstra 1974)
If0 - My — M, — I — 0is an exact sequence of G-lattices with I an
invertible G-module. Then, I(M,)® is isomorphic to I[(M; & I)€ as [®-algebras

proof : The injection M; — M, induces an injection I(M;) C I(M>) and we

consider the exact sequence of G-modules

where Am is mapped to the image of m in I for all A € [(M;)* and m € M,. For
any subgroup H of G we have that H'(H,I(M;)*) = 0 by Hilbert 90 , i.e. I(My)*
is co-flasque and hence by (2.6.3) and the above sequence we know that

as G-modules. The obtained map I — I(M;)*M, — I(M2)* can then be used to
obtain an l-algebra isomorphism I(M; & I) ~ I(M,) which respects the G-action.

Therefore the invariant-fields are isomorphic as [€-algebras,done.

‘In his paper, Lenstra formulates the result only for I a permutation lattice,
but the proof clearly extends to invertible G-modules.. An important consequence

of the foregoing two results is

(2.10) : Theorem (Lenstra 1974)
Let 0 — M; — M, — P — 0 be an exact sequence of G-lattices with P a
permutation lattice. Then, I[(M;)€ is rational over I(M;)®.

proof : By (2.9) : {(M;)¢ ~ (M, & P)® = I(M;)(P)®. Replacing ! by
I(My) in the formulation of the Masuda result shows that {(M;)(P)€ is rational
over I(M;)C.

This result can be rephrased in Lenstra forest terminology indicating the im--

portance of this object in the study of tori-invariants :
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(2.11) : Corollary Let M and N be G-lattices such that their isoclasses [M]
-and [N] belong to the same tree in the Lenstra forest. . Then, [(M)¢ and (V)% are-
stably equivalent.

proof : Just apply (2.10) along a path in the Lenstra forest going from [M]
to [N].

Lenstra’s theorem is not directly applicable to the Noether-Saltman problem
because of the field / on which G has to act faithfully. However, using the same
method of proof one can get a similar result for lattice-invariants if we restrict to
faithful lattices :

(2.12) : Theorem

Let 0 - M; — M, — P — 0 be an exact sequence of G-lattices with P a
permutation lattice and M; a faithful G-lattice. Then, k(M,)¢ is rational over
k(M;)C.

proof : Redo the first part of (2.9) but this time with the exact sequence
0 — k(My)* — k(M;)*Mys — P — 0

Because G acts faithfully on k(M;) we have again H'(H,k(M;)*) = 0 by Hilbert
90 for every subgroup H of G . So, the sequence splits and as before we get a
k-algebra isomorphism k(M,)® ~ k(M; & P)®. Finally, we can apply the Masuda -
result with [ = k(M;).

Let the faithful Lenstra forest be the Lenstra forest restricted to the faithful
G-lattices. This can be easily obtained from the Lenstra forest by chopping down
unfaithful trees and burrying the remaining unfaithful G-lattices under a heap of
sand (they live close to the soil). Then, the foregoing result can be translated in
forest terminology yielding our first result on the Noether-Saltman problem :

(2.18) : Corollary Let M and N be two faithful G-lattices such that [M] and
[N] belong to the same tree in the faithful Lenstra forest, then k(M) and k(N)%
are stably equivalent.

In other words, in order to verify stable rationality of k(M)% for a faithful
G-lattice M it suffices to verify it for any other faithful lattice in the same tree.
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Returning to tori-invariants we know that I(P)C is rational over [¢ for any

. permutation lattice P. Hence, for every lattice M belonging -to the permutation-

tree in the Lenstra forest (exercise : all permutation lattices belong to one tree) we-
have that I(M)€ is stably rational over 5. We will now show that the converse is
also truei.e. if [(M)€ is stably rational over [ then M belongs to the permutation-

tree. We first need an easy but useful lemma :

(2.14) : lemma (Swan 1969) Let K be a field containing k and R;, R, C K two
affine k- algebras with field of fractions K. Then, there exist elements 0 # r; € Ry,
0 # ry € R, such that Rl[;}i—] = Rz[;}z—]

proof : Because R; is affine, there is a 0 # s; € Rs such that R; C R; [32_1].
Now, Ry[s;'] is affine so there is a 0 # r; € R; such that Ry[s;'] C Ry[r[}].
Because 7y € R; we have r; = ts; " for some n € IN and 0 # t € R,. Take ry = s,
then Ry[r;'] = Ry[t™][s5!]. Further, ™! = #[1s;™ € Ry[r{'] whence Ry[r; '] C
Ri[r!]. Conversely, r;* = s3t~! € Ry[t™!] C Ry[r; '] whence R;[r{!] C Ry[r,—1]

In fact, this is nothing more than a restatement of birationality.

(2.15) Theorem (Voskresenskii 1970,Endo-Miyata 1973)
Let M be a G-lattice. Then, [(M)% is stably rational over I¢ if and only if

there is an exact sequence
0—- M—-P,—P, —0
of G-modules with P; and P, permutation G-lattices

proof : Assume there exists such an exact sequence then [M] belongs to the
permutation tree and so (M) is stably rational over I€.
‘Conversely, assume [(M)€ is stably rational over I i.e.

l(M)G(wl, veny ZBS) ~ lG(y]_, vony yr+s)

and we let G act I(M)(z1,...,2,) = (M) Qarys U{M)C (1, ...,z,) (use Speiser)
via the action on the first factor. We can consider two affine l-algebras in
I(M)(=1,...,2s) namely Ry = l[M][z1,...,2s] and Rz = l[y1, .., Yr+s|. By the fore-
going lemma, there exist elements a; € Ry and ay € Ry such that

R = Ry[a7"] = Rp[a; ]
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and since @ is finite we may even assume that a; € RY. But then we have exact

sequences of G-modules
0—- Rl —-R*"—- P —0

0—-R, - R"—> P, —0

where the P; are permutation G-lattices. More precisely
P; = @j%cl(Pj)

where the P; are the prime ideals of the unique factorization domain R; dividing
R;a; and cl(P;) is a formal element representing this ideal. Clearly, the G-action
on P; is induced by its action on the prime ideals (which are permuted by G since
a; is G-invariant). If we divide the first two terms of both sequences by I* we get

0—-M— R*/I* P, —0
00— R/I" 5P, —0
giving the required exact sequence.

An immediate consequence of this result and (2.5) is

(2.16) : Corollary
Let M be a co-flasque G-lattice. Then, I(M)? is stably rational over !¢ if and

only if M @ P, ~ P, for permutation G-modules P; and P>.
Rephrasing the obtained results on tori-invariants in forest language we have

(2.17) : Corollary
Let M be a G-lattice, then I(M)€ is stably rational over [¢ if and only if [M]
is contained in the permutation tree in the Lenstra forest. In particular, if there

are more trees there are non (stably) rational tori G- invariants.

In fact, more is true. Using the ideas of theorem (2.15) one can show that
different trees correspond to different stable equivalence classes of tori invariants

over IG :
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(2.18) : Theorem (Colliot-Théléne,Sansuc 1977)
Let M and N be two G-lattices such that the tori-invariants I(M)% and I(N)¢
are stably equivalent over I¢. Then, [M] and [N|] belong to the same tree in the

Lenstra forest

proof : By assumption we have
UM)C (21, ey p) 2 IN)F (Y1, oees Ys)
as |%-algebras. Tensoring both sides with [ over /¢ and using the Speiser result

(2.7) we obtain an l-isomorphism
I(M)(21yeeryzr) 2 UN)(Y1yeeey Ys)
Consider the following two affine [-algebras in this field
Ry = l[M][z1,....,z,] and Ry = I[N][y1y...) Ys)

with G acting trivially on the indeterminates. By Swan’s lemma we can find ele-
ments a; € RS and a; € RS such that

Ri[a7'] = R[a; '] =R

As in the proof of (2.15) this gives rise to the following exact sequences of G-modules

O-I"M—-R*"— P, —0

0—-I*N—-R"—-P,—>0
with P; and P, permutation G-lattices. Dividing [* out of the first two terms in
both sequences we obtain the exact (G-sequences

0—-M-—R/l* 5P, —0

0> N—->R/I*— P, —0
entailing that [M] and [N] both belong to the tree in the Lenstra forest containing
[R*/1]

Similarly, by restricting to faithful G-lattices (and the faithful Lenstra forest)

we obtain our second result on the Noether-Saltman problem :

(2.18) : Corollary
If M is a faithful G-lattice and N a G-lattice. Then, k(M @ N)€ is stably
rational over k(M)€ if and only if N is a direct neighbour of a permutation lattice.
Further, for any other G-lattice N' : if k[M @ N]¢ is stably equivalent to
k[M @ N'|¢ over k[M]% , then [N] and [N'] belong to the same tree in the Lenstra

forest.
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3. THE TINIEST FORESTS ON EARTH :

Surely, one can hardly think of an easier group to study than a cyclic group of
prime order C, = Z/pZ. Yet, already in this case some surprising things happen.
In fact, using some easy integral representation theory we will be able to describe
the full Lenstra forest in this case and use this knowledge to construct non (stably)

rational tori invariants. The result we will prove in this section is

(3.1) : Theorem If Cp, = Z/pZ, then the number of trees in the Lenstra forest
is equal to the order of the ideal clasgroup of Z[(,], the ring of integers in the p-th
cyclotomic field @ (¢p).

Moreover, each tree corresponds to a different stably equivalence class of tori

invariants.

Let T be a generator of C, = Z/pZ and let {, be a primitive p-th root of unity.
With @ ({,) we denote the p-th cyclotomic field. Then, it is well known that the
ring of integers in @ ({,) is equal to

L) = D)/ (P! + ... + 2 + 1)

which is a Dedekind domain having a free Z-basis consisting of 1,(,...,{?"2. Let
us begin by describing some useful ZC),-lattices :

Let I be an invertible Z[(p]-ideal in @ (). We can define a C), -action on I by
7.1 = (pt for all i € I. Clearly, 72.i = (P = ¢ whence I is a ZC)-lattice of Z-rank
p — 1. Further, two invertible ideals I and J are isomorphic as ZC)p-lattices if and
only if they are isomorphic over Z[(,] i.e. if they represent the same class in the
ideal class group.

Starting from an invertible ideal I and an element ¢y € I we can construct a
ZCp-lattice of Z-rank p I @ Zy by defining the action to be 7.(i ® ny) = (pi+ nig
ny.We calculate

P71 1(3 @ ny) = T 2.1((pi + nip @ ny)

= 777%.7(¢% + {nio + nip @ ny)
e = (i (7 + o+ G+ L)nio @ ny) = i © ny
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showing that it is indeed a ZC,-lattice. A little computation shows that (I,49) =
“(I,1)) whenever ig,%y € I — ({, — 1)I so we will fix one of such elements ¢ and
we denote the isomorphism class by [I,i]. The following result classifies the ZC),-

lattices :

(8.2) : Theorem (Diederichsen 1940,Reiner 1957)
Every ZC)p-lattice M is isomorphic to a direct sum

M=[,1]®.06Li0L.1®.0L. 0%

Moreover, the isomorphism class of I is uniquely determined by the integers r,s,t
and the ideal class of the product I;...I.+, in CUZ[(,))

proof : We give a scetch of the proof to show that nothing deep comes into
it.Let n be the norm-element 1-+7+-...4+77~1 € ZC,, then clearly ZC,/(n) ~ Z[(,).
For any C)p-lattice M one defines M,, = {m € M : n.m = 0}. Then, M, is a ZC,-
submodule of M such that M /M, is Z-torsionfree. Thus

M~M,®X

as Z (but not necessarely ZC)p-) modules. Since n annihilates M,, we can view M, as
a Z[(p)-module which is torsion free (a norm argument). Further, (r —1)M C M,
and both have the same rank over Z[(,]. From the module theory of Dedekind

domains we get

M, = Z[(,)b1 & ... ® Z[(p]bp—1 & Aby,
(7' - 1)M == E1b1 &b..P E _1bn_1 @ EnAbn

where A is an inveretible Z[(,]-ideal in @ ({,) and the E; are ideals in Z[(,] such
that E;4y C E;. From ({, — 1)M, C (r — 1)M,, C (r — 1)M and the above
we obtain that ((, — 1)Z[{,) C E; C Z[(p) for all 3. Since ({, — 1)Z[(,] is a
maximal ideal we therefore obtain an r such that By = E, = ... = E, = Z[({,] and
E,11 =..=E, =({, — 1)Z[(,]. Using these facts we deduce

L=(r—1)M/((, — 1)M, = Fpb; & ..IF b,
Since (1 — 1)M = ({p — 1)M,, ® (r — 1)X the map ¢ : X — L given by ¢(z) =

(r— 1)z + (¢ — 1)M, is epi. We can choose a Z-basis #1,...,zx of X such that
#(z;) = (cimodp)b; for 1 < r and ¢(z;) =0 for r+1 < ¢ < k. But then, (1—1)z; =
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cib; + ({p — 1)u; for ¢ < r and = ({p — 1)u; for r + 1 < 4 < k where the u; € M,.
Take y; = ¢; — u; then
M=M,Zy & ... 0 Zy

and for ¢ < r we have 7.y; = ¢;b; + y; whereas 7.y; = y; for r +1 < ¢ < k.But then,
as Z[(plb; ® Zy; = (Z[(p), ;) = (Z[(p),1) for ¢ < r we have :

M = [Z[G), 1]" ® Z(plbr+1 @ .. @ Z[Cplbn—1 © Abp © Zyrt1 ® ... © Ly

Therefore, we have transformed any Cj-lattice in the prescribed form and the second

statement follows from the fact that if
M=[1,4]®.06Li)0L.16.0L.,0%

then,
Mp=95& .0 Liys GG & (L. Lpts)

and the first part of the proof.

3.3) : Corollary Let h, be the order of the ideal classgroup of Z|[(,], then the
» P

number of isomorphism classes of ZC)-lattices of Z-rank n is given as

1+ h, #{(r,s,t) e N® 1t + (p — 1)s + pr = n3t # n}

Next, each isomorphism class can be represented by a matrix

(i 2)

where r,5,1 € IN and 0 < u < hp — 1. If I,, denotes a representant of the u-th ideal

class , the corresponding C),-lattice is
(Z[¢,],1)°" @ Z[G1>* ' © I © Z®"
if s #0. If s =0 and r # 0 the lattice is isomorphic to
(Z((p), )87 @ (L, 1) ® 7O

and if r = s = 0 it is just Z'. We let Iy = Z[(,] and clearly ZC), ~ (Z[(,),1).
Therefore,
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(3.4) : Corollary The permutation C,-lattices are represented by the matrices

r 0 .
(t 0) with r,t € IN

Further, it is easy to compute the isomorphism class of a direct sum of two
Cp-lattices described by their matrices :

st e T2 S2) ("™ +r2 s1+ 82
how o ur )\ttt us
where I, ~ I,,.I,,. A direct consequence of this is

(8.5) : Corollary The invertible Cp-lattices are represented by the matrices

r 0 where r,t € Nand 0<u < h,—1
t wu P

As we will see later in more detail, the isoclasses [I,,1,] form the classgroup of
the groupring ZC), explaining somewhat the name ’invertible lattices’. Let us now

turn to determining the edges
(8.6) : lemma There are at most h, trees in the (faithful) Lenstra forest

proof: Note that thereis just one unfaithful brach consisting of the isoclasses

represented by (2 g for all n € IN (i.e. the leftmost branch). So, the faithful

Lenstra forest is the one obtained by deleting this one branch.
A first class of edges is obtained by adding a permutation lattice,i.e.

r S8 - r+7r1 S
i u t+ t]_ u
is an edge for all 71,%; € IN. Another class of edges comes from a reinterpretation

of the definition of (I,7) , i.e. there is a non-split exact sequence of ZC,-modules
01— (I,3) >Z—0

Adding this sequence a number of times and taking into account that the Z™ are
permutation lattices we find edges

(6 2)=(5 )
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Combining these two classes we see that a general isoclass represented by (; 'Z>

lies in the same tree as (0 ) (by the first class of edges) , which lies in the

8
0 wu

same tree as (; 2) (by the second class) which lies in the tree of <(1) 2) (first

class),done.

(8.7) : lemma The permutation tree consists precisely of the isoclasses repre-

sented by the matrices (: ;) for all r,s,t € IN

proof: By the proof of the foregoing result each such class clearly belongs to
S\ .. .

) lies in the
u

the permutation tree. Now, any other isoclass represented by (:

same tree as ((1) 2) So it suffices to prove that I((,,1,))? is not stably rational

over %, Because (I,4,) is an invertible Cp-lattice (whence co-flasque) we would
have by (2.16) that
(Iuaiu)@Pl =~ PZ

for some permutation lattices P;. But the left hand side is represented by

('r —L_ 1 2) which cannot be a permutation lattice unless u = 0,done.

We can now finish the proof of (8.1) : Suppose we have an exact C,-sequence

1 81 Ty 82 rs O
0—>(t1 u)——)(tz v)——)(ts 0)—)0

Then by adding a factor I, where I,.I,, ~ Z[(,] to the first two terms we get the

exact Cp-sequence :

0 [T s1+1 (T s+ 1 s 0 0
tl 0 tz z t3 0

where I,,.I,, o~ I,. Therefore, the middle factor has to belong to the permutation

tree whence z = 0 or, equivalently v = v finishing the proof.

A picture of a part of the Lenstra forest for C),, using the foregoing observations
is given in the ’full forest’ picture. We will now give another method of drawing
the Lenstra forest using only the most necessary edges
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(3.8) : lemma Starting from the vertex corresponding to the isoclass of G-lattices
r s
.

the Lenstra forest . First, we have the trivial one obtained by adding ZC, leading

r+1 s
A u

And, the others lead to the vertices

r+k s—k
t+1—% u

represented by -there are precisely 2 + min(s,t + 1) -elementary edges in

to the vertix determined by

forall 0 < k < min(s,t+1)
proof : Let us start from a arbitrary edge in the Lenstra forest
O-ﬁM-ﬁNHZea@ZC?bHO

First of all, we can split off the %C’;Bb component from N by projectivity leading

to an easier edge :
0> M- N - Z% -0

and clearly there is a path from N' to N by adding ZC,, each time.
Next, we claim that we can restrict to the situation where a = 1. For, we have

the following exact commutative diagram of C)p-lattices

0 > M — N, — Z% 1 _ o

! ! |
0 - M —» N — Z® 5 o
! ! !

6 - Z — Z - 0

where N is the pullback of N' and Z®*? over Z®*. This leads to the following

two exact sequences of Cp-modules
0—-M-—>N, -Z% 150

0 >Ny =N S5Z—0

showing that the edge from M to N' factors through N;. Continuing in this matter

we arrive at the first step edge

0O—-M->N'"—>Z—0
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and we know from (3.1) that N” must be represented by a matrix

* ok
* U
If s = 0 then M ~ ZC®"~' @ (I,,1,) ® %' and is thereby an invertible Cp-module.

Therefore, EztL(Z,M) = H(G,M) = 0 and the sequence splits i.e. N,_; =
M@Z. If s >0 we can split M into a direct sum

(6 2)2 (3 o)

and we obtain the exact commutative diagram of Cp-modules

0 — M — N —- Z — 0
l ! =

0 - Z®9zC®" — H — Z —0
l 1
0 0

where H is the pushout of N” and Z®* @ ZCZ?". The lower exact sequence splits
by invertibility of Z and co-flasqueness of Z®* @ ZC’;P’” and we arrive at the exact

sequence
0— Z[®* oL, - N - 2% g zc}?r

If N” is represented by the matrix (Z z> then we can split off the projective

ZCZ?’" component and obtain the exact sequence

0= LGI% @ I, » N3 — T -0

where N;” is represented by the matrix (a : T z> In Curtis-Reiner section 34,

one finds a general result on such extensions for cyclic p-groups leading to the fact
that N1” can be any of the following C)p-lattices

a—7r s—a+r
t—-a+r+1 U
where, of course @ > r,54+r > a and t+r+1 > a entails that » < a < r+min(s,1+1)
and adding again the direct component %C’f?’" we see that N” can be any of the

a s—a+r
t—a+r+1 U

following C,- lattices
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and setting a = r + k gives the desired result

An immediate consequence of this result is that all trees are isomorphic to the

permutation-tree (with the unfaithful lattices removed).

The construction of the invertible (even projective) modules (I,%) is nothing
but a special case of the general construction of projective modules over a ring A
with the projective modules over A; and A, as building blocks whenever we have a

pullback diagram

A e A1
! !
Az — A,

with at least one of the two maps to A’ being surjective, see e.g. Milnor ’Introduction
to algebraic K-theory’ Ch. 2. In our case we have the pull-back diagram

Zc, — Z
! l
ZiGy) — Z/pvZ

the upper map being the augmentation map and the lower being the quotient map
by dividing out the maximal ideal Z[(,)({, — 1)-
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The Lenstra forest for G = Z /pZZ

* i * ok k. % * * % * * %
® * ok ok ok * * ok * *
* * * % * * % * *
* * * ok * * * *
* * * % * * * *
* * * * * * *
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The Lenstra forest for G = Z /pZ
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4. COHOMOLOGICAL SURVIVAL KIT :

In order to study the structure of the Lenstra forest for arbitrary groups, it
is indispensable to know some of the basic results in group (co)homology. Luck-
ily, there exist several excellent reference texts (e.g. J.P. Serre 'Local Fields’ ch
VILVIILIX). For this reason, we will only mention some of the basic definitions
and results and refer to the above mentioned work for full details :

In section 2 we have already defined the cohomology groups H*(G, M) of G
with coefficients in a G-module M to be the right derived functors of the left-
exact additive functor M — MC® = {m € M | gom = m for all g € G}. Since
MC® = Homg(%, M) where Z is given the trivial G-module action, we see that

HYG,M) ~ Ezt'(Z, M)

where the Ext-groups are the derived functors of the Hom-functor. This gives us a
procedure to compute the cohomology groups : take a projective resolution of the
ZG-module Z

wie—2 P> P 4= .. —-P—-%Z—0

where the P; are projective (or free) ZG-modules.Then, for any G-module M define
V't = Homg(P;, M) then we obtain a cochain complex

Ve v o v2

and HY(G,M) = Ker(V? — Vi*1)/Im(V;_y — V;) for i > 0 and H(GQ, M) =
Ker(V® — V1) = M%. We have seen before that a short exact sequence of G-
modules gives rise to a long exact sequence of cohomology groups. Further, if M
is an injective ZG-module then H:(G,M) = 0 for all > 1. Maybe it is useful to
give a concrete interpretation of the first two cohomology groups :

A l-cocycle is a map f : G — M such that f(g.h) = g.f(k) + f(g) and it
is said to be a coboundary if there is some m € M such that f(g) = g.m —m
for all g € G. The group H'(@, M) is then the quotientgroup of all 1-cocycles by
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the coboundaries. In particular, if G acts trivially on M we get that H(G, M) =
Hom(G,M). For example, H*(G,%Z) = Hom(G,Z) = 0 if G is-a torsion group.
A 2-cocycle is amap f : G X G — M satisfying

9-f(h,%) — f(g-h,%) + f(g,hi) — f(g,R) =0

It is also called a factor set. One encounters them in the study of extensions of G
by M : let
1-M—-E—-G-—-1

be an exact sequence of groups such that M is normal in E. Since M is assumed
to be Abelian, G acts on F by inner automorphisms. Take any section s : G — E
then if g,h € G clearly s(g).s(h) and s(g.h) are in the same coset modulo M i.e.
there is an f(g,h) € M such that

s(9)-s(h) = f(g,h).s(g.h)

which allows us to define a composition law on E. Associativity then leads to the
factor set condition on f. Further, if we choose a different section s the resulting
f is modified by a coboundary. Thus, H2(G, M) classifies the (group)isomorphism
classes of extensions of G by M.

Having defined cohomology, we now turn to homology. For any G-module M,
let M@ be the quotient nodule M /DM where DM is the submodule generated by -
the elements g.m — m for all g € G,m € M. Then (—)g is seen to be a right exact
additive functor. The homology groups H;(G,M) of G with coefficients in M are
defined to be the left derived functors of (—)g.That is, whenever we have an exact
sequence of (G-modules

0—-L—-M-—-N=0

we have a long exact sequence of homology groups

— Hy(G, L) = Hy(G, M) — Hy(G,N) —
— Hl(G,L) — Hl(G,M) — H]_(G’,N) —>

——>L(;—->Mg—>Ng—>0
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Again, since Mg = Z Q@ M we see that
Hy(G, M) ~ Tor®G(7, M)

allowing us again to compute the homology groups starting from a projective (or
free) resolution of the trivial ZG-module Z : take such a resolution and tensor
it with M. The homology groups H;(G,M) are then the homology groups of the
obtained complex. Note that H,(G,M) = 0 for all ¢ > 1 if M is a projective
ZG-module. It is fairly easy to verify that H,(G,Z) = G/[G, G].

Homology and cohomology groups can be intertwined by means of the Tate
cohomology groups : let n = > scG 9 € LG be the norm element, then n induces an
endomorphism on every G-module M which we denote by N : Nom = 3, geG 9-m-
Further, if

0—-Ig—ZG—-Z%Z —0

where Ig = ), g Z(g — 1) is the augmentation ideal, then
Ig.M C KerN and ImN c M€

As Hy(G,M) = M/Ig.M and H°(G,M) = M€ we obtain from the commutative

diagram

Ho(G,M) — ImN — HYG,M)

T T
0 — KerN — M — ImN — 0
T T T

0 — Ig.M — G.M — 0

a map

N*: Hy(G,M) — H*(G,M)
which allows us to define
THo(G,M) = Ker(N*); TH°(G,M) = Coker(N*)

that is, if .,yM denotes the kernel of N acting on M, then we have from the above
diagram that

THo(G, M) = .NM/Ig.M; TH(G,M) = M®/N.M
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But then, for any exact sequence of G-modules
0—-A—-B—-C—=0

we have (by verification) the commutative exact diagram of Abelian groups

KerN} — KerNjg — KerNG

1 1 1
H,(G,C) — Ho(G,A) — Hy(G,B) — Hy(GC) — 0
! ! 1
0 - H%G,A) — H°G,B) — HYG,0) - HYG,A)
! 1 1

CokerN}; — CokerNg — CokerNg
But then, there is a connecting morphism
§: TH°(G,C) — THy(G,A)
and we have the long exact sequence of Abelian groups
. — H(G,C) - THy(G,A) — THo(G,B) - THy(G,C) —
— TH%(G,A) - TH*(G,B) — TH*(G,C) —» H'(G,A) — ...
This prompts us to define the Tate cohomology groups TH(G,—) :
TH*(G,M)=H"(G,M)ifn>1
TH(G,M) = M®/N.M
TH™YG,M)=.yM/Ig.M
TH™™(G,M)=H,_1(G,M)ifn>2
From the many important results on (Tate) cohomology, we mention here just

a few for further reference :

(4.1) : Cup product theorem : Let A,B and C be G-modules, then there is
a natural homomorphism (called the cup product)

THYG,A) @y THY(G,B) —» TH*'(G,A ®y B)
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- where A® B is given the diagonal G-action. The cup product is denoted (a,b) — a.b
and satisfies :

(a.b).c = a.(b.c) modulo identification (A® B)®@ C = A® (B ® C)

a.b = (—1)%m(@)-dim®)p ¢ modulo identification A® B = BQA where dim(a) =
i if e € THY(G, A)

(4.2) : Shapiro’s lemma : Let H be a subgroup of G and M a ZH-module.

Then, there is a natural isomorphism

HY(G,M @y, ZG) ~ H'(H,M)

An immediate consequence of Shapiro’s lemma is the promised proof of (2.4) :
(4.8) : lemma : Any invertible G-lattice I is co-flasque

proof : Recall that we must show that H1(H,I) = 0 for any subgroup H
of . Since any invertible G-lattice is also an invertible H-lattice we may assume
that G = H. Also, since cohomology preserves direct summands it suffices to prove
that H'(G,ZG/H) = 0 for any subgroup H of G. By Shapiro’s lemma we have

HYQ,ZG/H) = H (G, % ®y ., ZG) ~ H'(H,Z) =0
-because the action-on Z is trivial and H is finite hence torsion.

If M and N are two G-lattices we will denote by Hom(M,N) = Homm (M, N)
given the natural G-module structure and by M @ N = M ®3 N and by
M* = Hom(M,Z) the G-module dual of M. We have the following canonical

G-isomorphisms
(M*)* = M;Hom(M,N)= Hom(N*,M*)= M*@N; Hom(M,n)* = Hom(N,M)Q

Further, if H is a subgroup of G, then ZG/H* = ZG/H entailing that all permu-
tation modules are seli-dual. By the cup-product theorem we have :

(4.4) : Duality lemma : For any G-lattice M we have a canonical isomorphism

THY(G,M)~TH G, M*)*
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Clearly, there are relations between the cohomology groups of G and of H and
G/H when H is a normal subgroup of G. We will need only-a very special result : -

(4.5) : Inflation-Restriction lemma : Let M be a G-module and H a

normal subgroup of G, then there is an exact sequence

0— HY(G/H,M¥) - H'(G,M) — H'(H,M)

Further, we will often encounter cohomology groups for cyclic groups. In this

case we have the following periodicity result :

(4.6) : Cohomology of cyclic groups : Let G = Z/nZ be cyclic with generator
7. Define the elements n = Z?z—ol 7t and d = 7 — 1. Then, for every G-module M

we have
TH(G,M) = M®/n.M for i = 0 mod 2

TH (G, M) = .,M/d.M for i = 1 mod 2
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5. A FORESTERS GUIDE :

In this section we will introduce the Colliot-semigroup Colliot(G) of a group G
which can be viewed as a cataloque for the trees in the Lenstra forest. In particular
we will associate to any G-lattice M an invariant ¢(M) € Colliot(G) such that [M]
and [N] belong to the same tree if and only if (M) = ¢(N).

Let Latt(G) be the set of (isoclasses) of all G-lattices. We define an equivalence

relation on Lati(@) as follows
M~NffiM®@P,=NoP,

with P; and P; permutation G-lattices. The set of equivalence classes of Latt(G)
under this relation will be denoted by Sansuc(G). The direct sum of G-lattices
induces on Sansuc(G) the structure of an Abelian semigroup which we call the
- Sansuc-semigroup of G. With [M]. we will denote the equivalence class of M in
Sansuc(@).

The invertible elements in Sansuc(G) are easily characterized :

(5.1) : lemma The equivalence class [M]. € Sansuc(@) has an inverse in
Sansuc(@) if and only if M is an invertible module

proof: Suppose that [M].+[N]. = [0], then there are permutation lattices P,
such that M @ N @ P, = P, entailing that M is a direct summand of a permutation

lattice. The converse is also trivial.

This observation explains the terminology ’invertible modules’. The subset
of Sansuc(@) consisting of all equivalence classes of invertible modules forms an
Abelian group which we will denote by PCI(G) and call the permutation classgroup
of G. Later on we will study this group in full detail.

Let us introduce a few new subclasses of G-lattices :
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(5.2) : Definitions

A G-lattice M is said to be a stable permutation module if [M]. = [0]. €
Sansuc(@G) i.e. there exist permutation modules P; such that M @ P, & P,

A G-lattice M is said to be flasque if TH~(H, M) = 0 for all subgroups H of
G

Later we will give examples of stable permutation modules which are not per-
mutation modules. By the duality result we see that flasque modules are the duals

of co-flasque modules. We have :

(5.8) : lemma The Tate cohomology groups TH'(G,M) and TH (G, M) de-
pend only on the equivalence class [M]. € Sansuc(@)

proof : For any permutation lattice P we have by the duality result
THY(G,M)* = TH(G,P*) = TH(G,P)=H(G,P)=0
whence TH (G, P) = 0 and as cohomology preserves direct sums we are done
Of fundamental importance is the notion of (co)flasque resolutions :

(5.4) : Definitions Let M be a G-lattice, then

A flasque resolution of M is an exact G-sequence
0-M->P—F—0

where P is a permutation module and F' a flasque lattice
A coflasque resolution of M is an exact G-sequence

0-Q—-oP—-M-—0
where P is a permutation module and @ a coflasque lattice

(5.5) : Proposition
Every G-lattice M has a flasque (resp. coflasque) resolution

proof: By duality, it suffices to prove that every G-lattice M has a coflasque

resolution. Consider

P=0yc(ZG/HQYMT) — M -0
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In the proof of (2.5.3) we have seen that the kernel of this map is coflasque,done.

We will now try to slice up Sansuc(G) into some smaller and more manageable
parts : let Coflas(@) (resp. Colliot()) be the subset of Sansuc(G) consisting of
all classes of lattices which are +1 (resp. —1) cohomologically trivial i.e. of coflasque
(resp. flasque) lattices. Lemma (5.3) saves us from worrying about well-definedness.
Further, with Coco(G) we denote the intersection Coflas(G) [ Colliot(G). Again,
by the duality result we see that an invertible module is both flasque and coflasque.

Thus, we have the following situation
PCI(G) C Coco(G) C Colliot(G) C Sansuc(G)
and the corresponding quotient semigroups will be denoted by
A(@) = Colliot(G)/Coco(G)
A2(@) = Coco(@)/PCIG)
and we clearly have the following :
(5.6) : lemma Both A;(G@) and A,(G) are torsion-free Abelian semigroups

proof : Let [M]. € Colliot(G) such that [M®"] € Coco(@), then , for any

subgroup H in G we have
0=TH (H,M®")=TH(H,M)®"

and therefore [M]. € Coco(G) whence A;(G) is torsionfree. For Ay(G), just note -
that if M®™ is a direct summand of a permutation module, so is M.

In particular, if there are non-invertible flasque lattices, then Colliot(G) is
infinite. In the next section we will see that the condition PCI(G) = Colliot(G) is
equivalent to G being a metacyclic group (i.e. all Sylow p-subgroups are cyclic).

The duality M — M* = Homg(M,Z) induces an involution on Sansuc(@)
which maps PCI(G) to itself and maps Coflas(@) isomorphically to Colliot(G).

We will now investigate the relationship between flasque resolutions as G-
lattices and as G/ H -lattices, H being a normal subgroup of G.

(5.7) : lemma Let H be a normal subgroup of G and M a G-lattice, then :
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(1) : If M is a permutation G-lattice , M¥ is a permutation G/H-lattice

(2) : If M is a coflasque G-lattice, M¥ is a coflasque G/ H-lattice

(3): f0 - Q — P — M — 0is a coflasque resoltion of M in G-lattices,
0 - Q¥ - PH  MH — 0 is a coflasque resoltion of M in G/H-lattices

proof :

(1) : Take a Z-basis of M which is permuted by G, them M¥ has the orbitsums
of H acting on this basis as a Z-basis. Clearly, G/H permutes these orbitsums.

(2) : Take any subgroup G'/H of G/H. Then, by the inflation-restriction exact

sequence we have
0— HYG'/H,M®) - HY(G',M) =0

whence M is a coflasque G/H-lattice
(3) : Since Q is coflasque, H*(H, Q) = 0 entailing exactness of the sequence of
H-invariants. Parts (1) and (2) then finish the proof.

(5.8) : lemma Let H be a normal subgroup of G and M a G/H-lattice, then :
(1) : M is a permutation G-module iff M is a permutation G/H-module
(2) : M is a stable permutation G-module iff M is a stable permutation G/H-
module
(3) : M is an invertible G-module iff M is an invertible G/H-module
(4) : M is a coflasque G-module iff M is a coflasque G/H-module
(5) : M is a flasque G-module iff M is a flasque G/H-module

proof : (1) is easy from the fact that H acts trivially on M and (5.7.1). (2)
and (3) follow easily from (1).

(4) : one direction follows from (5.7.2). Conversely, let G' be a subgroup of G
then G' (] H is a normal subgroup og G' and we get the inflation restriction exact

sequence
0 — HYG'/(G'()H), M) —» H(G',M) — H'(G'( | H,M) = Hom(G' (| H, M)

Here, the last term is zero because M is a lattice (i.e. torsion free).Thus,
HY(G',M) ~ H(G'/(G'NH),M) = HYG'.H/H,M) = 0 because M is a
coflasque G/H-module. (5) follows by duality.

We are now in a position to relate flasque and coflasque resolution in G resp.
7/H-modules for a G/H-lattice M :
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(5.9) : Proposition : Let H be a normal subgroup of G-and M a G/H-lattice,
then
(1) : Every flasque (resp. coflasque) resolution of M in G/H-modules is one

in G-modules
(2) : Every flasque (resp. coflasque) resolution of M in G-modules induces one
in G/H-modules by taking H-invariants

proof : (1) follows from (5.8)
(2) : Take a flasque resoltion of M in G-lattices

0-M-P—F—>0
then, as H acts trivially on M we get an exact sequence
0—-M—PE > F¥ - HY(H,M)= Hom(H,M) =0

by (5.7.1) PH is a permutation G/H-lattice. Let us prove that F¥ is a flasque-
7/ H-lattice. Take any subgroup G'/H of G/H then we have a long exact sequence
of Tate cohomology :

0=TH Y(G¢'/H,P¥)~TH YG'/H,F¥)— TH*(G'/H,M) —» TH*(G'/H, P¥)

So it suffices to prove injectivity of the last map.Using the definition of TH? it is
fairly easy to verify that

THY(G'/H,M) ~ TH°(G',M) and TH*(G'/H, P®) — TH°(G', P)

and the commutativity of the diagram

0=TH-YG',F) —» THYG',H) - THYG,P)
7
TH(G'/H,M) — TH*(G'/H,PH)

finishes the proof.

We will now investigate some properties of flasque resolutions :

(5.10) : Proposition :
(1) : Let 0 - Q@ — P — M — 0 be a coflasque resolution of M. If P' is a
permutation G-lattice, then every morphism P' — M factors through P
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(2) : Let 0 = M — P — F — 0 be a flasque resoltion of M. If P' is a
- permutation G-lattice, then every morphism M — P’ factors through P

proof : (1): We have the exact commutative diagram of G-modules

0 - @ — PxyP — P — 0

! !
0 —» @ — P — M —- 0

where P X 5 P' is the pullback of P and P' along M. Because P' is invertible and
@ coflasque, the upper sequence splits providing the required factorization
(2) : dual to (1).

The next result is an analoque of the Schanuel lemma, for projective modules.

It shows that flasque and coflasque resoltions are essentially unique :

(5.11) : Theorem (Voskresenskii 1975,Colliot-Théléne,Sansuc 1977)

(1): Let 0 > Q1 - P —- M - 0and 0 - Q, — P, - M — 0 be two
coflasque resolutions of M, then [@1]c = [@2]c

(2): Let 0 > Q > P, - M —-0and 0 - Q, - P, > N — 0 be two
coflasque resoltions with [M]. = [N]. , then [@Q1]. = [@2].

(3): Let0 > M —> P, — F, —»0and 0 — M — P, — F, — 0 be two flasque
resoltions of M, then [F]. = [F3].

(4) : Let0 > M —> P, — F; - 0and 0 - N — P, — F, — 0 be two flasque
resolutions with [M]. = [N]. , then [Fi]. = [F3].

proof: (1): We have the commutative exact diagram

0 - @ — PixyP, - P, — 0

N | |
0 —» @1 — P - M — 0

Then, the upper sequence splits yielding P; Xas Pz & Q1 © P;. Replacing the roles
of @1 and Q) one finds similarly that P; x s Py 2 Q, @ P, finishing the proof

(2) : If [M]. = [N]. then by definition M @ Ps ® N® P, = X. But then,
0-Q > PP —+ X —>0and 0 = Q2 —» P, ® P, —» X — 0 are two coflasque
resolutions of X and therefore by (1) we have [@1]. = [@2].

(3) and (4) are proved dually.
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This result allows us to define two maps

Sansuc(G)
bc N\ kG
Colliot(@) Coflas(@)
Where ¢g([M].) = [F]. if 0 - M — P — F — 0 is a flasque resolution of M and
ka([M].) =[Q). if0 » Q@ - P — M — 0 is a coflasque resolution of M.
First of all we want to get rid off the subscript .g. So, let us investigate for a
moment the behaviour of our sub-semigroups of Sansuc(G) under subgroups and

quotientgroups : let H be a subgroup of G and let
Res : Latt(G) — Lati(H)

be the restriction i.e. viewing a ZG-module as a ZH-module via the natural
inclusion. Then it is clear that if M is a permutation (resp. stable permuta-
tion,invertible,flasque,coflasque) G-lattice , then Res(M) is a permutation (resp.
stable permutation,invertible, flasque, coflasque) H-lattice. In particular, the re- .

striction induces a well-defined morphism
Res : Sansuc(G) — Sansuc(H)
of semigroups which induces morphisms
Coflas(G) — Coflas(H); Colliot(G) — Colliot(H); Coco(G) — Coco(H)
PCI(G) — POI(H); Ay(G) — Aq(H); Do) — Ag(H)
Now, let us consider induction
Ind : Latt(H) — Latt(Q)

which maps an H-lattice M to ZGQm ,, M .Then, it is clear (using Shapiro’s lemma)
that if M is a permutation (resp. stable permutation,invertible,flasque,coflasque)
H-lattice, then Ind(M) is a permutation (resp. stable permutation,invertible,flasque _
,coflasque) G-lattice. Therefore, the induction induces a well-defined morphism of
semigroups

Ind : Sansuc(H) — Sansuc(G)

and this morphism induces morphisms between the corresponding Coco, PCI, A;.
Now, consider an H-lattice M , then the H-lattice Res o Ind(M) contains M as a
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‘direct summand. Because direct summands of flasque (resp. coflasque,invertible)

modules have the similar property, we see that the morphisms
ResoInd: A;(H) — A;(H)

are injective entailing that Ind : A;(H) — Ay(G) is injective, too.

Let us now turn to quotientgroups G/H for a normal subgroup H of G. By
(5.8) we see that if M and N are G/ H-lattices , then [M]. = [N]. in Sansuc(G) if
and only if [M]. = [N]. € Colliot(G/H) inducing a natural semigroup injection :

7y 2 Sansuc(G/H) — Sansuc(@)
and again this map induces the equalities
PCYG/H) = PCUG) () Sansuc(G/H)

Coflas(G/H) = Coflas(G) ﬂ Sansuc(G/H)
Colliot(G/H) = Colliot(G) ﬂ Sansuc(G/H)

In particular, we obtain from these observations the following : if M is a G-lattice
on which a normal subgroup H ‘of G-acts-trivially; then ¢ m([M].) coincides with
da([M].) via the natural embedding 7z and similarly, kg z([M].) coincides with
ka([M].). Therefore, we will forget the subscripts from now on and denote for any
G- lattice M : (M) = ¢a([M].) and (M) = kg([M].). Further, it follows from
(5.9) that if M is a G-lattice on which the normal subgroup H acts trivially, then
$(M) = [Flo = [F¥].if 0 = M — P — F — 0 is a flasque resolution of M and
that k(M) = [Q]. = [QF]. if 0 — Q@ — P — M — 0 is a coflasque resolution of M.

Before we will prove that ¢(A) is an invariant for the tree in the Lenstra forest

containing [M], we will demonstrate some lemmas which are handy in computing

&(M) and k(M) :

(5.12) : lemma

(1) : ¢ : Sansuc(G) — Colliot(G@) and k : Sansuc(G) — Coflas(G) are
surjective

(2) : If M is any G-lattice, then ¢(M)* = x(M™*)

(3) : k: Colliot(@) — Coflas(G)is an isomorphism of semigroups with inverse
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(4) : On PCI(@) the involution sending an element to its inverse coincides
with both ¢ and «

proof: (1): Let 0 — @ — P — F — 0 be a coflasque resolution of a flasque
module F' (or, a flasque resolution of a coflasque module @), then ¢(Q) = F and
k(F) = Q proving surjectivity. This also proves (3) and (4). In order to prove (2)

: just dualize a flasque resolution of M.
(5.13) : lemma Consider an exact sequence of G-lattices
0—-M-—->N-—->I->0

with I an invertible G-lattice, then
(1) : $(M) = $(N) + [1].
(2) : If I is a permutation G-lattice then ¢(M) = H(N)

proof: (1): Let 0 - N — P — F — 0 be a flasque resolution of N and

consider the exact commutative diagram

0 - M —- P — C(Coker — 0

l | il
o - N —- P —- F —= 0

from which we obtain the exact sequence
0—1I—Coker—F —0

then this sequence splits as I in invertible and F' flasque (this is just a dual version
to (2.5)) whence Coker = F @ I. But then,from

0—- M —->P—-FplI—0

and flatness of F' @ I we obtain ¢(M) = [I]. + [Fl. = [I]c + ¢(N)
(2) follows easily from (1).

(5.14) : lemma Consider any exact sequence of G-lattices
0O0—-M-—-P—-N-—-0

where P is apermutation lattice. Then,
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(1) :¢(M) = $(x(NV))
(2) : &(N) = ~(¢(M))

proof : We have the commutative exact diagram

0 — x(N) = &(N)
! ! !

0 - M — H — Py — 0
I ! l

0 — M — P —- N —= 0
where H is the pullback of P; and P along N. This gives us the exact sequence
0—->x(N) - H—P—0
which splits because P is invertible and x(N) co-flasque. Thus,
0—-M->Pdkr(N)— P —0
is exact and therfore by (5.13) we have
B(M) = $(P) + $(6(I)) = $(x(N))

(2) is proved dually.
Finally, we can state and prove the main result of this section :

(5.15) : Theorem (Colliot-Théléne,Sansuc 1977)
If M and N are G-lattices, the following are equivalent
(1) : [M] and [N] belong to the same tree in the Lenstra forest
(2) : (M) = ¢(N) in Colliot(Q)

(3) : there exist two exact sequences of G-lattices
0—-—M—=FE—P —0

0 —-N—-F—>P -0

with P; and P, permutation G-lattices

proof :
(1) = (2) : iterated use of (5.13.2) along a path in the tree from [M] to [N]
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(2) = (3) : Take flasque resolutions of M and N :

0 -M—>Py— Fy—0

0 >N—-Py—Fny—0

then by (2) we have permutation lattices P; such that

FyeoP=2Fn®P,=F

But then we have exact sequences

0—-M—->PydP, - F —0

0O>N-—-Pyv®P,—-F—0

And we can take the pullback diagrams

6 - N — E - PyoP, — 0

I ! !

0 - N —- PyvoP, — F — 0

and similarly we have

0 — M -— E - PP — O

I ! l

0 > M — PyeP — F — 0

finishing the proof

(3) = (1) : [M] and [N] belong to the tree in the Lenstra forest containing [E] -

Concluding, studying the number of trees in the Lenstra forest (and hence,

equivalently, the stable equivalence classes of tori-invariants I(M)® over (¢ ) is
reduced to the study of the Abelian semigroup Colliot(@). This study naturally

breaks up in two parts :

(a) the study of the permutation classgroup PCI(G) and

(b) the study of the torsionfree Abelian semigroup A(G) = Colliot(G)/PCIG).
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6. A TOUR OF THE FINITE FORESTS :

In this section we will list all groups G such that the Lenstra forest contains
only finitely many trees. In the foregoing section we have seen that there are always
infinitely many trees if Colliot(G) # PCI(G). Therefore, we will first characterize
all finite groups @ for which the Colliot-semigroup is actually a group (and hence
coincides with the permutation class group).Or, in forest language : for which finite

groups does every tree in the Lenstra forest contain an invertible module ?

We begin with an easy lemma which reduces the study of invertible G-lattices
to the p-Sylow subgroups G, of G. Recall that a Sylow p-subgroup of G is a p-
group (i.e. each element has order a power of p) which is not contained in any
larger p-subgroup of G. All Sylow p-subgroups of G are conjugated and have order
p™ if the order of G is p™.s with (p,s) = 1.

(6.1) : lemma : Let M be a G-lattice. Equivalent are
(1) : M is an invertible G-lattice
2) : M is an invertible G ,-lattice for every Sylow subgroup G, of G
? 8 P

proof :

(1) = (2) is easy because any permutation G-lattice is a permutation H-lattice
for all subgroups H of G , see also the restriction map explained in the last section.

(2) = (1) : Take a flasque resolution of M as a G-lattice

0-Q—-P—->M—-0

Then, for every Sylow p-subgroup G, of G and (2.5) we know that this sequence
splits as Gp-lattices. But then it also splits as G-lattices from standard theory. So,
M® Q= P, done.

Clearly, it suffices to take one representant for each p dividing the order of the
group G.This result implies that

pPcic) =) Resgl(PCI(Gy))
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where Resg, : Sansuc(@) — Sansuc(G,) is the restriction map defined in the
previous section.

From group theory we recall that a finite group G is said to be metacyclic if
and only if all of its Sylow subgroups are cyclic. For example : any group G of
squarefree order is metacyclic.

We will now present the promised characterization of all groups G such that
each tree in the Lenstra forest contains an invertible lattice. We recall that Jg is
defined to be I} where Ig is the kernel of the augmentation map ZG — Z.

(6.2) : Theorem (Endo-Miyata 1973)
The following statements are equivalent
(1) : @ is metacyclic
(2) : Every coflasque G-lattice is invertible
(3) : Colliot(G) = PCIG)
(4) : ¢(Jg) € PCIG)

proof :

(1) = (2) : Since invertibility is checked on the Sylow p-subgroups of G by
(6.1) we may assume that G = C, the cyclic p-group of order p'. We intend to
_prove that any- coflasque Cp - lattice is invertible by induction on [.

Let M be Cpi-coflasque and define

M ={meM:®,(r)m=0}

where &, (z) = 2Pt 4 g1 4 2P 11 is the cyclotomic polynomial
~ of degree p'. As any nontrivial subgroup C' of Cj, contains 777" we see that
(M")C" = 0 for otherwise M’ would have an element m' such that P m=m
whence &, (7).m = pm = 0 which is impossible because M is a lattice (i.e. has no
Z-torsion). But then we obtain from the periodicity result on cohomology of cyclic
groups (4.6) that
TH*(C',M") ~ TH'(C',M') =0

Then, if we let M” be the cokernel of the inclusion of M' in M we obtain from the

long exact cohomology sequence that
HI(C',M”) — THI(O',M”) =0

for all subgroups C' of Cpz,i.e. M is a coflasque C i -lattice. However, by definition
M” is also a Cp-1-lattice whence by the induction hypotheses we may assume
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that M” is an invertible Cp-1-lattice (and hence also an invertible O -lattice).

Therefore
MeNxP

as Cy-lattices where P is a permutation lattice. But then, we obtain from (5.13)
that

(M) = ¢(M'") — [M”].
Hence, M is invertible iff ¢( M) is invertible iff $(M') is invertible. But, by definition
we can view M' as a torsionfree Z[(,]-module where {, is a primitive p'-th root
of unity. By the theory of Dedekind domains (and finiteness of the classgroup) we

can find a & € IN such that
M'®* ~ Z[( %™

for some m € IN. Therefore, it suffices to prove invertibility of ¢(Z[(,]). But,
Z[(y] is equal to My where My = ZC)p:. Then repeating the first part of the proof
with M replaced by My we find that

HZ[Cp]) = H(ZC ) — [ZCR"]. = [ZC "],

and M,” is invertible , done.
(2) = (3) : trivial
(3) = (4) : As ¢(Ja) € Col(G) this is trivial
(4) = (1) : Consider an exact sequence of G-lattices

0-Q—-F—-7ZG—>Z—0

where the last map is the augmentation and F is a free ZG-lattice. Then, after
splitting this sequence upinto0 - Q - F - Ig —-0and 0 — Ig - ZG — Z — 0
we obtain from the long exact cohomology sequences that for any subgroup G' of -
G
TH"(&',Q)~TH™ (G, Ig) ~ TH" *(G', Z)

In particular, taking » = 1 we obtain that THY(G',Q) ~ TH YG,%Z) ~
TH'(G',Z)* = 0 whence Q is coflasque and the exact sequence 0 — Q — F —
Ig — 0is a coflasque resolution of Ig i.e. k(Ig) = [Q]. or by duality #(Jg) = [Q*]..
By assumption, @* (and hence Q) is invertible. Thus, we can find a G-lattice
N and a permutation G-lattice P such that Q @ N = P. This implies that
TH?*(@,Q) ~ TH%(G',Z) embeds into TH?(G', P).Let us compute both groups :

TH (G, %) =%/() 9)L="T/|G |%
geEG!
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on the other hand
TH*(@,P)=TH*G,0%G'/H) = @TH*(G', ZG/H)
where the H are subgroups of G'. But then by Shapiro’s lemma we obtain
TH*(G',P)= ©TH*(H,%Z) = ®Hom(H,Q | %)

and this last group contains only elements of order the exponent of the H’s. Com-
bining the two computations we conclude that if we take G' to be a Sylow p-
subgroup of G we see that the order of G' must be equal to its exponent, yielding
that G' is cyclic,done.

In particular, if G is a cyclic group the foregoing result implies that every tree
in the Lenstra forest contains an invertible G-lattice. We will now give some results
due to H. Lenstra (1974) showing that there are only a finite number of trees in the
cyclic forest as well as a computation of the tori-invariants of invertible lattices.

Let us begin with some general remarks in the case when G is a finite Abelian
group , say

G=Z/miZ X ... X L] my %

Since every subgroup H of G is normal, we can view Z[G/H]-modules as ZG-
modules. We want to study in particular the cyclic factorgroups Cpn, = G/H of
G. For any such Cy, = Z/mZ we can define the ring Z[(,,] as follows : let = be a
generator of C,, and let

On(z) € Z[z]

be the m-th cyclotomic polynomial. The easiest way to define them is by

Op(z) = [J(z™/¢ - 1M
dim

where p(d) is the Mobius-function, i.e. pu(d) = 0 if d is non-squarefree and p(d) =
(—=1)P¢ where py is the number of primedivisors of d if d is squarefree. The first few

examples of such polynomials are
Pi(z)=2~1;83(z) =2+ 1;83(z) =2 + 2+ 1; Py(z) = 2®+1
Then, we can form the ideal

B (1)ECr C TChy
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in the integral groupring of C,, and define the quotient ring to be
L(lm) = ZCp, | ® (7)) ZCr,

which clearly coincides with the ring of integers in the m-th cyclotomic field @ ({,,)
where (,, is a primitive m-th root of unity. Via the natural epimorphism

LG — BCp — T[]

we can view any Z[(,,]-lattice as a G-lattice. Conversely, if M is a G-module, we
define
Fa,0,,(M) = (M ®c Z[{»])/( additive torsion )

Then, Fg,c,, defines a functor from G-modules to Z[({x,]-lattices which is the left
adjoint to the functor defined by the epimorphism ZG — Z[({]

(6.3) : Proposition Let CF(G) be the set of all cyclic factorgroups of a group G
and let G/H be a factorgroup of G. Then, there is a natural inclusion CF(G/H) —
CF(G) such that we have for every G/H-module M
(1) : If Cy, € CF(G/H) then Fg ¢, (M) = Fg/u,c,, (M) as L{(m]-modules
(2): If Cr, € CF(G) — CF(G/H) , then Fgc, (M) =0

proof : (1) : Because M is a G/H-module, we have M ~ M ®@g ZG/H as
G-modules. But then

Foiu,c,,(M) = (M ®¢ %G /H Qg u &[(x]/( torsion ) = M ®g Z[(m]/( torsion )

which is Fg ¢,,(M),done.
(2) : Because C,, € CF(G) — CF(G/H) we can find an element g € G such

that
G

¢/ Y
G/H Cn
$(g9) = 1 and 9(g) # 1. Then, g acts trivially on M i.e. (¥(9)—1).(M®cZ[¢m]) = O.
Because v¥(g) — 1 is nonzero in Z[(,,] it is the divisor of a positive natural number
(just take the norm of the cyclotomic extension) but then M ®¢ Z[(,,] is torsion,
ie. Fg o, (M) = 0,done.

Therefore, up to Z[({n]-isomorphism, Fg ¢, does not depend upon the choice
of G. For this reason, we will write Fp,, instead of Fg ¢, from now on.
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(6.4) : Proposition Given an exact sequence of G-modules
0—-M-—-N-—->N/M—0

with N/M a torsion group. Then, for every C,, € CF(G) we have that F¢,, (M) is
isomorphic to the image of M under the map N — Fg, (N)

proof : If we denote by J,, the kernel of the natural epimorphism ZG —
Z (), then for every G-module L there is a surjection I — Fg, (L) with kernel
KL={z€L:3k€Z%Z-0]|kz € J,.L} By assumption, N/M is torsion and
hence KM ={meM:3k€Z—-0|kmeJpnM}=M{({neN:3k'€Z—-0|
k'.n € Jp.N} whence Fo,, (M) = M/KM =M/(M(KN)— N/KN = Fg,, (N)

An immediate but important consequence of (6.3) is

(6.5) : Proposition Let P be a permutation G-lattice. Then, for every C,, €
CF(G) we have that Fg, (P) is free as a Z[(y,]-lattice

proof : By assumption P & @;ZG/H; for some subgroups H; of G. For any

of these factors we have
Fo, (ZG/H;) = Z[(n] if C,y € CF(G/H;)
or 0 otherwise,done.

From now on, we restrict attention to the case when G = C,, = Z/mZ a cyclic
group with generator 7. For any m € N we denote with Div(m) the set of all
positive divisors of m. Then, for every d € Div(m) there is a uniquely determined
factorgroup Cy of G of order d. For any subset C C Div(m) we define

Bc(z) = [] Ba(z)

dec

For example, @ p;y(m)(z) = 2™ — 1. Further, for any G-module M we define
Me=M[/®c(r).M
M} = Mc/( torsion )

(6.6) : lemma Let M be a projective ZG-module and d € Div(m). Then,
Mpiy(qy is an invertible G-lattice
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proof : Clearly,
Mpiyay = M/(t* = 1).M = M ®¢ ZCj

M being G-projective, Mp;,(q) is a projective ZCy-module hence a direct summand
of %C?n for some n which is clearly a permutation G-lattice

Luckily, we can extend this result to invertible lattices :

(6.7) : lemma Let M be an invertible G-lattice and d € Div(m). Then, MiDiv(d)
is an invertible G-lattice -

proof : For any G-module M, Méiv( ) is a Cy-lattice. Since direct sums are
preserved, it suffices to verify the result for any factorgroupring ZC,,. But then,
ZCP*Y = %G, where a = ged(n,d) and they are still permutation lattices.

(6.8) : lemma If M is a projective ZG-module and C and C' are subsets of
Div(m) such that C()C' = 0. Then,

0—+Mc—>McUcl -—-)Mcl —0
is an exact sequence of G-modules

proof : The map Mcuer = M/®c(7)@e(7)M — Mer = M/®c(7)M is the
natural one and the map from M¢ = M/®c(7)M — Mcyuer is given by multipli-
cation with ®¢/. Since everything in sight preserves direct summands and M is
ZG-projective it is enough to check exactness for M = ZG which is easy.

Again, there exists an extension to invertible G-modules

(6.9) : lemma Let M an invertible G-lattice, C a subset of Div(m) and d €
Div(m) such that Div(d) [ C = 0. Then,

0— Mg — Meypioay = Mpiway — 0
is an exact sequence of G-modules
proof : Similar.

Next, we introduce a delightful lunatic technical tool due to Lenstra :
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(6.10) : Definition The Lenstra graph £, of a natural number m € IN is the
graph with vertices all partitions of Div(m) (which is the set of all positive divisors
of m) and there is an edge between the partitions P and P' if and only if there
exists a d € Div(m) and a subset D € P such that Div(d) C D, Div(d) # D and
P' is the partition P — {D} U {Div(d), D — Div(d)}

Let us give a few examples of Lenstra graphs :

Take m = p a prime number, then Div(m) = {1,p}. There are just two
partitions P, = {{1},{p}} and P, = {{1,p}}. Take d = 1 i.e. Div(d) = {1}
then in P, we have Div(1) is properly contained in 1,p and P; is the partition
{Div(1),{1,p} — Div(1)} i.e. £, is

Take m = p?, then Div(m) = {1,p,p*} giving rise to the five partitions : P, =
{13 e} {2} P2 = {1, 0}, {#*’}}; B = ({12}, {p}}; P» = {{p,*},{1}} and
Ps; = {{1,p,p*}}. For d =1 we have Div(d) = {1} and thus the useful elements D -
of the partition P with corresponding partition P’ are

P D P!
PZ 1,P Pl
P3 1, 2 Pl

P5 1,p,p2 P4

and for d = p; Div(d) = {1,p} giving only for P5 a useful D = {1,p,p?} with
- corresponding partition P' = P,. Hence the Lenstra grapg £,2 has the following -
shape

P10
PZ?/ \Sps

P5O
P,

For m = p*® we have Div(m) = {1,p,p?,p°} and the partitions : P, =
{1L{h, {1 {P° s P = {Leh {1 {P° P = {{L,p}, {P".P*}}; Pu
{L?h{ph (P} B = {LPPHh{pP* Y P = {LP*}{p},{p*}} ; P&
{1,7°} e, P’ P = {{p,2’}, {11 {ps}sPe = {{p.p°}, {1}, {p*}} 5 Pro
{{pz,ps},{l},{p}};Pu = {{1,p,p2},{p3}};P12 = {{1717,?3}’{172}} i Pz o=
{1,2%, 9’1 {p}}; Pra = {{p, P, p*}, {1}}; P1s = {{1,p, P*, P*}}.

Il
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For d = 1 we have the following useful D in P with corresponding partition P’

P D p!
PZ 1,P Pl
P, 1,p Py
P, 1,p Py
Py 17P2 P,
P 1,P3 P
Py 1,p? Py
Py 1,P7P2 Py
P12 ]-,Paps P9

Py 1,P27P3 Py
P15 1’p7p2ap3 P14

For d = p ; we get the following information

P D P!
Py 1, p,p? P,
Py 1,P,P3 P

Py 1,p,p%,p° Ps

And finally for d = p® we have P = P;5 with D = {1, p,p?,p*} and corresponding
partition P' = P;;. This leads to the following picture of the Lenstra graph L3

Py
PSO/—’ Plg\\\\ Pg

’/Pllo—/’/ oP;2
P15T’"/ chl !)Pg
P3O P7Cl P5
Pyg
Py3b

As a rather pleasant exercise we suggest the reader to draw the Lenstra graph for
m = p.q. The result should be agraph isomorphic to

O—0— 0—-Q

~.
\-o 60— 0—0 /3}——0
O O——0—0"

Observe that in all these examples the Lenstra graph is connected. This is a general
fact
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(6.11) : Proposition (Lenstra 1974)
For any natural number m € IN we have that the Lenstra graph L., is connected

proof : As in the above examples we call P; the trivial partition consisting
of all singletons. In order to prove the result it is sufficient to show that for any
partition P of Div(m) there is a path from P to P,.

We use induction on m and, for fixed m, we use induction on n(P) = # P, —#P.
If n(P) = 0, then P = P; and the required path trivially exists. Now, assume
n(P) > 0 and let e € Div(m) be minimal with respect to the existence of a class
D € P such that e € D and #D > 1. Clearly, e < m for otherwise P = P, and
n(P) = 0. Thus, we can apply our induction on m : there exists a path

Go =14:1€ Div(e) — —Gy — —Gy — —.. — =G4 = Div(e)

where all the G; are partitions of Div(e). We will now lift this path in £. to one
in L, ¢ for all 0 < j < b let D; be the unique class in G; containing e. For
0 < 7 <2b+1 we will now define partitions of Div(m) as follows : for 0 < j < b let

H;={C € P|CnDiv(e)=0tUu{DUD;}U{G; — {D;}}
and for 6+ 1 < 7 < 2b+1 define
Hj={C € P|CnNDiv(e)=0}U{D — {e}} U{G2pt1-;}
Then, one can verify fairly easily (for an example : see below) that the path
Hy=P——Hy——Hy — —... — —Hjp 1
is a well defined path from P to Hazpy; in £,, and by construction
Hipr1 = {D — {e},{e}} U P - {D}

whence n(Hzpt1) = n(P) — 1 and by induction on n(P) we can find a path in L,
from Hypyq to P;, done.

Let us give an example of the construction : assume we want to construct a
path from P = {{p,p*’},{1}} in £L,2 to P;. Then, e = p, D = {p, p*} and we look
at a path in £, from {{1}, {p}} to {{1,p}}. We have seen that there is one such




Permutation modules and rationality problems 61

path with Go = {{1},{p}} , G1 = {{1,p}}. The corresponding D; are Dy = {p},
D; = {1,p}. Then, the constructed H; for 0 < j < 3 are

Hy = {{1}7 {P,Pz}}§ H, = {{17P7p2}}

Hy = {{r’},{1,p}}; Hs = {{p"}, {1}, {p}}

which is precisely the path P, — —P5 — —Py, — —P; obtained before.

The Lenstra graph will turn out to be of crucial importance in the proof of the
next couple of results. Recall the definition of the M¢ and M{ for anu G-module
M and any subset C C Div(m). We can clearly extend these definitions to any
partition P of Div(m)

M(P) = @cepMc and Mz(P) = @cEpMé
(6.12) : Proposition Let P and P' be partitions of Div(m)

(1) : If M is a projective ZG-lattice, then I(M(P))¢ ~ I(M(P"))¢
(2) : If M is an invertible G-lattice, then I(M*(P))¢ ~ [(M*(P'))®

proof : (1): By the very existence of a path in £,, from P to P' we may as
well assume that P and P’ are adjacent. This means that there exists an element
d € Div(m) and D € P such that Div(d) is properly contained in D and

P' = {Dwv(d),D — Div(d)} u{C|C e P - {D}}
By (6.8) there is an exact sequence of ZG-lattices
0 — Mp_piva) = Mp — Mpiway — 0

and if we add to the first two terms of this sequence the module N = @¢cp_pMe,

then we get the exact sequence
0—-Ng MD-—»Di'v(d) — M(P) — MDiv(d) — 0

By (6.6) we know that Mp;,(q) is an invertible G-lattice. Therefore, by (2.9) we |

have an isomorphism of [%-algebras

UM (P))® ~ N & Mp_piua) ® Mpinay)® ~ [(M(P"))®




62 Derde Cyclus 1988-89
(2) is similar but using (6.7) and (6.9) instead.
This allows us to calculate the tori-invariants of any invertible C,,-lattice :

(6.13) : Theorem (Lenstra 1974) Let G = C,, be the cyclic group of order m
and let M be an invertible G-lattice. Then,

(M) = U®c, Fo,(M))®
as [®-algebras, C; ranges over the cyclic factorgroups of Cp,
proof : Consider the following two ’trivial’ partitions of Div(m)
Py = {{d} : d € Div(m)} and P, = {Div(m)}
then we calculate
MY(P,) = Odjm (M [ ®4(7).M)/(torsion) = &¢,Fo,(M)

M*(P,) = (M/(r™ — 1).M)/(torsion) = M

and the foregoing result finishes the proof.

Recall that the Fo,(M) are finitely generated torsion-free (whence projective)
modules over the ring of integers Z[(;] in the d-th cyclotomic field @ ({;). Further,
since any tree in the Lenstra forest contains an invertible lattice if G = C,, a cyclic
group, we have reduced the problem of stable equivalence classes of tori-invariants
(over I9) to that of tori-invariants of sums of invertible ideals in certain cyclotomic
fields.

We now come to a major result which is miraculous in the sense that it gives an
equivalence between rationality and stable rationality for a large class of examples.

Note that in general there do exist stable rational non-rational fields.

(6.14) : Theorem (Lenstra 1974) Let G = C,, be the cyclic group of
order m and let M be an invertible Cy,-lattice. Then, the following statements are
equivalent

(1) : I(M)€ is rational over I¢

(2) : I(M)€ is stably rational over I

(3) : [M] lies in the permutation tree in the Lenstra forest
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(4) : For every cyclic factorgroup Cy of C,, we have that the Z[(;]-module -
Fo,(M) is free

proof : (1) =>(2) : obvious

(2) and (3) are equivalent by (2.17)

(2) = (4) : Since M is an invertible Cp,-lattice we can find by (2.16) permu-
tation lattices P; and P, such that

M@Plﬁ’Pz

By (6.5) this implies that Fo,(M)®F, 2 F, where F, and F; are free Z[({z]-modules.
This entails that Fo, (M) is free as a Z[(;]-module
(4) = (1) : We can find a permutation C,,-lattice

N = @Od%cgd

such that Fg,(M) = Fg,(N) for all cyclic factorgroups Cy of Cy, (use (6.3) and
freeness of all F,(M)). But then,

(M) = U&c,Fo,(M))°
(NS = l(®odFL"d(N))G
and finally, I(N)€ is rational over I¢ by (2.8),done.
An immediate consequence of this result is :

(6.15) : Corollary There are only finitely many trees in the Lenstra forest of a

finite cyclic group Cp, of order m.

proof : By finiteness of the classgroups of the ring of integers Z[(4] for all
cyclic factorgroups Cy of C,, we can find a natural number n such that for a given
invertible C,,-lattice M :

Fo,(M®") = Fg,(M)®"

is a free Z[(4]-module for all C4. But then, by the foregoing result [M]® = 0
because it lies in the permutation tree. Since the trees are classified by PCI(Cyr)

by (meta)cyclicity we are done.
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The above mentioned rationality results can be extended to arbitrary finite

Abelian groups if we put restrictions on the invertible lattices

(6.16) : Corollary Let G be a finite Abelian group and M a G-lattice of the
form M = ©g;pMg/m where each Mg,y is an invertible G/H-lattice , the G/H
ranging over the cyclic factorgroups of G. Then, there is an I®-isomorphism

(M)® = U®c,cor@)Fo,(M))®

proof : Let G/H be any cyclic factorgroup of G. We can apply (6.13) to
G/H, the lattice Mg,z and the field I and obtain

H(Mgu)®" = 1%(®0, Fo,(Ma/r))'#

where C; ranges over the cyclic factorgroups of G/H and the isomorphism is one
of (IH)G/H — |G 3lgebras. Since H acts trivially on Mgy this isomorphism can
be rewritten as

(Mayu)® = U®c,Fo,(Meym))®

Tensoring this isomorphism with ! over I% gives us a G-action preserving isomor-

phism (using Spoeiser’s result)
(Mgu) ~ U®c,Fo,(Ma/m))

and combining all G/H-terms we obtain a G-action preserving isomorphism
(M) = Uc,eor(@)Fo,(M))

as l-algebras from which the result follows.

And similarly we have the following extension of (6.14) :

(6.17) : Theorem (Lenstra 1974)

Let G be a finite Abelian group and M a G-lattice of the form M = ®c/aMa
where each G/H is a cyclic factorgroup of G and Mg /H is an invertible lattice.
Then, the following statements are equivalent

(1) : ((M)€ is rational over I

(2) : I(M)€ is stably rational over I¢
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(3) : [M] belongs to the permutation tree in the Lenstra forest
(4) : For every cyclic factorgroup Cy of G we have that the Z[({;]-module
Fo, (M) is free

proof : Similar to (6.14).

This ends our excursion in the cyclic forests. It is perhaps surprising that
the Lenstra forest provides us with some grip on all C,,-lattices even when the
representation theory of them is wild e.g. if m = p*. Anyway, let us now turn to
the problem of classifying all finite forests :

From the theory of groups we recall the following characterization of metacyclic

groups

(6.18) : Theorem The following are equivalent
(1) : G is a metacyclic group of order g
(2) : G is generated by two elements a and b with defining relations

a”=1,"=1,b"rab=2a"

where the numbers m,n and r satisfy (a): m.n =g, (b): »® =1 mod m and (c):
((r—1)m,m)=1

proof : See e.g. M. Hall 'The theory of groups’ theorem 9.4.3

The dihedral group of order 2.n is the group generated by two elements a and
b with defining relations : ™ = 1,52 = 1 and b.a = a~'.b.Further, the generalized
quaternion group of order 4.n is the group generated by two elements a and b with
defining relations : a®™ = 1,b% = a™ and b.a.b™! = ¢™!. Using this group-lingo we

can now state the characterization of all finite forests :

(6.19) : Theorem (Endo-Miyata 1973)
~ There are only finitely many trees in the Lenstra forest of G if and only if G
is one of the following classes of groups :
(1) : G is a cyclic group
(2) : @ is a dihedral group of order 2.p" with p an odd prime
(3) : G is the direct product of a cyclic group of order ¢° and a dihedral group
of order 2.p" where p and ¢ are odd primes and p is a primitive ¢*~* (g — 1)-th root

of unity modulo ¢*
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(4) : G is a generalized quaterniongroup of order 4p” where p is an odd prime

-~ congruent to 3 modulo 4

This list of groups can be seen to be equivalent to the following :
G is either a cyclic group or a direct product of a cyclic group of order » and

a group generated by two elements a and b and defining relations
& =p = ;07 ab=a"?
where p is an odd prime which is prime in Z[(,.2:] and (2p,n) =1

- We will not give the proof of this result , here. Later on, we will compute the
rank of the permutation classgroup of G in terms of grouptheoretical information.
It is clear that the classification of all groups G' such that the Lenstra forest con-
tains only finitely many trees can then be recovered from the structure theory of

metacyclic groups and the rank = 0 version of this computation.
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7. THE LOCALS ARE QUITE HELPFUL

Before we can attack the Colliot-semigroup of an arbitrary finite group with a
reasonable chance of success, we have to arm ourselves with some of the basic tools
of integral representation theory. In particular, we want to know how much infor-
mation is already contained in the local picture. In the case of integral grouprings
local’ always has a twofold meaning : local with respect to the group means that
we restrict to Sylow p-subgroups of G' whereas local with respect to the ring means
that we localize Z. We have already seen a group-local-global result (6.1) saying
that invertibility can be checked by restricting to the Sylow subgroups. One of our
first aims in this section is to look at the ring-local behaviour of invertible lattices.
First we have to learn some of the lingo :

For a fixed group G we denote by 7(G) the set of primes dividing the order #G.
For any G-lattice M we will denote by Mgy = Upex(g)Mp. An important,though
fairly coarse invariant of a G-lattice is its genus

(7.1) : Definition : Two G-lattices M and N are said to lie in the same genus ,
which fact we will denote by M V N , if and only if Mgy = Nya)

This is not the usual definition of genera, but it is equivalent to it as the next

result shows

(7.2) : lemma : Let M and N be two G-lattices,equivalent are
(1) : M and N lie in the same genus
(2) : M, = N, for all p| #G
(3) : M, = N, for all primes p

proof : see e.g. Gruenberg’s 'Relation modules for finite groups’ Cor. 4.12
p-22

Working over Z(g) (rather than over Z) has some advantedges. For example

we can use the following cancellation result
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(7.3) : Proposition : Let 7 be a finite set of prime numbers and let L,M and N
- be Z,G-modules which are Z-torsionfree. Then, if L& M =2 L & N then M =N .

proof : see e.g. Gruenberg ,theorem 4.4 p.19
Important consequences of the Jordan-Zassenhaus theorem are

(7.4) : Theorem : (1) : There are only finitely many isomorphism classes in
each genus

(2) : Let M and N be G-lattices, then M V N if and only if there is some
n € IN such that M®" = N

proof : see Swan-Evans, theorem 6.11 p.114.

Note that the same result holds if we replace Z by any intermediate ring
Z C R C @. Moreover, if R is semi-local we can take n = 1.

Most of our definitions on G-lattices have extensions to the case of RG-modules.
Here R will be ZW,%p,Zp,Q or djp where %}, is the ring of p-adic integers i.e. the
completion of Z, with respect to the p-adic topology and @ ,, is its field of fractions

(7.5) : Definitions :

(1) : An RG-lattice M is an RG-module which is free as an R-module

(2) : A permutation RG-lattice P is isomorphic to @®;RG/H; for some sub-
groups H; of G

(3) : An invertible RG-lattice is an RG-direct summand of a permutation
RG-lattice

(4) : With Latt(R,G) we will denote the set of isoclasses of RG-lattices

(5) : With Sansuc(R,G) we denote the equivalence classes of Latt(R,G) for
the relation M ~g N if M ® Py & N @ P, for permutation RG-lattices P;. The
direct sum turns Sansuc(R,G) into an Abelian semigroup

(6) : With PCI(R, @) we denote the group of invertible elements in the semi-
group Sansuc(R,G). It is easy to see that these are precisely the classes of invertible
RG-lattices

The next lemma , due to Andreas Dress , shows that invertibility also allows

a ring-local-global criterium :
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(7.6) : lemma A G-lattice M is invertible if and only if M, is an invertible
Z.,G-lattice

proof : One direction is trivial. Conversely, let
M, « P(p) = @g;IZp(;/HZKP)
then, for some (s,p) = 1 we have
Muc(sy < P(P)mo(s) = GBZMG(S)G/H#)

where M C(s) is the multiplicatively closed set {1, s,s?,...}. Then s = ¢{*...¢;* and
for each g¢; we can repeat the foregoing argument and find an s; s.t. (sj,¢;) =1

and

Myro(s;) A P(g5)m0(s5) = @ZL1ZMC’(31-)G/HZ-(%)
But then Z = Zs + ) Zs; from which we deduce a splitting

M a0k, o, 26/ H®)
done.
The following result is well-known, see e.g. Reiner ’Maximal Orders’ :

(7.7) : Proposition

(1) : A Z,G-lattice M is isomorphic to (resp. a direct summand of) a Z,G-
lattice IV if and only if the same holds for Z, ® M and %, ® N

(2) : A Z,G-lattice M is of the form %, ® N for some %4.,G-lattice N if and
only if the (lij—lattice Q@ ® M is of the form de ® V for some @ G-lattice V'

Therefore, we have the pullback-diagram of semi-groups (with the direct sum

as composition law) A
Latt(%,,G) < Latt(Z,,G)

!
Latt(@,G) — Lat(@,,G)
and because permutation-lattices are defined over any coefficient ring, we have also

a pullback diagram of semigroups

Sansuc(Zyp,G) — Sansuc(Zp, Q)

| |
Sansuc(Q,G) Sansuc(djp,G)
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which entails in particular a pullback diagram of the groups of invertible elements
PCU%p,G) — PCUZp,G)
PC’I(%.Q @) = PO’l((lQAp,G)

The point is that this reduces the study of Z,G-lattices to character theory (over
Q and @ p) and modular representation theory (over Zp). As we move along , we

will recall some of the (many) results in these areas.For example :

(7.7) : Green’s indecomposability theorem : Let G be a p-group and H any
subgroup, then ZPG /H is an indecomposable Zp(}-lattice

proof :  This is a special case of Green-correspondence, see e.g. Benson
"Modular Representation Theory’ thm 2.12.2.

An immediate consequence of the above mentioned results is :

(7.8) : Theorem (Esther Beneish 1988) Let G be a p-group. Then, any
invertible G-lattice lies in the same genus as a permutation lattice

proof : By (7.2) it suffices to prove that I, is a permutation Z,G-lattice for
each invertible G-lattice I. Clearly, Zp ® I, is a direct summand of a permutation
Z?G-lattice @,-Z},G /H;. But by (7.7) any of the terms is indecomposable. By the
Krull-Schmidt theorem we obtain that Zp ® I, must be the direct sum of some of
these terms,so Zp ® I, is a permutation ZPG-lattice, say

Zp ®I= @ijG/Hj
But then by (7.6.1) I, & @Z,G/H; , done.

And, by the group-local-global principle for invertible lattices we can generalize

this result to any group G :

(7.9) : Theorem (Esther Beneish 1988) A G-lattice I is invertible if and only
if Resg,(I) lies in the same genus as a permutation G,-lattice for every Sylow-

subgroup G, of G

proof : Trivial from (6.1) and (7.8).
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Clearly, these results already imply that a ring-local-global principle fails for
permutation lattices : just take an invertible not-permutation lattice for a cyclic -
group C, (e.g. p = 23). There are some other interesting direct consequences for
lattice invariants which are not mentioned in her paper. They depend upon the

following result :

(7.10) : Theorem (Roiter’s replacement theorem)
(1) : If M lies in the same genus as N and F is any faithfulG-lattice, then
there exists a G-lattice F' in the same genus as F such that M@ F = N ¢ F'
(2) : If M lies in the same genus as N, then there is an exact sequence of
ZG-modules
0-M-—->N-U-—>0

where U = U; @...® U, each U; is a simple IF,, G-module and py, ..., p, are distinct
primes and prime to the order of G

proof : See e.g. Gruenberg th.5.9 and 5.15

(7.11) : Definition We say that a field K is a k-rational factor of degree m of a
field L if there exists an affine k-algebra R with field of fractions K and an affine
k-algebra 'S with field of fractions a rational fieldextension of degree m of L such

that R is a retract of S i.e. we have a triangle

(7.12) : Proposition Let I be a faithful invertible lattice of a p-group G, then
(1) : the lattice invariants k(I)€ are a k-rational factor of degree the Z-rank
of I of any lattice invariants k(F)® where F is a faithful G-lattice
(2) : the lattice invariants k(I)¢ are stably equivalent to a Noether setting
k(H)H where H is afinite group having @ as a p-Sylow subgroup provided k contains

enough roots of unity

proof : (1) : I lies in the same genus as a permutation lattice P. Then, by

Roiter’s replacement result we can find a G-lattice F' such that

IoF'=2PoF




72 Derde Cyclus 1988-89

- Now, k[I] is clearly a retract of k[I @ F'] preserving the G-action,thus k[I]® is a
retract of k[ @ F'|® = k[P @ F]®. By faithfulness of I, P and .F we have that k(I)% -
is a rational factor of k(P @ F) which is a rational extension of k(F)%,done.

(2) : Clear from (7.10.2) and (1.7)

Having given a nice local picture of invertible lattice, our next aim is to study
the permutation classgroup (or at least its rank) using local data. We will follow
here Andreas Dress’ paper closely. To begin with, we have the following consequence

of the Jordan-Zassenhaus theorem

(7.13) : Proposition The permutation classgroup PCI(G) is finitely generated

as Abelian group

proof : Go(ZG) is the Abelian group with generators the isoclasses of f.g.
Z.G-lattices and relations [M] = [M']+ [M”] whenever we have a G-exact sequence
0 - M'— M -+ M” — 0. By the splitting property of invertible lattices we see
that PCI(G) is a subquotient of G¢(ZG). By Swan-Evans theorem 3.8 we known
that Go(ZQ@) is finitely generated, hence so is PCI(G)

~We.will often need.the following grouptheoretical result :

(7.14) : Theorem (Andreas Dress 1971)

Let G be a finite group and H a family of subgroups of G which is subconju-
gately closed, i.e. if H; and H, are subgroups of G such that g.H;.g~™ C H, then
if H, € H,s0 is Hy. Further, let x : H — Z be a map such that x(g.H.g71) = x(H)
forall g € G and all H € H.

Then, there exist two G-sets S and T such that :

(1) : #(@).x(H) + #(SH) = #(TH) for al H € H

(2) : (SUT)E = for all subgroups H not contained in H

proof : See Dress’ lecture notes on representation theory of groups at the
University of Bielefeld.

A first and important consequence of this result is the following extension of
Artin’s induction theorem (the case when R = @) and Swan’s theorem on projective
ZG-lattices (the case when R = Z). Recall that a permutation lattice RG/H is a
projective RG-lattice iff # H is a unit in R.
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(7.15) : Theorem (Andreas Dress 1975)

Let Z C R C @. Then, for any finitely generated projective RG-lattice M-
there exist permutation lattices P; = RS , P, = RT where S and T are G-sets such
that

(1) : forsomene IN: M9 ¢ P, = P,

(2) : for a subgroup H of G : (SUT)¥ # then H is cyclic of order a unit in R

Moreover, if R is semilocal then n can be chosen to be #G

proof: Let xps be the rational character afforded by the @ G-module @ ® M.
Since xm(g) is an algebraic integer lying in @ we have xm(g) € Z for all g € G.
-Further, by [Curtis-Reiner,Exercise 15.3,p.399] we have xpm(g) = xa(h) if the cyclic
group < g > is conjugated to < h >.

Now, define H to be the set of all cyclic subgroups of G with order a unit in
R, then H is clearly subconjugately closed. Moreover, by the exercise mentioned
above, all requirements of (7.14) are satisfied. Thus, we can find G-sets S and T
such that

(1) : #G.xp(g) + #(S<9>) = #(T<9”) for all g € G with order a unit in R

(2) : (SUT)® = for all subgroups H of G which are either non-cyclic or have
non-invertible order in R
By [CR,Th. 32.15,p.679] we have that xar(g) = 0 for all g whose order is not-
invertible in R. Therefore, we have for all g € G the equality

#G.xaalg) + 5 = $T<0>
But then the permutation lattices RS and RT are both of the form
®RG/ < g; >

where g; € G with invertible order in R, i.e. RS and RT are projective RG-modules.
But then by the above equality, RT and N = M®#% @ RS are two projective RG-
lattices having the same rational characte,i.e. @ @ RT = @ ® N and therefore RT
and N lie in the same genus by [CR,Th.32.1 p 671] i.e.

R, T=R,Q®N

for every maximal ideal m of R. Since there is at most one isomorphism class in

the genus of a semi-local ring ( a consequence of [CR,31.6,p 645] ) we are done in
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the semi-local case. In the general case we know by an R-analoque of (7.4.2) that .

there is a natural number n € IN s.t.
M®"#C ¢ RS®™ = RT®™

finishing the proof.

In the special case R = @ any @ G-lattice is clearly projective entailing by the
theorem that PCI(@,G) is finite and each element has order a divisor of #G. This

also follows from the following refinement of

(7.16) : Artin’s Induction Theorem : Each rational character x of G can be

expressed in the form
X = Z acxa/c

where the sum is taken over all cyclic subgroups C of G and the coefficients a¢ are

given by the formula

_ 1
= Za/C

> W#C'/C)x(z)

c<c’

where C' ranges over all cyclic subgroups containing C , z is agenerator of C' and

p is the Moébius function
proof : Curtis-Reiner 15.4 p.378

Thus, we have full control over PCI(®,G). Next, we will try to connect the
study of the permutation classgroup to the local classgroups, i.e. we want to study

the natural morphism

loc : PCYG) — [] PCU(Z,,G)
pl#G

sending a class [M]. to the product of classes [Z, ® M]..

In this study we will have to know when two permutation Z,G-lattices are
isomorphic. If G is a p-group this is a triviality by Krull-Schmidt and Green’s
indecomposability result. But, if G is arbitrary this question is not that easy and

has some connections with number theory.
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Let us give a quick example of non-uniqueness of decomposition : suppose G -
is a group containing an Abelian subgroup H = Z/qZ x %/qZ%. Let Hy,...,Hy\q
denote the subgroups of order g. Then one has an isomorphism of @ H-lattices .

CHoC® 2CH/H,®..C H/Hyy,

which can be verified by decomposing both sides into linear factors. By representa-
tion theory we can replace ¢ in the above isomorphism by Zp for any prime p # ¢
(and hence by descent by Z,) and obtain the isomorphism

Z,H O L 2 T, H/H, & ... ® LpyH/Hyyy
Now tensor this with Z,G over Zp,H and obtain
Z,G & ZP(G/H)GBQ 2 Z,G/H1® ... 0 Zp,G/Hyyq

Giving an aboundacy of examples of non-unique decomposition of permutation
Z,G-lattices. As an example of the usefulness of knowing isoclasses of permutation

lattices we mention here

(7.17) : Proposition (Roggenkamp-Scott 1980)

Let K/@ be a finite Galois extension with Galois group G and p a fixed prime
number. Let Hy,..., H, be subgroups of G. If we have an isomorphism of permu-
tation Z,G-lattices

&L LG HP™ = QL Z,G/HPY

for some a;,b; € IN. Then, we have an isomorphism
Oy CUK )™ = @, CIKH )2

where CI(K*H), denotes the p-torsion part of the classgroup of the ring of integers
in the fixed field K¥

proof: See LNM 882 p.256

Hence, knowing the isoclasses of permutation Z,G-lattices for all primes p
gives us relations between the classgroups of intermediate fields. In view of this
application it is perhaps surprising that we do have a fairly precise result.
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Recall that a group H is said to be p-hypoelementary if H/O,(H) is a cyclic
- group where O,(H) is the largest normal p-subgroup of H. With Hyp,(G) we
denote the set of all p-hypoelementary subgroups of G.

(7.18) : Theorem (Andreas Dress 1972)
Two G-sets S and T give rise to isomorphic permutation Z,G-lattices, i.e.
Z,S = Z,T if and only if #SH = #TF for all H € Hyp,(G)

proof : See LNM 342,p 224-234

As an application of this result we will now show that the morphism loc defined

above recognizes torsion elements

(7.19) : lemma Let M be a G-lattice. If M), = %, ® M defines a torsion class in
PCl(Zyp, Q) for all primes p | #G, then M defines a torsion class in PCI(G)

proof : Replacing M by M®™ for a suitable m € IN we may assume that for
each prime p | #G we have two G-sets S, and T}, such that

M, & T,S, = %, T,

Taking the rational character xar of @ ® M on both sides we obtain for all elements
g€qG
xaug) + #5535 = #T59>

Now, define H = UpuaHypp(G) and a map x : H — Z by
x(M) = #TF — #sH

if H € Hypp(G). Of course, we have to show that this map is well defined i.e.
does not depend upon the choice of p. So, let H € Hyp,(G) () Hyp,(@), then H is
readily seen to be cyclic, i.e. H =< g > but then

#Ty — #55 = xu(9) = #T, — #ST

Further one checks that x(H) = x(g.H.g™*') for all g € G and H € H and that H
is subconjugately closed. Then, we can apply (7.14) and obtain two G-sets S and
T such that

#HG.x(H) + #57 = 4T
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for all H € H or, replacing the definition of x(H)
H#GHTT + #S% = #G#ST + #TH
for all H € Hyp,(G@). Then, by (7.17) we obtain that
(o) : Z,SUUEST, 27, TUUZSS,
On the other hand, from M, & Z,S, = Z,T, we derive
(o) : MP*C @ Z,S UT UUESS, =2 Z,5 UTUUEST,
Combining () and (ee) and using the semi-local cancellation result (7.3) we find
MP*C & 7,8 = Z,T

which is valid for all primes p | #G, i.e. M®#C @ ZS lies in the same genus as ZT,
but then by (7.4.2) we can find an integer n € IN such that

MO™#C g 7,59 = 7"
That is, M defines a torsion class in PCI(G),done.

We can now relate the rank of the permutation classgroup to the ranks of the

local classgroups

(7.20) : Theorem (Andreas Dress 1975)
For any finite G we have an isomorphism

Q@ ® PCl(G) = [] @ ® PCZ,,G)
p|l#G

or,alternatively
rkPCYG) = Y rkPCU%,,G)
PI#G

proof : By the foregoing result we know that [M]. is torsion in PCI(G) iff
[My]. is torsion in PCI(Z,, G) or in other words

Q@ @ PCl (@)~ [] @ ® PCU(Z,,G)
pl#G
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is a monomorphism. In order to prove that it is epimorphic, let us take for any
p | #G an invertible Z,G-lattice M,. Tensoring with @ and using (7.15) or (7.16)
we can find G-sets S, and T}, such that

(@ ®M,)** © @5, = QT,
We can now define for every p | #G
N, = MP#C @ %Sy © (®gl0,a70 Lo Ty)
That is : [Np]. = #G.[My). in Pcl(Z,, ). Now define the G-set
T =UppaTy
then by definition of N, we have that
Q®N,=QT

for every prime p dividing the order of G. But then we can find a ZG-lattice N
such that
Zp® N = N, for p | #G

Zp®N = 7%,T for (p,#G) =1
For, we can identify @ ® N, with QT for all p dividing #G and consider the

intersection .

N = (NppaNp) N Z[%]T
The claim is then easily verified because localization commutes with finite intersec-
tions. By lemma (7.6) we know that NV is an invertible G-lattice and under the natu-
ral map loc [N]. is mapped to Hp]#G(#G'[MP]C)' But then #I—G,Q{)[N]c € QQRPCIG)

is mapped to HpI#G[MP]C proving surjectivity, done.
An immediate consequence of this result is

(7.21) : Proposition (Hendrik Lenstra 1974) If G is a p-group, then the
permutation classgroup is finite

proof : By (7.20) rkPCI(G@) = rkPCl(Z,,G) = 0 because any invertible
Z,G-lattice is a permutation Z,G-lattice. Then, using (7.13) PCI(Q) is finite
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Having reduced the computation of the rank of the permutation classgroup
to those of the local classgroups, we now want to compute their ranks in-terms of
those of PCl(Zp, @) and PCl(djp, G@). By Artin-induction one can often restrict to

induction from cyclic subgroups and then the follwowing result comes in handy

(7.22) : lemma Let G be acyclic group and V an irreducible (QA pG-lattice. Then,
there exist invertible ZPG-lattices I; and I, such that ({j ,LeV = df »® L2

proof: Let 7 be a generator of G of order p”.m where (p,m) = 1. Let V bean
irreducible (Ij pG-lattice, then there exists a p™.m-th root of unity ¢ such that V =
@ ,(¢). However, { does not need to be primitive. But, @ ,({) = @ ,(¢1) ® @ ,({2)
where (7 is a p™-th root of unity and (> is an m-th root of unity, ¢ = (;.(> and 7*
acts on an element z; € djp(Cj) by Ttz = (;:cj

We claim that the result holds for V if it holds for @ ,(¢1) and @ ,(¢z). That
is, assume tha,tA(QAp(Cl) @(Q}@Jl =~ dfp®.]g and that djp(fg) ® (ij®J{ &~ (ij ®J,
for invertible Z,G-lattices J;, J;. But then

G, (()®F,(2)00,0(N1007i0L)20,0(i0let,®J)

whence @ »(0) @ Q »® 6L = Q » ® I where I; are clearly invertible ZPG-lattices
“(tensor-products- of -invertibles-are invertible). . Thus, we may:assume that V =
Q »(€) for ¢ either a p™-th or an m-th root of unity. We may also assume that V'is -
faithful i.e. we may restrict to the case where G is a p-group or has order prime to
p. In the second case, any ZPG-Iattice is projective whence invertible, so choosing
a ZPG-lattice M CV gives @ »® M £V by irreducibility and we are done. In the
first case, we have for a p™-th root of unity ¢ that [@ ,(¢) : (ljp] =[@(¢): @] and
trpey/0(¢) = —1if n =1 and 0 otherwise. But then

Ve §,G/G =g ,q
where G is a subgroup of order p and we are done.

(7.28) : Theorem (Andreas Dress 1975)

There is an exact sequence of Abelian groups
0 — @ ® PCl(%p,G) — @ ® PCY%p, G) — @ ® PCUG ,,G) — 0
or in other words

rkPCU(Zy) = rkPCU(%p, G) — rkPCUE ,, G)
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proof : The starting point is of course the pullback diagram
PCU%y,,G) — PCU%Zp,G)
PCl(%.Q,G) — PC’l(%p, G)

By the Artin induction theorem, PCI(@Q,G) is a finite group whence @ ®
PCI(@Q,G) = 0. This implies exactness of the sequence

0 = @ ® PCUZy,G) — @ ® PCUT,, G) — @ ® PCUA ,,G)

Since any permutation @ G (hence @ p() character is @ -generated by those of cyclic
subgroups of G by the Artin-induction theorem, we see that any direct factor or
even more generally any element of @ ® PC’Z((QA - G) can be written as the sum of

elements of the form

r® (¢ ,G 85,0 V)

for some r € @, C a cyclic subgroup of G and V a d§ pC-lattice. The surjectivity
of the map @ ® PCl(ZP, G)—-Q® POl(djp, G) now follows from (7.22),done.
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8. THE HYPO-OBSTRUCTION :

In this section we will conclude our computation of the size of the permutation
classgroup PCI(QG) of an arbitrary finite group. It will turn out that non-finiteness
is caused by nontriviality of certain quotients of the automorphismgroups of the
cyclic tops of hypoelementary subgroups of G.

Combining the theorems (7.20) and (7.23) gives us

rkPCIG) = Y | rkPCU%,,G) — rkPCUG ,,G)
p|l#G

We will start the computation of the right hand side by connecting the permuta-
- tion classgroups to certain representation rings. In the sequel let R denote either
Zp or @ p (or @ for that mather). Since we have the Krull-Schmidt result for
RG-lattices, we can define Ar(G) to be the free Abelian group generated by the
isoclasses of indecomposable RG-lattices (of course, the addition is given by the
direct sum).Actually, the tensorproduct defines a ringstructure on Ar(G) (see e.g.
Benson’s Modular Representation Theory LNM 1081 2.2) but we do not really need
this here. Similarly, we define Ar(G, Perm) (resp. Ar(G,Triv)) for the subgroups
(actually,subrings) of Ar(G) comsisting of the permutation (resp. invertible) RG-
lattices. Note that at this point we give in to the modular tradition of calling
invertible lattices trivial source modules (see later). Then, we clearly have an exact

sequence of Abelian groups
0 — Ar(G, Perm) — Ar(G,Triv) — PCI(R,G) — 0
which tells us that the rank of PCI(G) is equal to

Z (rkAZ (G,Triv) — rkA, (G,Perm)+ kA, (G,Triv) —rkA, (G,Perm))
pI#G ? %P QP Q?

and in order to calculate all these terms explicitly we will mobilize the full power

of modular representation theory.
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Let us begin with the easier @ p-terms. Because any ) »G-lattice is projective
and hence invertible we have that Ad?(G,T'ri'v) = Adp(G’) = Ko(@,G). Here,
Koy(RG) is the Grothendieck group (actually ring) of finitely generated projective
RG-lattices modulo exact sequences, i.e. equipped with the direct sum as addition
rule. In case R is a field K we can compute the rank of Ko(KG) by means of
Berman-Witt theory, which we will now briefly recall.

An element g € @ is said to be K-regular if its order is a unit in K. Two
K-regular elements g,h € G are said to be K-conjugate iff there is an z € @ such
that z.g.z ™! = h* where 7 is apositive integer satisfying the following property : let
¢ be a primitive # < g >-th root of unity in an algebraic closure of K, then there
must be a K-automorphism of K(({) sending ¢ to ¢%. So, in particular we have that
v and # < g > are coprime and that # < g >= # < h >. Using this lingo we have

(8.1) : Berman-Witt theorem The rank of the Grothendieck ring Ko(KG), or
equivalently, the number of isoclasses of simple K G-lattices, is equal to the number
of K-conjugacy classes of K-regular elements

proof : For characteristic zero see Curtis-Reiner Th. 21.5 p.494 and for
characteristic p Th. 21.25 p.508

We can rephrase this result in the following way. Let C be the set of all cyclic
subgroups C =< g > of G where g is K-regular and define for each C

46(C) = Ng(C)/Ca(C)

where Ng(C) (resp. Cg(C)) denotes the normalizer (resp. centralizer) of C in
G. Then, we can view Ag(C) as a subgroup of the automorphismgroup Aut(C)
of C, i.e. the group of units of the ring Z/#CZ%. We can identify C with the
multiplicative group of all #C-th roots of unity in an algebraic closure K~ of K.
Let By (C) be the subgroup of Aut(C) consisting of those automorphisms induced
by K-automorphisms of K~. The Berman-Witt theorem can now be restated as

rkKo(KG) =Y (Aut(C) : A(C)Bx(C))
cgec

where Zocec means that the sum is taken over different conjugacy classes of C’s in

C. Thus, we get our first explicit result
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(8.2) : Proposition Let C be the set of all cyclic subgroups in @, then

(1) :rkdy (G, Triv) = CZE:C(Aut(C) : Ag(C)Bk(C))

<
(2): rkAdp(G,Perm) = Z 1
cec

(3) : rkPCU@ ,,G) = Y [(Aut(C) : Aa(C)Bx(C)) 1]
cec

proof : (1) : follows from the above reformulation of the Berman-Witt
theorem.

(2) : By descent rkAQ~ (G,Perm) = rkAy (G, Perm) which is by the Artin-
induction theorem the number of conjugacy classes of cyclic subgroups in G. See
also C-R Exercise 15.4 p. 399

(3) : follows from (1) and (2).

Next, let us consider the Zp-term.By descent and (7.18) it is easy to see that

<

rkAZP(G, Perm) = Z 1
HEeHyp,(@)

This also follows from Conlon’s theorem, see e.g. Benson Th.2.13.6 p.67.
Now, we turn to the more difficult task of computing the rank of Qs (G, Triv)
?

or, equivalently, the number of isoclasses of indecomposable invertible ZPG-lattices. :

We say that a subgroup D of G is a vertex of an indecomposable ZPG-lattice
M if M is a direct summand of Ind§ o Res$ (M) and this does not hold for any
proper subgroup of D. A source of M is then an indecomposable ZPD—lattice N
such that M is a direct summand of Ind§(N).

For any subgroup H of G, g € Ng(H) and N a ZPH -lattice, we denote by
N9 the lattice N with H-action induced via the automorphism on ZPH induced by
conjugation with g. We have :

(8.3) : Proposition Let M be an indecomposable ZPG—Iattice,then

(1) : the vertices of M are p-subgroups of G which are all conjugated

(2) : let D be a vertex of M and Ny, Ny two Z,D-lattices which are sources of
M, then there is a g € Ng(D) such that Ny & NJ
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(3) : an indecomposable ZPG-lattice M is invertible iff for each vertex D of M
the source of M is the trivial ZPD—lattice Zp

proof : See Benson Prop. 2.5.1 p.38 for (1) and (2) and Prop. 2.6.1 p.39 for
(3). Remark that this also explains the terminology ’trivial source modules’.

Let P be the set of p-subgroups of G' and for any D € P let c,(G, D) denote
the number of isoclasses of indecomposable ZP(}-lattices with vertex D and trivial

source Zp. Then, from the above results we get the reduction

<

rkAy (G, Triv) = Y ¢p(@, D)
! DeP

Now, we are in a position to apply the crucial

(8.4) Green-correspondence theorem There is a one-to-one correspon-
dence between indecomposable ZPG-latticeS with vertex D and indecomposable
ZpNg(H )-lattices with vertex H. Under this correspondence invertibles are

mapped to invertibles.
....proof :. .See Benson Th.2.12.2 p.61

Hence, for any D € P we have ¢,(G,D) = ¢,(Ng(D), D) i.e. we have to
count the isoclasses of indecomposable ZPNG(D)-lattices with vertex D and source

~

Zyp. In other words, we have to count isoclasses of direct factors of the groupring
ZpNg(D)/D, i.e. the indecomposable projective ZpNg(D)/D-lattices which by
the theory of projective covers (see C-R Th.18.2 p.430) correspond one-to-one to
the isoclasses of simple IF,Ng(D)/D-lattices. Rephrasing

¢5(G, D) = rkKo(IF,No(D)/D)

which we can calculate again by the Berman-Witt theory explained before. There-

fore

(¢) : Tk Ko(FpNa(D)/D) = ), (Aut(H) : Ang(py/p(H) By, (H))
HeC,

where C, is the set of all cyclic subgroups H =< g > of Ng(D)/D of order prime
to p. Of course, we prefer to lift this information to the G-level.
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The Ng(D)/D-conjugacy class of H lifts uniquely to a G-conjugacy class of
- -a p-hypoelementary subgroup H of G having D = O,(H) as a normal p-Sylow
subgroup (i.e. the cyclic top H/O,(H) has order prime to p).

For any H € Hyp,(G) we denote by A%,(H) the subgroup of the automorphism
group of the cyclic top Aut(H/O,(H)) consisting of those automorphisms induced
by conjugation with elements of Ng(H) C Ng(Op(H)). Further, with BP(H) we
denote B]F,(H /Op(H)) as before. But then, we can reformulate (o) as

rkKo(F,Na(D)/D) = S (Aut(H/O,(H)) : AL(H)B(H))
HeHypy(G),0,(H)=D

and adding up all relevant terms we obtain

(8.5) : Proposition

<

(1): rkA%»?(G,Perm) = Z 1

HeHyp,(G)
(2) : rkdy (G,Triv) = > (Aut(H/O,(H)) : AZ(H)B?(H))
HEHyp,(G)
(3) : rkPcl(Zp, G) = > [(Aut(H/O,(H)) : AP(H)B?(H)) — 1]
HEH'pr(G)

One extra bit of information is needed, namely : how are the terms in (8.2)
and (8.5) related in case H happens to be a cyclic subgroup of G ? In this case,

consider the canonical epimorphism
Aut(H) — Aut(H/O,(H))

then Ag(H) is mapped onto A%(H) and BQ~ (H) onto By (H/O,(H)) = B?(H).
» »
The kernel of this epimorphism is Aui(O,(H)) = B 6P(OP(H )) which is contained
in B G (H). These remarks prove
4

(Aut(H) : Ag(H)de(H)) = (Aut(H/O,(H) : AL(H)B?(H))

for all cyclic subgroups H of G. A combination of all the results so far proves our

promised calculation of the rank of the permutation classgroup
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(8.6) : Theorem (Andreas Dress 1975)

(1) :kPOUZG) = S [(Aut(H/O,(H)): AZ(H)B?(H)) 1]
HeHyp(&)~C

(2) : TkPCUG) = Y > [(Aut(H/O,(H)) : A%(H)B?(H)) —1]
p|#G HEHyp,(G)—C

This result is rather powerfull. For example, we get immediatly Lenstra’s result
that the permutation classgroup of a cyclic group is finite. Moreover, we can easily
characterize the Abelian groups having finite permutation classgroup

(8.7) : Corollary Let G be a finite Abelian group. Then PCI(Q) is infinite
if and only if there is a prime p such that G, is not cyclic and there is a cyclic
subgroup C of G of order n prime to p such that Aut(Z/nZ) is not generated by
the multiplication map with p mod »

proof : If the rank of PCI(G) is not zero we have a p | #G and a non-
cyclic p-hypoelementary subgroup H such that Aut(H/O,(H)) is not generated
" by AL(H)BP?(H). Recall that A% (H) consisted of autos iriduced by conjugation
so A%L(H) = 1. Further,BP(H) = Bip (H/Op(H)) which was the subgroup of
automorphisms induced by IF,-automorphisms of the algebraic closure IF, which
~are known to be powers of the Frobenius morphism, i.e. BP(H) is the subgroup
of Aut(H/O,(H)) generated by the multiplication map by p mod n. Taking C
to be the cyclic subgroup generated by a lift of the generator of the cyclic group
H/O,(H) the result follows.

For example, if G = %/3% x Z/3Z x Z/8% then PCI(G) is infinite giving
examples of invertible G-lattices which do not lie in the same genus as a permutation
G-lattice.Also, it is easy to produce metacyclic groups having infinite PCl. For
example, take the non-Abelian group of order 21 which contains a normal 7-Sylow
subgroup. Then the only non-cyclic hypoelementary subgroup is the group itself i.e.
G/O0+(G) = Z/3%.B"(G) = 1since 7T mod 3 is 1 and A%(G) is also trivial. Therefore
the rank of the permutation classgroup of the non-Abelian group of order 21 is 1.

We leaveit as an exercise to you that the Endo-Miyata classification of the finite
forests follows from the Dress result and the classification of metacyclic groups.
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9. THE SALTMAN FOREST :

Now that we understand the permutation classgroup, we conclude our study of
the Colliot-semigroup Colliot(G) (and hence of the number of trees in the Lenstra

forest) by investigating the torsion free Abelian semigroup
A(GQ) = Colliot(@)/PCI(G)
It is easy to see that elements of A(G) classify the trees in a coarser forest

(9.1) : The Saltman forest :
In the picture of all isoclasses of G-lattices (classified vertically according to
their Z rank) we draw an edge between the classes [M] and [N] if and only if there

exists an exact sequence of G-lattices
0—-M-—-N-—-I-0

with I an invertible G-lattice.

Again, this defines an equivalence relation on the isoclasses of G-lattices which

is transitive :

(9.2) : lemma Let L, M and N be G-lattices such that there exist exact sequences
of G-lattices 0 = L —- M —I; - 0and 0 - M — N — I, — 0 where the I; are
invertible G-lattices. Then, there is an exact sequence of G-lattices

O0—-L—-N-—-L&l,—0

proof: We have the following exact commutative diagram of G-lattices

0 - L —- L — 0

! ! !
O - M —-— N —- L — 0
! ! !

L - R —- I, — 0
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Which gives us the exact sequence of G-lattices
0L >R—>I,—0

and since I; in invertible and I; coflasque this sequence splits by (2.5) giving R =
Lel

(9.3) : Proposition There is a one-to-one correspondence between
(1) : trees in the Saltman forest
(2) : elements of the torsion-free Abelian semigroup A(QG)

- - proof : Suppose we have an exact sequence of G-lattices
0-M—->N-—-I—-0
with I an invertible G-lattice, then by (5.13.1) we obtain
(M) = ¢(N) + [1].

i.e. under the composite map o : Latt(G) - Sansuc(@) — Colliot(G) — A(Q) the

---classes [M]. and [N], are mapped to the same element. This shows that o(M) =

o(M') € A(G) whenever [M] and [N] belong to the same tree in the Saltman forest.
Conversely, assume o(M) = o(N) then by definition

$(M) + [L]e = ¢(N) + [L]. € Colliot(Q)

where I; are invertible G-lattices.But then we have invertible G-lattices J; such -
that I; @ J; = P; for some permutation lattice P;. From the essential uniqueness of
flasque resolutions we see that ¢ is additive and therefore :

HM @ J1) = (M) + ¢(J1) = $(M) + [I]e = ¢(N) + [L]. = $(N & J»)

Then, by (5.15) M @ J; and N @ J, belong to the same tree in the Lenstra forest
(and hence a fortiori in the Saltman forest). Finally, the J; being invertible [M]
and [N] belong to the same tree in the Saltman forest.

For this reason we will call A(G@) the Saltman-semigroup of G. Having defined
o on G-lattices, we will now define o on maps between G-lattices, the idea being
that o is ’allmost’ a functor.
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(9.4) : Definition Let M, N be two G-lattices and f,f' : M — N two ZG-
morphisms. We say that f and f' are equivalent and denote f -~ f' iff f — f'
factors through a permutation lattice, i.e.

M =L N
g\ /' h
P

where P is a permutation lattice

The next lemma is a triviality :

(9.5) : lemma Let g: K — M, f,f': M — N and h : N — L be G-maps
between G-lattices. Then,
(1) : If f ~0then fog~0O0and ho f~0
(2):iff~Oand f'~0then f+ f ~0and —f ~0
(3) : 1p ~ 0 if and only if M is invertible

proof : For (1) it suffices to look at the diagram

K — M — N — L

N /
P

For (2) suppose that f (resp. f') factors through the poermutation lattice Py resp
Py Then, f + f' clearly factors through P; @ Py in the obvious way
(3) : If the identity factors through a permutation lattice, then M is a direct

summand of this permutation lattice,done.

Using this equivalence relation, we can define a funny category Flas(G) whose
objects are the flasque G-lattices and with morphisms the equivalence classes of

G-morphisms. Our goal is to define a 'quasi-functor’
o : Latt(@) — Flas(@)
We will need the following

(9.6) : lemma Let F be a flasque lattice and I an invertible lattice. Let iz :
F— F@Iand pr: F®I — F be the natural injection and projection. Then, in
the category Flas(G) [ir] is an isomorphism with inverse [pz].
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proof : Consider the composite
irpopr: FOI-F@I

which induces the identity on the F-component and the zero map on the I-
component.Then, 1pgr — ir o pp induces the zero map on F and the identity
on I. Therefore, it factors through I via py and ¢;. I being invertible it also factors
through a permutation lattice yielding that [ir o pr] = [iF] o [pF] = [LFe1],done.

Now, we will define o(f) where f : M — N is a G-map between two G-
lattices.Consider flasque resolutions of M and N . Then, by (5.10.2) we can com-

plete the diagram

0 - M — Py — Fy — 0

1
0 - N —» Py —» Fy — 0

with a map F': Py; — Py whichinduces a map g : Fjy — Fy. Because o(M) = Fy
(upto isomorphism in Flas(G) by the foregoing lemma) and o(N) = Fn (upto iso
in Flas(@)), it is natural to define o(f) to be the equivalence class of the map
~g- v By — Fn.- Of course, we have to investigate- how o(f) depends upon (1) the
particular choice of the extension F' of f and (2) the choice of the flasque resolution.

(1) : Suppose we have two extensions Fi,Fy : Py — Py of f, then since
Fy, — F> | M = 0 it induces a morphism

h:FM—-)PN

such that if we compose h with the epimorphism Py — Fy we obtain g; — gs.
Therefore, g; — g; factors through a permutation lattice Py whence [g1] = [g2] in
Flas(@).

(2) : Suppose we have chosen other flasque resolutions of M and N say 0 —
M — Py — Fpy - 0and 0 - N — P}, — Fj — 0. Then, we can form the

pushout-diagram

0 —» M - Pys - Fy — O
! l |

0 - Py — PyxMP, — Fy — 0
! ! !

0 - Fy, — Fiy — 0
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then we obtain from (2.5) two split exact sequences leading to
Py xM™ Py = Pryy @ Fiyy = Pl @ Fy
And, replacing the roles of M by N we similarly obtain
Py xN Py Py @ Fjy = Py & Fy

The extensions of f are denoted by F' : Pyy — Py and g : Fay — Fn (resp.
F': Py — Py and ¢' : Fj; — Fj).Now, adding P}, to the last two tems of the
first flasque resolution of M (resp. Pj to that of N) and defining H = F @ F' :
Py @ Py — Py @ Py we obtain an exact commutative diagram

0 - M — Py®Py, — PuxMP, — 0

Vf VH LA
6 - N — PyodPy — PNXNPJ'V — 0

Now we remember the decompositions of Pp; xM P;; and Py xN Py, and obtain

the commutative diagram

Fy PMXMPJ'W — Fy

lg LA ld
FN — PN XNPJ'V — FJ,\T

where the horizontal maps are pg,, and P (resp. pr, and ppl:v) which are all
isomorphisms in Flas(G). Concluding we see that [g] and [¢'] are determined upto
automorphisms in Flas(G) explaining the ’quasi-functorial’ behaviour of . We do
not care too much about this auto-dependence since we will be primarely interested
in the question whether a map f : M — N satisfies o(f) = [0].

(9.9) : lemma Let M be a G-lattice, equivalent are
(1): o(M)=0€ A(G)
(2) : o(1ar) = [0]

proof : (2) = (1) : Take a flasque resolution of M
0> M — Py — Fay — 0

then,clearly o(1a7) = [1r,,] which is [0] by assumption,i.e. Fys is a direct factor of
a permutation lattice i.e. an invertible lattice. Then, o(M) = [Fup]. = 0 € A(G)
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(1) = (2) : By assumption, we have a flasque resolution of M
0 -M—->Py —Ipr—0

where Ips is an invertible lattice. But then, o(1p7) = [11,,] = [0] since I is adirect

factor of a permutation lattice.

(9.8) : Theorem (Saltman 1984)
Let f: M — N be a G-morphism. Then, o(f) = [0] if and only if there exist

an exact commutative diagram

M — P1

! ! ,
0 - N — N — P, — 0

where P; and P, are permutation lattices. Or, in forest-lingo : [f] becomes even-
tually [0] if we move up in the tree of [N] in the Lenstra forest

proof : < : Suppose we have such an exact commutative diagram. Take

flasque resolutions of M and N'
0—-M— Py— Fpy —0

0——)N’—-—)PNI—)FN/—-)0

Then we can form the exact commutative diagram

0 - N —-N =S P — 0
1 i !

0 — Pp = Pye — O
l i !
HN L d FNI — 0

giving (by the snake-lemma) an exact G-sequence
0 Pz —>_HN——)FN/ — 0

which splits by (2.5)*, i.e. Hy = P, @ Fn. Taking the leftmost column in the
above diagram we get the exact commutative diagram

0 - M — Py — Fu — 0

Lf | F lyg
0 — N — PNI — PZ & FNI — 0
11 |  pF,

0 - N' — Py — Fnpr — 0
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Denoting f' = io f and ¢' = pr, 0 g we have by definition of ¢ that o(f) = [g]
upto iso in Flas(G@) and o(f') = [¢'] upto iso in Flas(@). The last column in the

above diagram yields
lg] = [0] iff [¢'] = [0]
(use that pg, is an iso in Flas(@)). Using the quasi-functorial properties of & we

have that the triangle

M
' N\
N' L P1
maps to the tringle
o(M)
o(f') N\
o(N') — 0

entailing that o(f') = [¢'] = [0] whence o(f) = [g] = [0],done.
= : Conversely, suppose o(f) = [0] that is the exact diagram obtained by
taking flasque resolutions of M and N

0 - M — Py — Fy — 0

Lf L F lg
0 - N —- Py — Fy — 0

““has the property that g‘factors through a ‘permutationlattice’ P: But then we can
form the pullback diagram (the colums are not exact !)

0 - M - Py — Fy — O

Lf | F l

0 - N — PyXpy P — P — 0
I ! !

0 - N — Py — Fy — 0

which proves the result by taking Py = P;,N' = Py X, P and P, = P,done.

Our main motivation to study the Lenstra forest is that different trees cor-
respond to different stable equivalence classes of tori-invariants [(M)€ over [€ see
(2.18). Therefore, it is only natural to ask whether the Saltman forest also corre-
sponds to some (weaker) rationality property. Before giving the formal definition
of retract rationality we will motivate the concept by investigating the connection
between tori-invariants [(M) and I(N)@ if [M] and [N] lie in the same tree in the

Saltman forest. So, by iteration we may assume that we have an exact G-sequence

0O—-M-—-N-—-I->0
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where I is an invertible G-lattice. By (2.9) we have an isomorphism of %-algebras
(NS = Mo I)°

Howver, if I is an invertible lattice not contained in the permutation tree (they
exist e.g. for O, if the ideal classgroup of the p-th cyclotomic field is not trivial)
then I(M)€ and (M & I)€ are not stable equivalent over I%.But, I being a direct
factor of a permutation lattice P we have a commutative G-diagram

M@P
/" N\
Mol Laer Mal

This induces a triangle of [€-algebras

I|M & P|¢
/ N
M e I)° — M @ I]°

and (M @ P)€ is rational over I(M)€ by (2.8), say (M & P) = I(M)% (1, ..., z,).
By (2.14) we can find an element a € I[M @ P]¢ and b € {[M]%][z1, ..., 2] such that

I[M @ P)°[2] =I[M]%[zy, ..., 2n][%] giving rise to the triangle

[M][21, ey ][]
S N\ i}
I[M & 1I° - M & I11°5]

which motivates the following

(9.9) : Definition (Saltman 1980) A field extension K C L is said to be retract
rational if there exists an affine K-algebra R with field of fractions L and nonzero
elements f € K|[z1,...,2,] and r € R such that there is a triangle

Kz, ..., :cn][%]
/" N
R - R3]

Clearly, we first have to verify that this property depends only upon the field-
extension and not on the particulat choice of the affine subalgebra :
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(9.10) : lemma : If K C L is retract rational and S is any affine K-algebra with .
field of fractions L, then there exist elements g € K|z4,...,2,] and s € S such that

we have a diagram

K[X1, ., @nl[4]

/" N
S s S

proof : Easy : use definition of retract rationality and Swan’s lemma.

Of course one can extend the notion of retract rationality for other maps than
the identity morphism. We say that a map factors rationally if there is such a
triangle with top rational. We have the following characterization of such maps

(9.11) : Theorem (Saltman 1984) Let f : M — N be a G-map. Then, the
induced map ¢ : {(M)¢ — I(N)C factors rationally over € if and only if o(f) = [0]

proof : = : Assume that ¢ factors rationally, i.e. we have a triangle

1921, .0y za][2]
S 6\
1[M]C - [[N9[2)

which we can tensor up with [ and applying Speiser gives us a triangle

{21, 0y @n][2]
7Y &N,
I[M] - N[5

Now, we can redo the classical tricks to obtain a sequence
! 1 * *
0—->N-—N =l(N)[:g—]/l — Py — 0

where P, is a permutation lattice (coming from a factorozation of s) and
[z, ,mn][%]*/l* = P is also a permutation lattice. That is we have the dia-

gram

M —_ P1

! l
0 - N —- N = P — 0

which entails o(f) = [0]




96 Derde Cyclus 1988-89

- <= : Then, by (9.8) we have a diagram as above which gives rise to the triangle

I[p)¢

/ N\
[M)¢ — I[N']¢

Here, the top field of fractions is rational over ¢ and the right bottom field is
rational over [(N)® and then we are done by the following lemma, the proof of

which we give give cadeau.

(9.12) : lemma (a): Let K and L be two F' fields which are stable equivalent
over F. Then if L/F is retract rational so is K/F

(b) : Let S, T and T' be affine F-algebras where 7' C T and the fields of
fractions give a rational field extension. If ¢ : S — T os an F-algebra map such
that the composition § — T «— T" factors rationallt, then so does ¢

So, the tori-invariants [(M)€ are retract rational over [€ if and only if [M]
belongs to the permutation tree in the Saltman forest. In the next trimester we
will have a closer look at retract rationality for tori- and lattice invariants.
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10. MORE FLASQUE YOGA :

In this last section we collect some material related to flasque and coflasque
resolutions which we found only after completing the foresters guide. Further, we
will give a brief intro to the G-jungle which is obtained from the Lenstra forest by

~colourfully adjoining the dual forest.

In (5.11) we gave an analoque to the Schanuel lemma for flasque and coflasque
resolutions. Benson (LNM 1081 lemma 1.4.2.1) found a generalization of Schanuels

lemma which has also a flasque analoque :

(10.1) : lemma (1) : Consider the exact G-sequences

0—-Q@—>P—->M-—0

0-Q"-N—-M-=0

where @ and Q' are coflasque lattices, P in an invertible lattice (for example the
‘upper sequence can be a flasque resolution of M) and the epi N — M factors
through a permutation lattice. Then,

QeP=2NaQ
(2) : Consider the exact G-sequences
0O—-M-—=P—-F—0

0—-M-—-N-=F 50

where F' and F' are flasque lattices, P is invertible and M — N factors through a

permutation lattice. Then,

 FleP2XNoF




98 Derde Cyclus 1988-89

proof : (1): Consider the pullback diagram

0 0
| !
Q@ = Q
l !
0 - @ - X —- P — 0
I | P
0 - @ —- N —-— M — 0
! !
0 0

where @ : N — P exist by the factorizing assumption on ¢ : N — M. By
proposition (5.10) we know that the map P' — M factors through a map 8: P' — P
(the proof of (5.10) only uses invertibility). So, we can complete the diagram

0——>Q'——(—>X = P —= 0
y
B/
I 6§l P! !
S o N\
0 - @ < N = M — 0

where - exists because P-is invertible and Q' is coflasque. By commutativity of the

diagram e have

(In — afy8) C Ker(o) = Q'
so we can apply €7! to it and form a map
0= afy+(1nv — afys)e ¢
which gives the required splitting for § i.e.
NoQeX=Q P
(2) : is proved dually.

In the foresters guide we have seen that the Colliot-semigroup (i.e. isoclasses
of flasque lattices upto adding permutation lattices) parametrize the different trees
in the Lenstra forest. This may suggest that every tree contains a flasque lattice.
We will see below that this is not the case in general. However, each tree does
contain a coflasque lattice
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(10.2) : lemma Every tree in the Lenstra forest contains a coflasque lattice. In

particular, all lattices in [k$M ], lie in the same tree as M

proof : Consider the following pullback diagram obtained from a flasque
resolution of M and a coflasque resolution of a representant of [¢M].

KM = koM
! !

0 - M — R — P — 0
I ! l

0 - M —- Py — oM — 0

The middle vertical sequence splits because Py is invertible and x¢M is coflasque,
i.e. R= Py ® k¢ M and then the middle horizontal sequence gives the result.

In fact, we have the following characterization of trees containing a flasque

lattice

(10.3) : lemma Every tree in the Lenstra forest which contains a flasque lattice -

contains also a coco-nut

proof : Let F be a flasque lattice. Then, by the argument in the proof of
~ the foregoing result (replacing M by F') we obtain an exact G-sequence

0—=F —PrdrpF - P—0

with Pr and P permutation lattices and x@dF coflasque.But then the long exact
sequence of Tate cohomology gives us that TH!(H,k¢F) = 0 for every subgroup
H of G. So, k¢F is also a flasque lattice,done.

Perhaps this is a good place to make a few comments about the San-
suc,Colliot,Coco and Saltman semigroups introduced before. In the next trimester
we will see that these semigroups are, in general, not cancellative. However, we
will see that it is always possible to write them as a disjoint union of cancellative
genus-closed sub semi-groups.

From (10.3) it follows that there are infinitely many trees not containing a
flasque lattice whenever Coco(G) # Colliot(G). Let us give a drastic example of
such a situation due to Colliot-Théléne and Sansuc :

(10.4) : Example The Lenstra forest of the Klein Vierer-group V; contains

infinitely many trees and all flasque lattices lie in the permutation tree
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proof : As V, is not metacyclic, PCI(V,) # Colliot(V,) and hence there are .
infinitely many trees in the forest. Let M be an arbitrary V,-lattice and consider
the endomorphism o on M determined by multiplication with 1+s (V, =< s,t >).
Then we have the sequence

0 — Ker(oc) > M — Im(o) — 0

First, s acts trivially on Im(c) i.e. Im(c) is really a V;/ < s >=< t >-lattice.
Secondly, Ker(o)V* = 0 for otherwise Ker(o) would contain two-torsion elements.

Then , the exact cohomology sequence gives us an epi
TH Y (Va, M) — TH™(Vy, Im(c)) — 0

Now, restrict attention to the case when M is a flasque Vj-lattice. Then,
TH=Y(Va,Im(o)) = 0 and decomposing Im(c) into indecomposable < ¢ >-lattices
as in section 3 this implies that I'm(o) can only contain components Z and Z < ¢ >
yielding that Im(c) is a permutation V,-lattice. But then, the above sequence gives
us
B(Ker(o)) = $(M)

Now, decompose Ker(c) as a < t >-lattice (by restriction) into indecomposables
i.e. as a sum of copies of Z, Z < t > and Ker(Z < t >— Z. s acts on Ker(c) as
- —lger(o) 50 this decomposition is.really one as.V,-lattices. Now, use the fact that
the < ¢ >-indecomposables mentioned above are (with the given s-action) iso to
the Vy-lattices Ker(ZVy/ <t >— %), Ker(ZV, — ZVy/ < s >) and Ker(ZV,/ <
st >— Z) which all lie in the permutation tree. Therefore, ¢(Ker(c)) = ¢(M) =0
i.e. M lies also in the permutation tree.

This example also shows that it is perfectly possible for tori-invariants I[(M)¢
to be rational over /¢ and yet [(M*)? is not stable rational over ¥,

In the study of moduli spaces of vectorbundles over projective spaces it is
often useful to write a bundle as the cohomology bundle of a three term complex (a
monad) consisting of bundles which are better understood. This idea of Horrocks
(supported by the Beilinson spectral sequence) has many applications. It is perhaps
a bit surprising that we also have monads for G-lattices (at least if we consider
permutation lattices and cocos to be well understood lattices)

(10.5) : Proposition Any G-lattice M is the cohomology lattice of a monad (i.e.

a three term complex consisting of a mono and an epi)

P1<——>On—+P2
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where P, and P, are permutation lattices and C is a Coco (i.e. flasque and

coflasque)

proof: Consider the dual lattice M*, then by (10.2) M* lies in the same tree
as the coflasque lattice koM™, i.e. using (5.15) and adding a permutation lattice if

necessary to k¢ M* we find an exact sequence
0> M*— kpM* — P, — 0

with P; a poermutation lattice.Dualizing this sequence gives us
0> P, — oM —- M —0

where the middle term is a flasque lattice. But then by (10.4) ¢xMM lies in the same

tree as a coco-nut C' , i.e. we have an exact sequence
0> ¢sM - C —- P, —0

which gives rise to the exact diagram (e)

0 0 0
! ! l
0 —- P — ¢xM — M — 0
I ! {
0 - P - C - Coker — 0
! ! !
0 P, = P,
! !
0 0

from which we deduce that M is the cohomology of the monad
(O) : Pl — C P2
we call the diagram () the display of the monad (o).

So, roughly speaking, all G-lattices are understood if we know all maps from
permutation lattices to cocos and back. For more applications of this technique
we refer you to the junglebook. There, we will also develop the jungle-cohomology
(initiated by work of James Arnold) which is an analoque of Tate cohomology but
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replacing the role of projective lattices by permutation lattices. This theory leads
to jungle-versions of the Carlson concepts of complexity and cohomology variety. -

Now, it is about time to introduce these jungles :

(10.6) : The G-jungle s the picture obtained by classifying all isoclasses of
G-lattices according to their Z-rank and drawing
(a) : ared edge between [M] and [N] iff there is an exact G-sequence

O—- M—-N->P—-0

with P a permutation lattice
(b) : a blue edge between [M] and [N] iff there is an exact G-sequence

0—-P—>M-—->N-—-0

with P a permutation lattice
(c) : a green edge between [M] and [N] iff there is a blue and red edge between
[M] and [N]

- In other words, forgetting the blue edges we have the Lenstra forest and for-
getting the red edges we have the dual forest. Again, we have a hill supporting this
jungle and by transitivity we may restrict attention to drawing those edges com-
ing from extensions by transitive permutation lattices. If we have the full jungle
picture, it is trivial to harvest the flasque,coflasque and coconuts as follows :

- the flasques are the ones with precisely k green edges over it and all the others
red (k is the number of transitive permutation lattices)

- the coflasques are the ones with k green edges over it and the others all green

- the coconuts are the ones with only & green edges over it (and no others)
Clearly, the duality operator forces the jungle to be highly symmetric.

For the underlying theory and notation on jungles we refer to ?Hackenbush”
which is chapter seven of ”Winning ways for your mathematical plays 1” by Elwyn
Berlekamp,John Conway and Richard Guy. In particular we mention here the
definition of the purple mountain which is that part of the jungle consisting of
the blue-red edges connected to the hill and the remaining part is called the green
jungle. The green jungle can be very big (e.g. in the Cp-case where it is the
whole jungle) or extremely small (e.g. in the Vi-case where it is just the top of
the permutation tree). The diligent reader will already feel that it makes a lot of
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- difference to rationality problems whether the lattice lies in the purple mountain
(the ugly case) or in the green jungle (the good case).

Unfortunately, there are some trendy animals living in the jungle. We leave
you with the following boasting Baloo example : the tori-invariants of the Leech
lattice under any of the Conway sporadic groups is not rational...







