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SEMI SIMPLE REPRESENTATIONS OF QUIVERS

Lieven Le Bruyn(¥,Claudio Procesi(®

(1):University of Antwerp,UIA-NFWO (2):Universita di Roma

1. Imtroduction.

After the work of P. Gabriel [Ga] , it became clear that a wide variety of
problems from linear algebra could be formulated and studied in a uniform way in
the context of representations of quivers. We will briefly recall the setting :

Thoughout this paper, we work over an algebraically closed field of charac-
teristic zero and call it . A quiver @ is a fourtuple (Qo, Q1,%, k) consisting of a
finite set Q¢ = {1,...,n} of vertices, a finite set Q1 = {¢ € ®} of arrows between
these vertices and two maps ¢,k : Q1 — Qo assigning to an arrow ¢ its tail £(¢)
and its head h(¢) respectively. Note that we do not exclude loops nor multiple
arrows. However, we will always assume that the underlying graph of the quiver is
connected.

A representation V of a quiver Q is a family {V(¢) : 1 € Qo} of finite dimen-
sional vectorspaces over €' together with a familt of linear maps {V(¢) : V(¢(¢)) —
V(h(#)); ¢ € @1}. The n-tuple of integers dim(V) = (dim(V(3))); € IN" is called
the dimension vector of the representation V. A morphism between two represen-
tations f : V — W is a family of linear morphisms {f(i) : V() — W(3);: € Qo}
such that for all arrows ¢ € @, we have that W(¢) o f(¢(¢)) = f(R(¢)) o V(). A
morphism f is an isomorphism if all the components f(z) are isomorphisms.

For a fixed dimension vector & = (a(1),...,a(n)) € IN" we define the represen-
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tation space R(Q, «) of the quiver @ to be the set of all representations V of Q such
that V(7) = ©*® for all 4 € Qq. Because V € R(Q,«) is completely determined
by the linear morphisms V(¢) we have that

R(Q,a) = @) Homg (€209, ¢ @) = @) 1,(@)
P€Q1 PEQ1

where for each ¢ € Q1 we denote by My(@' ) the vectorspace of all a(h(4)) by
a(t(¢$)) matrices with entries in €.

We will consider the vectorspace R(Q,a) as an affine variety with coordina-
tering @' [@, ] and functionfield € (Q, ). There is a canonical action of the linear

reductive group
n

GL(e) = [[ GLay(@)

=1
on the representation space R(Q, a) determined for all representations V € R(Q,a)
and all groupelements g = (g(1),...,9(n)) € GL(a) by the rule

(9-V)(¢) = g(h($))V ()g(¥(4))

It is clear that the GL(a)-orbits in R(Q,a) are precisely the isomorphism classes
of representations.

As we will recall in the next section, every representation V € R(Q, ) can be
written (but not necessarely uniquely) as V = V; + V,, where V; is a semi-simple
representation and V,, is such that the zero representation lies in the closure of
the orbit of V,, under the stabilizer subgroup of V,. We then call V =V, + V,, a
Jordan decomposition of the representation V. Therefore the classification of the
orbit structure of GL(a) on R(Q, ) can be divided up in two subproblems :

(I) : the study of all semi-simple representations of Q@ and

(IT) : the study of nilpotent representations of Q with respect to certain linear

reductive subgroups of GL(c)
In this paper we aim to apply the étale slice machinary of D. Luna [Lul] in order
to get a fairly complete answer to problem (I). Concerning problem (II) we will
determine the finitely many linear reductive subgroups of GL(a) which occur as
the stabilizer subgroup of a semi-simple representation.

Since semi-simple representations are precisely those representations V &
R(Q, ) such that the corresponding orbit GL(«a).V is closed, it follows from Mum-
fords theory [Mu] that their isomorphism classes are parametrized by the quotient
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variety V(Q, a) = R(Q,a)/GL(a). In section 3 we will show that the coordinate
ring of this variety (the ring of polynomial invariants) is generated by traces of
oriented cycles in the quiver Q and we give a bound on the lenght of the cycles

required.

In section 4 we will see that the quotient variety V(Q, ) admits a finite strat-
ification into locally closed smooth irreducible subvarieties corresponding to the
different types of semi-simple decompositions of dimension vector a. Moreover,
one strata lies in the closure of another if the corresponding representations are

deformations.

Using these two results we will determine in section 5 all dimension vectors
which occur as the dimension vector of a simple representation. This problem can
be viewed analogous to (but much easier than) the corresponding problem for inde-
composable representations which has been solved by V. Kac [Ka]. Our description
is expressed in terms of the bilinear Ringel form R(a, 8) whose symmetrization is the
Tits quadratic form corresponding to the root system of the quiver Q. Therefore,
we obtain a purely combinatorial method to determine all types of semi-simple de-
compositions of dimension vector @ and hence of all the linear reductive subgroups

which occur in the problem (II) mentioned above.

In section 6 we will concentrate on the analytic local structure of the quotient
variety V(Q, ). For a given semi-simple representation type T = (e1, B1;...; €1, 81)
we will construct a new quiver @, with vertex set {1,...,1} such that there are §;; —
R(B;, B;) arrows pointing from ¢ to j and we consider a new dimension vector a, =
(e1,...,e1). We then prove that there is an étale morphism from a neighborhood
of the origin in the quotient variety V(Q,,a,) to a neighborhood of any point ¢
in V(Q,a) of representation type 7. This result simplifies the study in all points

except for an m-dimensional subspace where m is the number of loops in the quiver

Q.

In the last section we will compute the Krull dimension of the quotient variety
V(Q,a) and determine its singular locus. Both answers are given in terms of
the generic semi-simple representation type (i.e. the unique open stratum in the
statification of section 4) and we will present a combinatorial method to determine
this generic type. Note that the corresponding problem for arbitrary representations
is still open, although A. Schofield [Sc] has recently obtained some encouraging

results.
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2. The étale slice machinery.

In this section we will briefly recall some of the general results due to D. Luna
[Lul,Lu2] which will be used throughout this paper.

Let G be a linear reductive group which acts linearly on a finite dimensional
vectorspace X over (. As we mentioned in the introduction, there exist Jordan
decomposition(s) for any element in X. An element z € X is said to be semi-simple
(resp. nilpotent) with respect to G iff the orbit G.z is closed (resp. 0 € G.z , the
Zariski closure of the orbit in X'). We say that ¢ = « s+, 1s a ordan decomposition
for z € X if z, is a semi-simple element with respect to G, z,, is a nilpotent element
with respect to the stabilizer subgroup of z, , G5, , which is again a linear reductive
group by a result of Matsuchima [Ma] or [Lul] , and if G, = G, [ G, where as
always GG, denotes the stabilizer subgroup of the element y. Using results of Luna
[Lu2] ,V. Kac has shown that every element z € X admits a Jordan decomposition
[Ka2,p.161].

From now on we will restrict attention to the study of the semi-simple elements.
Since G acts linearly on X, G acts as a group of automorphisms on the coordinate
ring @ [X]. Because @ is reductive we know that the fixed ring @ [X]¢ for this
action is affine and hence is the coordinate ring of a variety which we denote X/@
and call the quotient variety of X under the action of G. The natural embedding
C [X]¢ — @ [X] gives rise to a morphism 7 : X — X/G which is shown to be
surjective and for each point £ € X/@ the fiber 7~1(¢) contains precisely one closed
orbit [Mu].That is, the quotient variety X/G parametrizes the orbits of semi-simple

elements in X.

In general, the quotient variety X/G will have lots of singularities. Still it is
possible to find a nice stratification of it. Take an arbitrary point £ € X/G , then the
fiber contains precisely one closed orbit which we will call T'(¢) and take z € T'(£).
Then, the stabilizer subgroup G, is a reductive subgroup of G. Moreover, the
conjugacy class of this subgroup depends only on the closed orbit T'(¢). Conversely,
if H is a reductive subgroup of G we can look at (X/G)z which we define to be
the set of all points £ € X/G such that, with notations as above, the stabilizer
subgroup G is conjugated in G to H. Luna [Lul] then proves that all these sets
(X/G)g for H a reductive subgroup of G form a finite (i.e. only finitely many
conjugacy classes H admit a nonempty (X/G)g) statification of X/G into locally
closed smooth irreducible algebraic subvarieties. Moreover, the stratum (X/G)g




Semisimple Representations of Quivers 5

lies in the closure of the stratum (X/G)gz if and only if H' is conjugated to a
subgroup of H ,see also [Sw].

Next, we want to describe the local structure of the quotient variety X/G near
a point {. Again, let z € T(£) and let N, be the normal space to the orbit T'(£) in
z. Then, the stabilizer subgroup G, acts linearly on this normal space N, and we
can consider the quotient variety for this action N,/G,. Luna’s main result then
states that there is a neighbourhood V of 0 in N, /G, and a neighbourhood U of
¢ in X /@ such that there is an étale morphism V — U. In particular, this implies
that the quotient variety X/G near the point ¢ is analytically isomorphic to the
(simpler) quotient variety N, /G, near the origin.

3. The coordinate ring.

By Mumford’s theory [Mu] is the coordinate ring of the quotient variety
V(Q,a) = R(Q,a)/GL(a) equal to the ring of polynomial invariants of the ac-
tion of GL(a) on R(Q, ) , € [Q,a]%% )., In this section we will give the following

description of the coordinate ring :

Theorem 1 : The ring of polynomial invariants for the action of GL(a) on
the representation space R(Q, @) is generated by oriented cycles in the quiver Q of
lenght at most N? where N = Y 7 . o(4)

Let us recall some basics from the theory of finite dimensional representations.
Let R be an associative algebra over @ . For every commutative @ -algebra B we de-
note by Xg n(B) the set of all ¢ -algebra morphisms ¢ : R — My (B). From [Pr2],
[Pr3] we recall that Xz n(—) is a representable functor and thus we have a com-
mutative € -algebra Ap n and a universal representation j : R — My(Ag,n).The
group GLn(C@') acts functorially on the set My(B) by conjugation and induces
an action on the scheme Xz n, an action on Ar ny and an action on the poly-
nomial maps My(Agr,n) from Xpn to My(C@).Then, j : R — Mn(4gnN)
maps R into the subring of GLn(C )-equivariant maps MN(AR,N)GLN<C). IfR
is moreover an algebra with a trace, i.e. TIr : R — R is R-linear satisfying

Tr(ab) = Tr(ba), Tr(a)b = bTr(a) and Tr(T'r(a)b) = T'r(a)Tr(b), then the map
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j: R — Mn(Apn)CLY (©) is surjective and an isomorphism if R satisfies the
Cayley-Hamilton polynomials for N by N maftrices, see [Pr3].

Assume in addition that R has a decomposition of 1 as a sum of orthogonal
idempotents e, ey, ..., e, , then we define an algebra S,, = @ [ey,...,e,]/J where J
is the ideal generated by the relations e = 0,e;e; = 0 and Y, , e; = 1, then the
scheme X, n is the disjoint union of the homogeneous varieties GLn(C )/GL()
where « is a dimension vector such that E?=1 a(t) = N ,ie. Xg, N = Ua Xa.
The inclusion S, — R induces a mapping w : Xpny — Xg, n so we can de-
compose Xp N = |J,w ' X4 Let Ag o be the coordinatering of w=1(X,), then
ApN = @D, Ar,o and My(ArN) = @, Mn(AR,.) and since GLy(C@ ) acts sepa-
ratly on each summand we also have R = @D R, and the projections to R, of the

idempotent e; has trace o).

From now on we will restrict attention to one of these components R,. Con-
sider the decomposition of N by N matrices associated to N = ) «a(:). Thus
we decompose 1 = ) u; where u; is the diagonal matrix with 1 in the positions
from (1) + ... + a(i - 1) + 1 to a(1) + ... + (i) and zeroes elsewhere and for
any B , Mn(B) = @, ; usMn(B)u; is the corresponding block decomposition.
Now, define a subfunctor X} (B) = {¢ : Ry — Mn(B) | ¢(e;) = u;} then
this subfunctor is also representable but now only the centralizer of the idempo-
tents u; in GLy(@ ) which is equal to GL(a) acts on this scheme. Moreover, we
claim that R, is isomorphic to the ring of GL(a)-equivariant maps from Xz, to
Mn(Q). For, R, is the ring of GL (@ )-equivariant maps from Xg, N to Mn(C).
w: Xg, N = Xo(@)is GLy(@ )-equivariant and X,(@ ) is a homogeneous variety;
the stabilizer of the point p € Xot) corresponding to the elements u; is GL(a).
Therefore, the GLN(C' )-equivariant maps from Xg, n to My(C ) coincide with
the G L(a)-equivariant maps from the fiber w™(p) = le%a to My(@ ), finishing the
proof of our claim. Further, if A} is the coordinate ring of X% then GL(a) acts
on it and R, = (A%a ® My (€@ ))¥X> and this isomorphism is compatible with the
block decomposition.

Let us return to the case of interest to us. Let € Q° be the path algebra of
the opposite quiver (i.e. the quiver obtained by reversing the orientation of all the
arrows of @), then we can think of R(Q, &) as the variety of N = Y (4)-dimensional
representations of ¢ Q° in block form.Consider the algebra TQ° obtained from ¢ Q°
by adding traces, imposing the relations coming from Cayley-Hamilton polynomials
for N by N matrices and then imposing the relations T'r(e;) = u; where e; is the
idempotent corresponding to vertex i, then R(Q, ) is exavtly the fiber w™(p)
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considered above. Therefore, TQ® is the ring of GL(a)-equivariant maps from
R(Q,a) to Mn(@ ) and interpreting further the results mentioned above we may
say :

(i) : The ring of GL(«)-invariants on R(Q, a) (and hence the coordinate ring of
the quotient variety) is generated by the traces of oriented cycles in the quiver. The
bound N? on the lenght of cycles required to generate comes from the Razmyslov
result [Fol.

(ii) : Given two vertices %,j the GL(a)-equivariant maps from R(Q,«) to

Hom(¥ () @ a(j)) are generated as a module over the invariants by the paths

(iii) : All relations among the previous defined invariants and covariants can

be deduced from the Cayley-Hamilton polynomials for N by N matrices.

4. The stratification.

In this section we will give a concrete description of Luna’s general stratification
result for quotient varieties in the special case of the quotient variety V(Q, ) =
R(Q,a)/GL(a). The points ¢ € V(Q, a) are in one-to-one correspondence with the
isomorphism classes of semi-simple representations of @ of dimension vector a.. Let
Ve be a semi-simple representation in the fiber 771(¢). Then we can decompose Ve

in its simple components
Ve=Wo @...0 W

where W; is a simple representation of the quiver Q of dimension vector 3; which
occurs in V' with multiplicity e;. We will say that £ is then a point of representation
type 7 = (e1,B1;..;; €x, Br). Note that we will give in the next section a purely
combinatorial method to describe all possible representation types. Further, with
V(Q, ), we will denote the set of all points ¢ of V(Q, ) of representation type

¢ = .

Theorem 2 : {V(Q, ), : 7 a representation type } is a finite stratification
of the quotient variety V(Q, ) into locally closed irreducible smooth subvarieties.
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Proof : In view of Luna’s result mentioned in section 2 we have to ver-
ify that the representation type determines the stabilizer subgroup up to conju-
gation. So, let ¢ be a point of representation type v = (e, f1;...; €k, Bx) where
Bi = (bs1y..s30in) € IN® and we denote b; = E?=1 bij. As above, let V = @Wfﬁe"
be a semi-simple representation lying in the fiber 7#~1(¢). Now, we can choose a
basis of ®;cq,T «() in the following way : the first e;b; vectors give a basis of the
simple components of type Wi , the next e;b, vectors give a basis for the simple
components of type W, and so on.

In this basis, the subring of My(Q' ) where N = Y afi) generated by the

representation V is

Mb1(@ ) ® Ie1

Mbk(dj ) ® Iek

The stabilizer subgroup GL(«a)y is easily seen to be the group of units of the

centralizer of this ring which is

Me1((u ® Ib1)

M, (C ® I, )
whence GL(a)y & GL, (@) X ... X GL,, (@) which is embedded in GL(a) (with

respect to the particular choice of basis) as

GLey(C ® I)

GLek(@’ ® Ibk)

Now, it is fairly easy to see that the conjugacy class of GL(a)yv depends only on
the representation type 7 finishing the proof.

Further, one can verify that a stabilizer subgroup GL(a),s corresponding to

a representation type 7' is conjugated to a subgroup of the stabilizer subgroup

GL(e), corresponding to representation type 7 if and only if 7' is a successor of =
for the following order relation :

Two representation types T = (e1,1;...;ex, 1) and 7' = (e}, af;...;e, ol )

are said to be direct successors 7 < 7' iff




Semisimple Representations of Quivers 9

(1) : ' = k+1 and for all but one 1 < ¢ < k we have (e;, ;) = (e},a}) for
precisely one j and for the remaining ¢ we have corresponding to it (e;, a5 e;, o)
where o; = o) + ], , or
(2) : k' =k —1 and for all but one 1 < ¢ < &' we have (e, al) = (ej,a;) for
precisely one j and for the remaining ¢ we have corresponding to it (er, o; €m, o))
where e; + e, = €}

Two types 7 and 7' are said to be successors 7 << 7' if there exist types
Ti,...,7; such that 7 = 7 < ... < 77 = 7. Combining this with Luna’s result

mentioned in section 2 we get

Theorem 3 :  The stratum V(Q,a), lies in the closure of the stratum
V(Q7 oz),,. if and only ifr<< 7!

Therefore, Luna’s stratification of the quotient variety V(Q, ) can be de-
scribed completely by representation theoretic features. The remaining problem of
determining which representation types can occur, which comes down to the de-
scription of the dimension vectors of simple representations, will be solved in the

next section.

5. The simple representations.

A full subquiver Q' of @ is said to be strongly connected if and only if each
couple from its vertexset belongs to an oriented cycle. It is clear that we can devide
@ into maximal strongly connected components, say G4, ..., Gi. The direction of all
arrows between elements of G; and elements of G; is the same by the maximality
condition and hence can be used to define an orientation between @; and G j- The
strongly connected component quiver, SC(Q) of the quiver @ has as its vertices
the maximal strongly connected components and there is an arrow from G; to G;
if and only if there is an arrow in the quiver @ from an element of G; to an element
of G';. Remark that SC(Q) is always a connected quiver without oriented cycles.

It is easy to deduce necessary conditions on the dimension vectors of simple
representations. Let V € R(Q, ) be a simple representation, then we first claim

that the support of « is a strongly connected subquiver. Assume otherwise, then
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we can consider the strongly connected quiver SC(supp(a)) of the support and
consider a sink in it , say H. then we can construct a proper subrepresentation W
of V by

(1) : For i € Hy let W(2) = V() and W(:) = 0 otherwise

(2) : For ¢ € Hy let W(¢) = V(¢) and W(¢) = 0 otherwise

In order to state the second necessary condition, let us recall some facts about
the Ringel bilinear form R(—,—) on Z"™ which is defined by

R(ai, o) = 6ij — 7y

where 7;; is the number of directed arrows from vertex ¢ to vertex j and a; = (6;;);
are the standard basis vectors for Z". If V; € R(Q,~;) then we have

R(v1,72) = dimg Hom(Vy, Va) — dimg Ext*(Vy, Va)

We now claim that for V a simple representation of dimension vector o we have
R(a,03) < 0and R(a;,a) < 0foralll <7 < n. For, R(a;,a) = a(i)——zi_)j rijoj)
so if R(ay,a) > 0 then the natural morphism

P v):vi)— P V()

has a nontrivial kernel say K which determines a proper subrepresentation W of
V by W(i) = K,W(j) = 0 for j # 7 and W(¢) = 0 for all ¢ € Q;. Similarly, if
R(o, ;) = (i) — 37;_,;75i(j) > O then the image of the natural morphism

D @: P vy —ve)

i pj—vi

is aproper subspace of V(z). Therefore, we have a proper subrepresentation W of
V by W(i) = Im(®V (¢)), W(j) =V(7) if j # ¢ and W(¢) = V(§) for all ¢ € Q.

Thse conditions are however not sufficient to imply that « is the dimension
vector of a simple representation. For take the extended Dynkin diagram A4, with
the cyclic orientation, then o = a.(1,...,1) satisfies the conditions for all a € IN —
0. However, it is well known that the only nontrivial simple representation has
dimension vector (1,...,1). Nevertheless, we will now show that these are the only

exceptions.

Theorem 4 : o € IN" is the dimension vector of a simple representation of
the quiver @ if and only if either supp(a) is the extended Dynkin diagram A, and
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a | supp(a) =(1,...,1) or supp(e) is a non-cycle strongly connected subquiver and
R(oy ;) <0, Rlay,a)<0foralll1 <i<n

The proof uses double induction both on the number n of vertices in the quiver
@ and on N = Y o(s). First, we need some extra (nonstandard) terminology : we
call a vertex ¢ a focuss (resp. a prisma) iff there is a unique ¢ € Q; such that
t(¢) = i (resp. h(¢) =1). A vertex 1 is said to be large iff (%) is maximal among
the {a(j) : 1 < j < n}. Further, we call a vertex ¢ good if and only if ¢ is large
and it has no large direct successor which is a prisma nor a large direct predecessor

which is a focuss.

Lemma 1 : If Q is strongly connected and not the Dynkin diagram A,,, then

there does not exist a cycle of prisma (resp. focuss) vertices

Proof : Suppose thereis a cycle of prismas (21, ...,2;) thenforeach1 < j < k
the unique arrow coming into i; belongs to the cycle. However, Q itself is not a
cycle so there is at least one extra vertex :.But, there is no path from 7 to any of

the 2; contradicting strongly connectness of Q.

Using this lemma we can find either a good vertex or a large prisma ¢ which
has no large prisma direct successors. If we are in the second case, then the unique

predecessor j of ¢ has to be a large focus and we can apply a shrinking process :

Lemma 2 : If we have a prisma vertex 7 with unique predecessor a focuss
vertex j and o) = a(j) then « is the dimension vector of a simple representation
of Q if and only if &' = (a(1),...,a(i—1),a(i+1),..., a(n)) € IN""! is the dimension
vector of a simple representation of the quiver Q' obtained from @ by identifying

the vertices ¢ and j

Proof: If ¢is the unique arrow from j to 7 and if V is a simple representation
with dimension vector a then it is easy to see that V(¢) is an isomorphism, so we
can identify V(¢) with V(j) and obtain a simple representation of Q'.

Conversely, if V' is a simple representation of Q', then we can form a represen-
tation V of @ such that V'(k) = V(k) for all k # i and V(3) = V'(j) , V() = Iv+(j
and all other morphisms are the ones from V'.Then it is easy to check that V is

indeed a simple representation.
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The foregoing lemma finishes the proof of theorem 4 in case we do not have a
good vertex by induction on the number of vertices (note that the Ringel form con-
dition is preserved in passing from @ to Q' by the fact that a(z) = a(j)).Therefore,
we are left to consider the case in which there exists a good vertex 7. If a(7) = 1
then for all j € supp(e) we have a(j) = 1. Then, if we put for all V(¢) = I we get

a simple representation V because supp(«) is supposed to be strongly connected.

If a(?) > 1 then we replace the dimension vector a by o' where o'(j) = a(y)
for all § # ¢ and o'(3) = a(i) — 1. Clearly supp(a') = supp(a) so it is strongly
connected and we claim that still R(e',a;) < 0 and R(ej,a) <O0foralll1 <j<n
. The only possible vertices j where things might go wrong are direct predecessors
and direct successors of ¢. Suppose for one of them R(oj,a') > 0 then &'(j) >
Ej_;k rirel’(k) > a'(¢) whence a'(j) = aj) = a(f) whence j must be a large

vertex and a focuss with end point ¢, contradicting the goodness of vertex i.

So, by induction on N we may assume that there exists a simple representation
of the quiver Q of dimension vector o'. Take such a representation V' € R(Q,a'),
then since R(a',e;) < 0 and R(a;,o') < 0 we know that Exzt'(V',S;) # 0 #
Ezt'(S;,V') where S; is the trivial simple representation in vertex i. Now, look at
the space of all representations V' € R(Q, o) having the property that V | o' = V',
This is an affine space Xv- of dimension 7., rjia/(j) + 32, ;rije(j). Loosely
speaking, Xy consists of those representations which are worse than V' @ S5;. We
can choose the representation V' in such a way that Xy» contains representations
with a trace of an oriented cycle different from the corresponding trace of V' @ S;.
This can be done because being simple is an open condition in R(@, &'). Therefore,
the Jordan-Holder factors of these representations cannot be V' and §; (see section
3) but still they degenerate to V' @ S; hence by the stratification result they must
be simple, finishing the proof of theorem 4.

Recall that a representation V of a quiver @ is called a Schur representation
if its endomorphism ring is € ; the dimension vector of a Schur representation is
called a Schur root. V. Kac conjectured a purely combinatorial description of these
Schur roots in [Ka2]. He defines a vector @ € IN® to be indecomposable if a cannot
be written as a sum S + v with R(8,7) > 0 and R(v, 8) > 0. He then conjectured
that Schur roots and indecomposable vectors coincide. In general, this conjecture
is false, see [LB]. However, it is clear from [KR,Jemma 3.2] and theorem 4 that
the Schur roots which are dimension vectors of simple representations are indeed

indecomposable.
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6. The local structure.

In this section we will apply Luna’s étale slice theorem (see section 2) in order
to study the étale local structure of the quotient variety V(Q, o) = R(Q,a)/GL().
Suppose that £ € V(Q, ) is of representation type 7 = (e1,51;...; €x, Br). We
will construct a new quiver Q. in the following way : (Q,)o = {1,...,k} and there
are precisely é;; — R(f;, ;) directed arrows from ¢ to j. Consider the dimension

vector o = (e1;...;ex) € IN*, then we will prove the following result

Theorem 5 : If¢ € V(Q, ) is of representation type 7, then (with notations
as above) there is an étale morphism from a neighborhood of the origin in the
quotient variety V(Q, o) to a neighborhood of ¢ in V(Q, &)

In view of the Luna slice theorem, it suffices to show that the normal space to
the orbit of a semi-simple representation V corresponding to ¢ is isomorphic as a
7 L(a)y-representation to the representation space R(Q,,a,) (note that we have
shown in section 4 that the stabilizer subgroup in V is isomorphic to GL(a,) ). We
know that the tangentspace to the GL(«a)-orbit in V is equal to the image of the
natural linear map

Lie(GL(a)) — R(Q, )

sending an element y € Lie(GL(«)) to the representation determined by the com-
mutator [y, V] = y.V—V.y, that is each V(¢) can be extended with zero blocks to an
N by N matrix which we call W(¢) and then [y, V](¢) = [y, W(¢)] € Mn(CT ). The
kernel of this map is clearly the centralizer of the subalgebra of My (@ ) generated
by the representation V (i.e. by the matrices W (¢) mentioned above).

Let us choose a basis of @ %V as in the proof of theorem 2, then this centralizer
is

M., ((D ® Ibl) 0
Cy =
0 M. (C ®I,)

and therefore we obtain an exact sequence of GL(a)y-modules
0 — Cy — Lie(GL(a)) = Ty(GL(a)V) — 0

where the action of GL(a)v is of course by conjugation in Mn(C@' ). Note also that
Lie(GL(a)) has to be viewed as a subalgebra of My (€ ) depending on the particular
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choice of basis (which complicates the computations somewhat).A typical element
v € GL(a)y & GL(a,) = H?zl GL., (@) will be written as (vy,...,7) and the
actions will be expressed in terms of the ¥;’s.
It is easy to see that Cy consists of

1 e2-dimensional representation with i ! 41-action

1 e2-dimensional representation with 5 *.7;-action

1 e2-dimensional representation with v; *.v-action
k 1Y Ye Y

If we recall our notation that 8; = (b;1,...,b;i,,) then one can verify that Lie(GL(a))
consists of
S, b2 e?-dimensional re tati ith 5 .y -act
4o b1 € presentations with v *.y;-action
Z?=1 b2 ; e3-dimensional representations with 5 ! yp-action

n 2 2 1. . . . -1 .
> j=10%; €,-dimensional representations with v, " .vx-action
Moreover, there are

n . 3 . . p— .
> =1 b1;bs; e1 X ez-dimensional representations with +; ! 45-action

E?___l byjbr-1; er X er—1-dimensional representations with 'y,:l.*yk_l-action
From these descriptions and the exact sequence it is then easy to give a full descrip-
tion of Tv(GL(a)V) as a GL(a)yv-module. Next, the normal space to the orbit and
its G L(a)v-action is determined by the exact sequence of GL(a)y-modules

0 - Tv(GL(a)V) — R(Q,a) = Ny — 0

In order to complete the proof we have to give a detailed description of the action

of GL(a)y on the representation space R(Q,a).One can verify that the part of

R(Q, o) corresponding to a directed arrow ¢ from vertex 7 to vertex j consists of
b1;b1; e1 X ej-dimensional representations with 7 1.71 -action

byiba; e1 X ez-dimensional representations with 4 1 y,-action

bribr; er X ep-dimensional representations with -y, 1.7k-action
Repeating this for every arrow ¢ € Q; we get a full description of the GL(a)y-
module structure of R(Q, ) and hence using the exact sequence and the description
obtained above of Tv(GL{c)V) we get the GL{a)y-module structure of the nor-
malspace Ny. We leave it to the reader to check that this action coincides with the
natural action of GL(a,) = GL(a)y on the representation space R(Q-, ).
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7. Odds and ends.

In view of the stratification result (theorem 2) there is precisely one semi-simple
representation type 7, such that the corresponding stratum V(@Q, a)., is an open
subvariety of the quotient variety V(Q, ). We call 7, the generic representation
type. We will now indicate how it can be determined : given the quiver @ and the
dimension vector @ we can consider as before the strongly connected component
quiver SC(supp(e)). A simple subrepresentation of a generic representation in
R(Q, ) must live on one of the sinks of SC(supp(a)). So, restrict attention to
one of these strongly connected components. Then there is exactly one maximal
dimension vector § < « living on it such that R(8, «;) < 0 and R(ey,8) < 0 for all
1. The generic representation type on this strongly connected component is then

easily seen to be
(1,85 (i) — B(41), @iy ;-5 (i) — B(35), aiz)

if {41,...,4;} are the vertices in the strongly connected component. Having deter-
mined the generic representation type in one of the sinks of the strongly connected
component quiver, we delete this sink from it and repeat the above procedure until
we reach the empty graph. The generic representation type 74 will then be the sum
of the generic types of the maximal strongly connected components. So, there is a

purely combinatorial procedure to determine the generic representation type

Ty = (€1,71} 5 €1,71)

Now, consider the étale local structure in a point of generic representation type. In
view of the structure of the strongly connected component quiver SC(supp(a)) one
can verify that the quiver @, has no oriented cycles other than loops occuring in
vertices ¢ such that a; (4) = 1 (corresponding to the nontrivial simples living in the
maximal strongly connected components). So,combining theorem 1 and 5 we see
that the coordinate ring of V(Q,,,ar,) is a polynomial ring in as many variables

as there are loops in such vertices, hence we have proved

Theorem 6 : If 7, = (e1,71;...;€1,71) is the generic (semi-simple) represen-
tation type, then the quotient variety V(Q, «) has dimension Z§=1(1 — R(vi,v))

From the above discussion it follows also that points of generic representation

type are smooth points on V(Q,«). Moreover, in the quivers @, corresponding
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to non-generic representation types there are always oriented cycles. So, if all
dimensions «(1) are sufficiently large , they will lead to extra relations between the
generators of the coordinate ring of V(Q,, ;) so it cannot be a polynomial ring.

In view of the étale local structure result this proves

Theorem 7 : Except for low dimensional anomalities, the singular locus of
the quotient variety V(Q,a) coincides with the complement of the generic stratum

V(Q,a)r,

Let us give an example of an exceptional case : consider the quiver on two

vertices with corresponding Ringel form determined by the matrix

1 -2
-1 1
and consider a dimension vector & = (n,2) with n > 2, then the generic type is

(1,(2,2);n—2,(1,0)).Now, consider the non-generic type 7 = (1,(1,1);1,(1,1);n —
2,(1,0)) then the quiver @, has its Ringel form determined by the matrix

-1 -1 0
-1 -1 0
-1 -1 1

and the corresponding dimension vector is o, = (1,1, 7 — 2),s0 the coordinate ring
of the quotient variety V(Q,,a;) is a polynomial ring in 5 variables (4 coming
from the loops and 1 from the only extra oriented cycle).So, points of type 7 are
also smooth points of V(Q, a) ; in fact it can be shown that V(Q, ) is affine 5-
space. However, if we replace the dimension vector o by ' = (n,3) with n > 3 one
can show that the singular locus of V(Q,a') coincides with the complement of the

generic stratum.
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