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Introduction

In this short monograph we aim to highlight two evergreen branches of the

theory of Brauer groups of fields.

The first part is rooted in the representation theoretic foundations for the
Theory of the Brauer group, in particular we introduce the Schur subgroup
of the Brauer group as well as the so-called Clifford-Schur subgroup that
is related to projective representations of finite groups rather than to usual

representations.

The second part deals with with generic division algebras and the links con-
necting this topic to the celebrated Merkurjev-Suslin theorem. This provides
the opportunity to exhibit some recent methods and techniques not readily
found in text-books; we touch upon : the rationality problem, permutation
modules, invariants for actions of the projective linear group, vectorbundles
over the projective plane, representation theory of hereditary algebras and a

connection with matrixinvariants.

Both parts are related by Clifford algebras and the role they play in one of
the possible formulations of the Merkurjev-Suslin theorem (see for example
Problem 3 on page 22). The items we have included represent different ap-
proaches to this central theorem but without arriving at a non K-theoretical
proof for the theorem, like petals of a flower that have been torn off leaving
the heart naked. However we hope that the amalgam of recent techniques
present here may provide enough new material for further hybridization and

stimulate continuing interest in the Brauer group of a field.
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1. Brauer, Schur and

Clifford-Schur Groups

1.1. Brauer Groups

Let k& be a field. By an algebra over k£ we always mean a finite dimensional
associative k-algebra with identity 1. If A is a k-algebra and Z(A) is the
centre of A then we say that A is k-central if Z(A) = k. We say that A
is simple if it has no proper two-sided ideals and a k-central simple algebra
A will be referred to by saying that A is a k-c.s.a. A k-c.s.a. A that is a
division algebra will sometimes be called a skewfield over k.

1.1.1. Theorem (Wedderburn). If A is a k-c.s.a. then 4 = M,(D).
for some skewfield D over k and both n and D are essentially uniquely

determined by the isomorphism class of A.

Let A be a k-algebra, M a finitely generated A-module. Clearly End4 (M)
is a subalgebra of Endy(M) called the centralizer of M. A left A-module
M is faithful if aM = 0 with ¢ € A4 yields ¢ = 0. The homomorphism
l: A — Endg(M) defined by taking for /(a) the left multiplication by a
yields an isomorphism of k-algebras A = A' C Endi(M) in case M is faithful.

Using the following lemma (Bourbaki N., Algebre Ch. 8. Modules et anneaux
semi-simples, Hermann, Paris, 1958, p. 26) it is very easy to prove Burnside’s

theorem that follows.

1.12. Lemma. Let M be a faithful finitely generated A-module and select
generators of M as a module over End 4(M), say my,...,m, then we have
a monomorphism 44 — M given by a +— (amy,...,am,).

1.1.3. Theorem (Burnside) If M is a simple left A-module such that
EndsM = k.1ps then A' = Endg(M).

Proof. From the lemma one easily derives that A’ is a simple k-algebra
whenever M is a simple left A-module, then use the following. o
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1.1.4. Theorem. (Density Theorem). Let A be a subring of Endz(G),
where GG is an abelian group, such that G is simple as a left A-module. Then
D = End 4(G) is a division ring and A is a dense ring of linear transformations

over the D-vector space G.
As a corollary to Burnside’s theorem we obtain :

1.1.5. Corollary. Assume that k is algebraically closed. If M is a simple left
A-module then End4(M) = k and consequently A* = Endy(M) = M,(k)
o

for some n € IN.

A left A-module M is absolutely simple if for every extension l|k M ®; [
is a simple left A ®j [-module. As a consequence of Burnside’s theorem we

have :

1.1.6. Proposition. A simple left A-module M is absolutely simple if
and only if End4(M) = k.1p (cf. Curtis, Reiner, Representation Theory
of Finite groups and Associative Algebras, Pure and Appl. Math. vol. 11,
Interscience, New York 1962, pp. 102-103).

If Ais a k cs.a. then A ®p !l is an I- c.s.a. for every field extension l|k.
When we have that 4 ®; I = M,(I) for some n € IV then we say that A is
split by l|k. In view of Corollary 1.1.5. every k-c.s.a. may be split by k/k,
where k is an algebraic closure of k. Note that this implies that dimgA4 is
a square for each k-c.s.a. A. If we select a k-basis {u1,...,upn:} for A then
we may express a complete set of a matrix-units for M, (k) in terms of the
k-basis {u1,. .., un: } for M,(k). The finite number of coefficients occuring in
these expressions generate a finite dimensional subextension K|k in k/k that
obviously splits A. Any field K such that K/k splits A is called a splitting
field for A (over k). The opposite algebra A° of A is obtained by taking
the abelian group A of A with new multiplication a.b = ba for a.b € A.
There is a k-algebra homomorphism r : 4° — A" C Endy(A) mapping
0% € A° to right multiplication by b. For a,b € A we have l(a)r(b) = r(b)l(a)
and A may be made into an A ®; A°-module (left as usua,l)‘ if we put :
(a ® b°)m = I(a)r(b°)m = amb for m € A,a € A,5° € A°. Clearly, putting
A® = A ®p A°, we have Z(A) = End 4-(A4).

1.1.7. Theorem. Let A and B be simple k-algebras (even of infinite k-
dimension) with centres Z(A4), resp. Z(B).

1. If dimy(A4) and dimy(B) are finite then the lattice of ideals in A ®; B
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is isomorphic to the lattice of ideals of Z(A) ®; Z(B). Then A ®; B is
semisimple if and only if Z(A) ® Z(B) is semisimple.

2. If Ais a k-c.s.a. then A @ B is simple with centre Z(B) and if both 4
and B are k-c.s.a. then so is A ®; B.

3. For any extension [/k, if A is a k-c.s.a. then 4 ®; [ is a c.s.a. over [.

Two k-c.s.a.’s A and B are said to be similar or Brauer equivalent if there
exist n.m € IV such that there is an isomorphism of k-algebras M, (4) =
M.(B). In view of Theorem 1.1.1. it is now clear that A is similar to B,
denoted A ~ B, if and only if A =2 M (D), B = My(D) for some p and ¢ in
IN and D a skewfield over k. The similarity classes of k-c.s.a.’s form a set
Br(k) corresponding bijectively to the set of skewfields over k. If A ~ A; and
B ~ B; then AQ; B ~ A; ®; B;. Let us wite [A] for the class of the k=c.s.a.
A in Br(k). Putting [A ®; B] equal to [A].[B] defines a commutative and
associative operation in Br(k). Clearly [k] is a unit element for this operation
and [A°] is an inverse for [A] (because k = End4(A4) and A is a simple k-
algebra if and only if 4 is a simple left A°-module hence application of the
Burnside theorem proves the claim).

The abelian group Br(k) thus defined is called the Brauer group of k¥ Ex-
tension of scalars by [/k determines a group morphism Br(k) — Br(l), [4] —
[A ®p I] called the restriction map (this makes more sense from the coho-
mological point of view). We obtain a functor Br(—) from the category of
fields to abelian groups.

1.1.8. Examples.

a. If k = k then Br(k) = 1 (see Corollary 1.1.5.).
b. If £ = IR then Bi(IR) = Z/2Z because Frobenius showed that the

quaternions IH represent the only noncommutative division algebra central

over IR.

c. f k=@, the p-adic numbers for the prime p, then Hasse showed that
Br(@ ,) is canonically isomorphic to @ /Z. The image of [A] in Q /Z is
called the Hasse invariant of A.

d. If k is a global field and p is a prime (finite of infinite) then we write k,
for the completion of k at p. If A is a k-algebra then A, is the completiog
A ®j kp. The Hasse invariant of A, is the local Hasse invariant of A at
p- One can show that A, is split for almost all p and consequently we may
define a canonical map Br(k) — @ sBr(k,). If p is a finite prime then Br(k,)
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is identified with @ /Z. Viewing Br(IR) as (3Z)/Z in Q / Z we may define
a map ®,Br(kp) — @ /Z by taking addition in Q@ /Z. It is a non-trivial
fact, related to the reciprocity law in class field theory that we may determine

Br(k) by the exact sequence :

1 — Br(k) — @gBr(kg) —-@Q —0

Let us now return to the structure theory of k-c.s.a.

1.1.9. Proposition. Let A be a k-c.s.a. If M is an A-bimodule such that
dm=m) forall A\ € k, m € M then M = M4 ®; A where M4 = {m €
M,am = ma for all @ € A}. In fact, the functor (—){4) : 4 — bimod; — k-
mod, M — M4, defines an equivalence.

1.1.10. Corollary. If B is a k-algebra containing a k-c.s.a. A then B &
A Qi CB(A), where Cp(A) = {b € B,ab = ba for all « € A}. Furthermore
B is simple if and only if Cg(A) is simple and B is a k-c.s.a. if and only if
Cg(A) is a k-c.s.a.

On the other extreme we have a useful theorem about simple subalgebras of

a k-c.s.a. :

1.1.11. Theorem (Skolem-Noether). Let B be a simple k-subalgebra
of a k-c.s.a. A. Every isomorphism of k-algebras 8 : B — B’ C A may be
extended to an inner autorphism of A. Consequently if o is an automorphism
of A fixing the elements of k then « is an inner automorphism of A. This
result will be particurlarly useful when considering commutative subfields,
and automorphisms of these, in k-c.s.a.. However, it is not clear whether
there exist good subfields (in the sense of having enough k-automorphisms)
in a given k-c.s.a. A commutative field [, £ C I C A is said be a maximal
subfield if there is no properly larger commutative subfield in 4. Obviously
% is a maximal subfield of M, (k) so there need not exist maximal subfields
of dimension n over k in a general k-c.s.a. For a skewfield D over k we can

prove.

1.1.12. Proposition. If D is a skewfield over k of dimension n? then
every maximal subfield ! of D is n-dimensional over k. There always exists
a maximal subfield ! of D such that [/k is a separable extension.

1.1.13. Corollary. Every k-c..s.a. has a splitting field [ such that [/k is a
Galois extension. Note that it has been proved by S. Amitsur in 1972 that
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not every skewfield over k contains a Galois extension of k as a maximal

subfield. Up to similarity we can obtain this result :

1.1.14, Proposition. If [/k splits a k-c.s.a. A then thereis a B ~ 4 such
that [ is a maximal subfield of B.

1.1.15. Corollary. Given a k-c.s.a. A then there exists a B ~ A containing
as a maximal subfield a Galois extension [/k splitting A.
The proofs usually provided for Proposition 1.1.12 and 1.1.14 depend heavily

on the so-called double centralizer theorem :

I.1.16. Theorem. Let B be a simple subalgebra of the k-c.s.a. 4

1. C4(B) is simple

. dimg Bdim,C4(B) = dimz 4

. Ca(Ca(B))=B

4. If B is central simple over k then C4(B) is k-c.s.a. and A = B ®;, C4(B).

W oW

This theorem may be extended in case A is not necessarily finite dimensional
but B a finite dimensional subalgebra of A4, in that case again C4(B) is
simple and C4(C4(B)) = B.

The importance of Proposition I.1.14. is that, up to equivalence in the Brauer
group, we may assume that the k-c.s.a.. A contains a maximal subfield [
such that I/k is a Galois extension and dim;A = (dimg!)?. For each o €
G = Gal(l/k) we may select an invertible element u, of A such that for all
A €1, usA = Au, (by the Skolem-Noether theorem). One easily checks that
A = {u,,0 € G} and associativity of A yields a relation u,u, = ¢(o, T)uy,
for o, 7 € G with ¢(o, 1) € I* satisfying the 2-cocycle relation :

c(o,7) C (o,7,7) = e(7,7) (o, 7y) for all o,7,7€ G

A change of I-basis {u,,0 € G} — {v,,0 € G} such that still v,\A = A\u,
is necessarily one of the form v, = f,u, for certain f, € I*. So if v,v, =
d(o, T)vor then we arrive at fouofrur = fofZc(o,7)uor = d(0,7T)fortior,
hence d(o.7) = f, ¢ f52d(a, 7). Clearly u(o,7) = f-f2 £} is a coboundary,
i.e. a trivial 2-cocycle p: G x G — I*. If we denote the kernel of Br(k) —
Br(!) by Br(l/k) that we may phrase the following theorem, then provides a
cohomological interpretation of the Brauer group.

1.1.17. Theorem. Let I/k be a Galois extension with Gal(l/k) = G and let
¢:G X G — I* be a 2-cocycle then the crossed product (I/k,G,c) is defined
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to be the k-algebra l{u,,o € G} with multiplication defined by the rules :
usA = Au, for all 0 € G,A € 1, uyu, = ¢(0,7)u,,, for all 0,7 € G. The
k-algebra (l/k, G,c) is a k-c.s.a. Conversely if a k-c.s.a. 4 contains a Galois
extension [/k such that dimzA = (dimgl)? then 4 2 (I/k,G,c¢) for some
2-cocycle ¢. Two crossed products ({/k,G,c) and (I/k,G,d) are isomorphic
if and only if ¢ and d are cohomological cocycles. The relative Brauer groups
Br(l/k) is isomorphic to the second cohomology group H*(G,1*), where G =
Gal(l/k), and Br(k) = lim H?(G,1*) where G varies over the Galois groups

G
of the Galois extensions of k.

As an immediate corollary of the above we may derive some important prop-

erties of the Brauer group of a field.
1.1.18. Corollary. The abelian group Br(k) is torsion.
Proof. If G is finite, H%(G,1*) is torsion. o

1.1.19. Corollary. Br(k) = H*(G, kZ,,) where G is the (profinite) Galois
group of a separable closure kg, of k. The fundamental relation between
Br(k) and Galois cohomology motivates the introduction of some details on
the cohomology of finite and profinite groups.

1.2, Some Cohomology Theory.

In the first part of this section we consider finite groups. Let M be a G-
module, write M as a multiplicative group. The subgroup M of M con-
sisting of all elements fixed by the action of all ¢ in @ is also defined to be
the o-cohomology group H°(G,M). We may define a G-norm on M by
na(m) = ngG gm. The Tate-cohomology group ff°(G,M) = MC® /na(M).
A l-cocycle f € Z'(G,M) is a map f : G — M satisfying f(gh) =
f(g)-9(f(Rh)) for all g,h € G. A 1-coboundary is a 1-cocycle of the form
f(g9) = m.g(m)~* for some m € M; the 1-coboundaries B}(@, M) form a
subgroup of Z'(G, M) and H*(G, M) is defined to be Z*(G, M)/B*(G, M).
A 2-cocyclec € Z*(G,M)isamap c: GXG — M satisfying ¢(p, 0 )c(oT,7) =
ac(t,v)e(o,7y) for all o,7,7v € G; a 2-coboundary is a 2-cocycle of the
form ¢(o,7) = fo.0fr.f5}; HX(G,M) = Z*(G,H)/B*(G,M) and the ele-

ments of the second cohomology group H?(G, M) are denoted by [C] where
c € Z*(G, M) represents it.

As an exercise one may now try to define Z*(G,M),B"(G,M) and
H™(G,M) for all n € IN. Let M; be the kernel of the norm map ng; we
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define H~1(G, M) = M, /{values of the 1-coboundaries}. For n > 1 we put
H™(G,M) = HY(G, M).

1.2.1. Lemma. For an exact sequence of G-modules 1 - N - M — P —

1, there are long exact sequences :
a....— H™(Q,N) — H*(G,M) — A™(G,P) - H""(G,N) > ...
b. 1 - G°(G,N) —- H*(G,M) - H°(G,P) - HY(G,N) — H'(G,M) —

For a cyclic group G the sequence a. is periodic of period 2; in case n = 0,2
the isomorphism H °(G,M) Ny 2(G,M) may be explicited as follows. If
©

@€ M%/ng(M),G =< o >~ Z/mZ, then ¢ takes @ to the class of the
2-cocycle : ¢(0?,07) = 1 when i +j < m and c(o?,09) = a if i +j > m,
where o represents @. The latter cocycle ¢ is called the cyclic cocycle of &
and o € MC. In the cyclic case we may define the Herbrand quotient

|Bo(G, M)

M) = lan(@, )

when both numbers are finite. For a short exact sequence 1 - N — M —
P — 1 such that A(M) and h(P) are defined then h(N) is defined and it
equals A(M)h(P). In case M is finite then A(M) = 1 (this may be useful in

the situation where number fields are being considered).

To a morphism of finite groups G — @' and a compatible G-module map
M' — M there corresponds a morphism H™(G',M') — H*(G,M). In par-
ticular, for a normal subgroup H of G we have an action of G on H™(H, M)
induced by the G-action on M and conjugation on H. If H = G one can show
that the action defined as above is trivial. We will write the operation in co-
homology groups by addition from now on. If |G| = 5 then n(H™(G, M)) = 0
and similarly if M is torsion of exponent n. In particular H ™(G,M)=0
whenever (|G|, exp(M)) = 1.

If H is a subgroup of G then there is a canonical morphism res,
H"(G,M) — H?*(H,M). Moreover if H is a normal subgroup of G
then we define the inflation map inf,, : H™(G/H,M¥) - H™(G,M),
(inf ¢)(91,---,9m) = &(Gy,- - -, T, ) Where 7 is the image of g € G in G/H.

1.2.2. Lemma. (The inflation-restriction sequence). Let H be a normal
subgroup of G and let M be a G-module. If H{(H,M) = 0 for 1 < ¢ <
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n — 1 then we may define the transgression map, trans, : H*(H,M)% —
H™(G/H,M*") and we obtain an exact sequence :

trans,

0— H™(G/H,M¥") — H™(G,M)— H"(H, M°% —
inf, res,
H"tY(G/H, MH)_7—> H™(G, M)
INly 1

Let us just recall a particular case of the above sequence i.e. the Hochschild-
Serre sequence. Suppose H is central in G, H C Z(G), i.e. we view G as a
central extension of G/H given by 1 — H — G- G/H — 1. We define
the map ¢ = trans; : HY(H,M)% — H?(G/H, M¥) by fixing a factor set
f: G x G' — H determining the central extension G of G /H and putting
t(p)(o,7) = @(f(o,7)) for 0,7 € G, where ¢ € H(H,M)®. If we assume
that G acts trivially on M then we obtain an exact sequence :

(HS)0 — Hom(G/H, M) .—f>Hom(G,M) — Hom(H,M)

|1

H(H,M) — H*(G,M)

Finally let us also mention that the corestriction cor, : H"(H,N) —
H™(G,M) may be defined for every subgroup H of G and every n € IN.
Here it suffices to define cory. Let T be a transversal for H in G, i.e. set of

right coset representatives and define :

(cora f)(o,7) = H t7! f(top(ta) ™1, p(to)tp(tor) ™)

teT

where ¢ : G — T maps a g € G to its representive in T'. It is known that cor

o res is just multiplication by |G : H|.

If G1,G5 are finite groups and Il is a G; X Gy-module such that G; acts

/

trivially then :

1.2.3. Theorem.

HYGy x Gy, M) = [ HFP(G1,HY(G,, M)) (%)
ptg=n

for any any n > 0(p,q > 0).
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The isomorphism in this theorem is not functorial in M. Of particular inter-

est to us is the case n = 2,10 :
H*(Gy x Gq, M)
> H°(G1,H?*(G2, M)) ® H(G1, H (G2, M)) ® H*(G1, H' (G2, M))
= H?*(G,, M) ® Hom(Gy, H (G2, M)) ® H*(G1, M®?)

1.2.4. Corollary. If both G; and G, operate trivially then (*) is functorial

in M and it reduces to :
H?*(Gy x G, M) =2 H*(G1, M) @ H* (G, M) ® P(Gy x G, M)

where P(G1 x G2, M) is the abelian group of pairings into M (i.e. bimulti-
plicative maps Gy X Gy — M).

In general one can only say that the left hand side of (*) has a normal series

in which the composition factors are the groups appearing in the right hand

side of (*).

Let us now consider profinite groups. An inverse system of topological
groups is a family G;, indexed by a directed set I, together with con-
tinuous homomorphisms 7;; : G; — G; for every pair ¢ < j satisfying
MWk = Tik. Lhe inverse limit 1}_1_11G’,- is the subgroup of HieI G; con-
i€l
sisting of the (s;)ics € HieI G; sucli that m;;s; = s; for ¢ < j. The group
l(i_l’il G; is a closed subgroup of Hie 1 G'i and hence it is compact if all the G;
are compact. Now in case all G; are finite groups with the discrete topol-
ogy then im G; is called a profinite group. A morphism of inverse systems

terl
G; — G},t € I, yields a (continuous) morphism lim G; — lim G'. Consider a
2 ;—é_I 'I:EI T
profinite group G.
Any open normal subgroup H of G has finite index in G since G is compact
(i-e. the covering of @ by cosets of H may be obtained from a finite covering).

We obtain : G =1im G//U where U runs over all open normal subgroups of G.
U

If H is a closed subgroup of G then H = lim H/HAU and G/H = limG/UH
U (?,_
in case H is also normal. Consequently if G is profinite and H is a closed

subgroup of G then H and G/H are profinite too.

1. Zp,=lmZ/p"Z

n
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2. 7 =lmZ ImZ = [ pespecis Z,. The latter isomorphism stems from

m

the Chinese Remainder Theorem, since it yields

Zim= [[ z/®

p"‘(f")|m

The profinite groups appear very naturally in the infinite Galois theory. Let
L/k be a Galois extension with [L : k] not necessarily finite and let {K;,s €
I} be a family of finite Galois subextensions of L/k such that L = U;K;.
Then we have defined an inverse system of finite Galois groups Gal(K;/k)
together with the restriction maps Gal(K;(k) — Gal(K;/k). We obtain an
isomorphism Gal(L/k) = ljinGa,l(K i/k) determined by the restriction maps

Gal(L/k) — Gal(K;/k). There is a bijective order reversing correspondence
between the closed subgroups of Gal(L/k) and the subextensions K/k of
L/k. For example Gal(IF,/IF,) = lim Gal([Fgn /IFy) = Z. In connection

with the Brauer group theory and its cohomological interpretation we need
to introduce a few facts about the cohomology of profinite groups.

Let G be a profinite group and M a discrete G-module in the sense
that any stabilizer subgroup fixing a point of M is open in @. For each
open normal subgroup U of finite index we have a cohomological group
H™(G/U,MY) for n > 0, together with a canonical homomorphism :
muv : HY(G/V,M"V) — H"(G/U),MY) where U C V.

Put H™"(G,M) = liElH"'(G/U,MU) (direct limit here !). One may also

obtain a “direct” defzifnition of the group H™(G, M) by considering only con-
tinuous cochains f : G — M and now repeating the earlier construction
of cohomology groups. The cohomology groups in the profinite case share a
lot of good properties with the finite case. For example, to a short exact se-
quence we do have associated a long exact cohomology sequence as in Lemma
1.2.1.b. Furthermore the equivalents of Lemma 1.2.2. and Theorem 1.2.3.
do hold. In view of its importance in connection with the Schur subgroup
of the Brauer group it is useful to introduce cohomological dimensional (cf.
J.P. Serre, Cohomological Galoisienne).

Let G be a profinite group, p a prime number. The cohomological p-
dimension of G, ¢d,@G, is the smallest n such that the p-primary component
HYG,A), of H4(G, A) is zero whenever A is a torsion G-module and ¢ > n.
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If no such n exists then we put cd,(G) = co. One can show that cd,(G) is
also the smallest u € Z such that the H¢(G,A) = 0 for ¢ > n and A being
a p-primary torsion group. The strict cohomological p-dimension scd,(G) is
defined as before but without the torsion assumptions on A; similar for the
strict cohomological dimension. In fact we know that scd,(G) — cdp(@) or
else scd,(@) =1 + cd,(G).

1.2.6. Lemma. If cd,(@) is finite then c¢d, H = cd,G for open subgroup H
of G.

1.2.7. Examples.

1. cde =cdZ =1 and scde = scdZ = 2 for all p.
2. cdpyZ, =1 and cd,Z, =0 if ¢ # p.

Similarly scd,(Z,) = 2 and scd, Z, = 0 if g # p.

1.3. Schur Groups.

If the order of the group G is invertible in the field k then the group algebra
kG is semisimple i.e. kG = A; @ ... ® A,, where [; = Z(4;). An extension
I/k splits kG |G decomposes as a direct sum of matrix rings over I.

1.3.1. Brauer Splitting Theorem.

If n7! = |G|™* € k then we may construct a splitting field the kG by
adjoining roots of unity to k. As a consequence of this theorem it is clear that
eachl; = Z(A4;),i =1,...,mis a subcyclotomic extension i.a. a subextension
of a cyclotomic extension k(w)/k. In case l; = k we have 4; € Bx(k). It is still
a basic problem to determine the Schur index of an irreducible representation
(or character) of a finite group G' by the character table of G. The Schur
index is m where D; is the division algebra in [4;] and 4; is the
simple component of KG belonging to the representation. We now define
the Schur subgroup S(k) in Br(k) as the subgroup (check !) consisting of
those k-c.s.a.’s that appear as epimorphic images of group rings kG for some
finite groups G.

We may refer to Yamada, [5] for a treatment of the basic results concerning
the Schur group. Most results exist when k& = @ or a numberfield or an

extension of a p-adic field.

1.3.1. Theorem. Let k./@ be the largest subextension of k/@ which is
subcyclotomic, then the restriction S(k.) — S(k) is onto.
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The cohomological description of the Schur group is a consequence of the
Brauer-Witt theorem (although our presentation of the result in cohomolog-
ical terms is not completely identical to the classical formulation). We say
that a 2-cocycle f is a cyclotomic cocycle if there is a cyclotomic extension
k(w)/k such that the class [f] is in H%(k(w)/k) and the values of f are roots of
unity (these are then necessarily in the roots of unity group u(k(w))). A cy-
clotomic cohomology class is one containing a cyclotomic cocycle. The cyclo-
tomic classes in H?(k(w)k) is a subgroup denoted by H2(k(w)/k) and it is the
image of the cohomology group H?(Gal(k(w)/k), u(k(w))) under the canon-
ical map into H?(k(w)/k) = H?(Gal(k(w)/k), k(w)*). That H2(k(w)/k) is a
subgroup of the Schur group is clear and the same holds for lim H 2(k(wn)/k).

neEN
The Brauer-Witt theorem deals with the converse of this.

1.3.8. Theorem. (Brauer-Witt): Let k be a field of characteristic 0 then
S(k) = lim B2(k(n)/B).

Proof. Cf. [Y] the proof is based on the Brauer induction theory in repre-
sentation theory of finite groups.

1.3.4. Proposition (Bernard). In [4] € S(k) has order m then k must

th

contain a primitive m** root of unity. We may provide a more general result

in connection with the theory of the Clifford-Schur group, see further.

1.3.5. Examples.

a. Br(@)=5(C) =1.

b. Br(IR)= S(IR) = Z /rZ

c. S(®,)=Z/(p—-1)Z ifpis odd, S(Q,) = Z/27Z

d. Let k be a local field. We may assume that k is a subcyclotomic extension
of @ ,, i.e. an abelian extension (this is a consequence of the local version of
the Krocki-Weber theorem). Galois cohomology theory of local fields entails
that corestriction yields a monomorphism S(k) — S(@,)- If pis odd then
the recipcocity map of local class theory may be used to determine the image,
if p = 2 then the a very complicated argument leads to [S(k)| is either 1 or
2. Let us write Q;b for the abelian closure of @ , obtained by adjoining all
roots of unity to @ ,. Then: S(k) = Ga,l(Q;b(k)tors.

S(@) = Bry(@ ) = the 2-torsion part of Br(Q@ ).

In the last example the theorem of uniform distribution, due to Bernard and
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M. Schacher plays an important part, so let us just mention it here.

1.3.6. Theorem. Let k be a finite abelian extension of @ and let p be a
prime rational or co. If [A] € S(k) then the Hasse invariants of [A] at the
primes of k lying over the given p are all determined by one of them, the
Hasse invariants all have the same order and the local Schur indices at the

primes lying over p are equal.

The Schur group is obviously strongly linked to the representation theory of
finite groups in a similar way one may define a Clifford-Schur subggroup of the
Brauer group that is connected to projective representations of finite groups.
Again these subgroups of the Brauer group are well-understood for £ = @ or
k a field containing enough roots of unity, but in general there remain several
intriging problems concerning the relations S(k) C CS(k) C Br(k).

First let us describe the k-rational subgroup of Br(k). Let Br,:(k) be
the subgroup of Br(k) generated by all crossed products (I/k, G, ¢) such that
c(o,7) € k* for all 0,7 € G = Gal(k/k). We need an elementary fact :

1.3.7. Lemma. Let k be a field, then k* = u(k) ® F where F is a free
abelian group and p(k) is the group of roots of unity contained in k*.

Proof. If k is a number field, let R be a number ring of integers in k.
Then U(R) = pu@® free abelian group by the Dirichlet unit theorem (if char
k = p# 0 then k = R is a finite field and then p(k) = k*. So we have :

0 U(R)— k" — ®,Z

the sum over all primes p of R. Since subgroups of free abelian groups are
free, £* has the form we claimed. Now we proceed by induction on the
transcendence degree of k over the prime subfield. So we may assume that
k is a finite extension of K(H) and the lemma holds for K (moreover we
may assume that K is algebraically closed within k). Now there is an exact
sequence 0 — K* — k* — @,Z, the sum being over all discrete valuations

of k/K. o

1.3.8. Lemma. (Brauer). If o € Br(k) then o = [(I/k,G,¢)] where all
¢(o,7) € 1 are roots of unity. If o has exponent m then we can arrange that
c(o, 7)™ =i forall o, 7 € G.

=k

Proof. Put G = Gal(ksyp/k) and a € Hz(é,ﬁ”:ep),u = plkgep). We
have an exact sequence 0 — p — E*E*/u — 0. As a G-module, E*/u is
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torsion free and m-divisible. Thus H"(G, k /i) = 0 (except p = chark-
part). Hence o is in the image of H%(G, p), proving the first assertion.
Furthermore H} (G, p| = H? 2 (@ Fk) is injective Taking m-th powers de-
fines an exact sequence 0 — p, — g5y — 0 yielding H 2(G,,um) —
H?*(G, p) = H%(G, 1), so « in the image of H2(G, fim)! o

Now following a suggestion of D. Saltman we may prove.

1.3.9. Theorem. Br;.(k) is generated by all Brauer classes of cyclic alge-
bras and algebras of exponent dividing m = |u(k*)).

Proof. Br:e|k| is the image of H%(G, k*) in H?(G, E:ep). Note that, since
every k-c.s.a. A may be descended to a c.s.a. over a finitely generated field
over the prime field, B say, such that A = B ® k, we may assume that
k* = p @ F where F is free abelian and p is cyclic of order m.

Now H2(G,k*) = H*(G,u) ® H%(G, F).

Since H*(G,Z) = HY(G, Q / Z), the group H?(G, F) is generated by cyclic
algebras. Since it is also clear that all cyclic algebras are in Br, (k) it will
now suffice to observe that all a € Br(k) of exponent dividing m are indeed
in Brrai(k) (because conversely we see that every element in H?(G,y) has
exponent dividing m). But by the lemma a = (I/h, G, c) where ¢(o,7) € p.o

For a commutative ring R and finite groups G; and G, we have the canon-
ical embedding H?(G1,U(K)) x H?*(G2,U(R)) — H?(G1rG2,0(R)) where
U(R) is the group of units of R. These maps define an inductive system of
abelian groups and we denote its inductive limit by G = li1_1)1 H?(G,U(R)).

G

We identify H%(@,U(R)) as a subgroup of g.

For any given subgroup  of G we define th H-Schur group in Br(R), S3/(R),
to be the set of classes in Br(R), represented by Azumaya algebras over R that
are epimorphic images of twisted group rings RG® with [c] € H*(G,U(R))
contained in . Note that RG® = @,cqgRu, with vou, = ¢(o, T)ug, for all
o,7. If R is a field K then the matrix (n X n size) representations of KG¢
correspond to the projective representations G — PG L,(K) factorizing over
a set map G — GL,(K),0 — p, satisfying pspr = ¢(0,7)ps- for the given

[c].

A second construction depends on a class P of finite groups that is closed
under finite products.
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We will write C.Sp(R) for the set of classes in Br( K ) represented by Azumaya
algebras that are epimorphic images of RG® for some G € P and some
[c] € H*(G, U(R)).

1.3.10. Lemma. The sets S3(R) and CSp(R) are subgroups of Br(R).
If H(P) is generated in G by the images of H2(G,U(R)) for C € P then
CSp(R) is a subgroup of Sy p)(R).

Proof. Let [A] € S3(R) be given by an epimorphism 7, 7 : RG° — A4,
where [¢] € H. Let (—)° denote the opposite ring, then 7°; (RG°)° — A° is
an epimorphism of rings. Putting RG® = @,cqRu, with ueou, = C(o, T)uor
for o,7 € G we may obtain the opposite (RG°)° by using the trans-
formation u, +— wu,-1 for ¢ € G, in defining c°(o,7) = ¢(r71,07?)
for 0,7 € G. Hence [4°] = [A]"! € Sy(R), because c¢(t7!,071) =
c(r7,m)e(e7 o)e(77e T or) (o, 7)Y, e e(77Y,07Y) ~ (o, 7))
in H?(G,U(R)). Obviously, if [A],[B] € S(R) are given by : =4 :
RG® — A,mp : RH® — B, respectively, then the canonical morphism
R(GxH)*%) — A®RgB, determines [A].[B] in Br(R), hence [4].[B] € Sx(R).
Note that the isomorphism of R-algebras ¥ : RG°®p RH* — R(G x H)(&9
is of course defined by ¥(u, ® vy) = wy,3) for g € G,h € H. By restriction
to groups G, H in P a similar proof yields that C'Sp(R) is a subgroup of
Br(R). The final statement is obvious. =

1.3.11. Examples. If H = 1 then the H = 1 then the H-Schur group
reduces to the Schur group S(R) in Br(R). In case H = G then the H-Schur
group is called the Clifford-Schur subgroup of Br(R), denoted by C'S(R).
For H C H; we have : S(R) C Su(R) C S3,(R)cCS(R). If P is the
class of finite abelian groups, then we write CS,p(R) for CSp(R) as defined
above. In case P is the class of nilpotent finite groups we write CSy;(R) for
CSp(R). Finally, if P is the class of p-groups then we write CS,(R); note
that CS,(R) # CS(R), a priori.

1.3.12. Lemma. The subgroup CS(R) of Br(R) consists of those classes
of Azumaya algebras may be represented by an R-Clifford system of some
finite group.

Proof. If [A] € CS(R) is given by m4 : RG° — A, then A is by definition
a Clifford system. Conversely if 4 = Y occ Rus with usu, = Ao, 7)uyr
for o,7 € G and with X(o,7) € U(R), then A is an epimorphic image of
A= ®oecqRwo with multiplication wew, = A(o, T)usr. The associativity of
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A entails that A represents an element of H?(G,U(R)) and thus A is just
RG*. =

The Schur subgroup is a complicated invariant to study, for rings it remains
today a rather obscure object that has hardly been investigated. Even when a
commutative ring does contain enough roots of unity it is not always possible
to describe algebras representing a class in the Schur subgroup in terms of
cyclic crossed product algebras because there is no good equivalent of the
Mercurjev-Suslin theorem. On the other hand one may evoke results from
[5] and we use a theory of projective characters that will allow to carry the
general theory of the Clifford-Schur groups at least as far as the existing
theory of the Schur group. In fact the C'S(R) is much closer to Br(R) than
S(R) in general; it is a nice problem to give a characterization of domains

(even fields) for which Br(S) = CS(R).

The following characterization of Azumaya algebra classes in CS(R) extends
that classical result for fields relating H*(G,k*) and H(G,PGL,(k)). The
constructive treatment we propose applies to commutative rings in a desirable

generality.

1.3.13. Proposition. Let R be any commutative ring. Every [4] € CS(R)
may be represented by an Azumaya algebra over R that is an epimorphic
image of a skew group ring over M,,(R) for some finite group of order n.
In case Pic(R) = 1, every such epimorphic image of a skew group ring over
M,.(R) is necessarily representing an element in the Clifford-Schur subgroup.

Proof. Recall that for any group G and any ring T a skew group ring e
is given by a group morphism ¢ : G — AutT and T;G = ®ocqTw, with
Wowr = wer for all 0,7 € G but wet = ¢,(t)ws, where ¢, denotes o(o),
for all t € T. Now consider [4] € CS(R) represented by 74 : RG — A
for some given [c] € H?(G,U(R)). Consider M,(RG®) where n = |G| and
write :RG® = @,cqRus, where u,u, = c(o,7)uy, for all 0,7 € Q. Right
multiplication by u;! in RG® determines an R-linear map m, : RGS —s RG®
that may be given by an invertible matrix M, in M,(R), (using the basis
Us,0 € G, in RG®). From u,u, = ¢(0,T)u,, it follows that M, M, =
¢(0,7)" M, for all 0,7 € G, (note : the appearance of c(co,7)! is due
to the use of right multiplications !). Define a group morphism ¢, : G —
AutpM,(R),0 — ¢, where ¢, is given by ¢, () = M,z M for every z €
M, (R). Now construct the R-algebra D = M, (R) *,, G = ®occM,(R)U,,
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where for each 0 € G : Upr = @, (r)U, for r € M,(R). Put W, = U, M.
Then : WoeW;! = U,M;12M,U;* = vo(M7lzM,) = *xp;l(z) = =.
Therefore we obtain : D = @®,cqMn(R)W, where W, centralizes M, (R) in
D.

Now we calculate :

WoW, = U M7 U, M = Uy UpoH (M, )M
=Upr M7 MM M7 = Wor My, M7 MY

where My, M1 M7 = (o, 7) (see above).

Consequently D = @ocaMn(R)W, = M, (®ocaRW,) & M,(RG®). Clearly
My (7a) : M, (RG®) — M,(A), where [M,,(A)] = [4], provides the epimor-
phism claimed to exist in the first part of the proposition. In this generality
we have associated to a given [c] such that w4 : RG® — A represents [A]
in CS(R) a group morphism ¢, : G — AutgM,(R) representing [A] by an
epimorphic image of M, (R) %, G. Conversely let there be given a group
morphism : ¢ : G — AutrM,(R) and consider B = @,cqM,(R)u,, with
urz = @r(x)u, for z € M,(R), € G. Since Pic(R) = 1 we may ap-
ply the Skolem-Noether theorem for Azumaya algebras over a centre with
trivial Picard group (cf. [ ]) and obtain units v, in M,(R) such that
wr(z) = vezv;! for all z € M,(R). Clearly, v-'u, commute with the whole

M, (R). Putting w, = v;lu, for 7 € G we then calculate :
lu, = v 0o (v uou,

-1 -1, ~1 =1, —1
o VoUs Vg Ugr =V V) VorWor

Wely = 'v‘;luav:

=7

Put c(o,7) = v; v  vor. It is easily checked that ¢(c,7) € U(R) because
each ¢(o,7) commutes with the whole M,(R) and it is equally obvious that
¢ is a 2-cocycle. So we use this [¢] for the class [c,] associated to ¢, [c,] €
H?(G,U(R)). Therefore ®,cckw, = kG and it commutes with M, (R) in
the ring M,,(R) *, G. Hence M,(R) *, G ~ M,(R) ®r RG = 2(RG).
It is clear from looking at these instructions that ¢ is the automorphism
obtained from ¢, and ¢ the 2-cocyclic obtained from ¢, (taking care of some

inverses in the right way).

Elements in the centre Z (RG®) of a twisted group ring RG° which are ho-
mogeneous in the G-gradation of RG® represent special ray-classes (¢f. [ )
that one can get rid of by reducing the group @ first. Recall that o € G is
said to be c-regular if for all 7 commuting with o we have ¢(o,7) = ¢(1,0).
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The inverse and all conjugates of a c-regular element are again c-regular. A
ray class is the class of conjugates of a c-regular element and a ray class
sum is the sum of the elements u, in RG® = @,cgRu, where o varies over

a ray class. Werecall, cf. [ ]:

1.3.14. Proposition. If R is a connected commutative ring (i.e. 0 and 1
are the only idempotent elements in R), then the centre Z(RG®) is freely

generated over R by the ray class sums.

It is clear that a c-regular element r of G that is contained in Z(G) corre-
sponds to a basic elements u, that is central in RG°. Moreover it is equally
clear that Z(Q);eq = {0 € Z(@), 0 is c-regular in G} is a subgroup of G and
that RZ(G)s., is central in RG°. We now immediately obtain the following

useful result :

1.8.15. Proposition. If R is a connected commutative ring then we may
assume, for an [4] € CS(R), that it is given by an epimorphism ¥ : (RG® —
A where Z(G);eq = {€}, € the unit of G.

Proof. By the foregoing RZ(G);, is central in RG° and also RG°® =
(RZ(G);eg(G/Z(G)1eg)° where T is defined in the obvious way but not-
ing that ¢ also takes its values in U(R). Since Z(4) = R, the epimor-
phism ¥ takes RZ(R){,, to R i.e. the u, with 0 € Z(G),eg are special-
ized to some z, € U(R) and it follows that we may factorize ¥ through
RG® — R(G/Z(@)req)® — A. If necessary we continue the same argument

for G/Z(G);eq and T, the result will follow eventually. o

1.3.16. Remarks 1. The proposition extends Hilfsatz 1 of H. Oplolka, F.
Lorenz, [ ], which is given for fields using algebraic closure and absolutely
irreducible projective representations. Our proof shows that this elemen-
tary observation is valid very generically and that is really just a matter of

determining the centre.

2. To ¢ we may associate the pairing f : G x G — U(R), (o,7)
c(o,7)e(T,0)7t. Since the order of [c] divides n = |G|, the values f(o,T) €
U(R) are n-th roots of unity. In fact, in view of the foregoing proposition,
the restriction of f to G x Z(G) has the property that f(—,7) is not triv-
ial G — U(R)*. So after reduction to the case where Z(G)es = {e} it
follows that R contains the m-th roots of unity where m is the exponent
of Z(G). Note that, for [c] = 1 we arrive at the reduction of RG — A
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to R(G/Z(G))°* — A and no condition on roots of unity. We refer to
Z(G)/Z(G)1eq as the root-group of the cocycle c¢. Proposition 2.2. may
then be rephrased as follows : if A € CR(R) is given by RG® — A then it
may be given by RG7* — A where G; has trivial root group in the sense
“that it equals Z(G1). For example if R = @ then the only p group that can
appear is (Z.zZ)*,t € IN.

3. If G is abelian then after the reduction discussed in the proposition we
obtain that Z(RG°) = R because Z(RG®) is G graded for an abelian group
G. When |G|™! € R then a nontrivial ideal of RG* intersects R = Z(RG®)
nontrivially it follows that the R-central Azumaya algebra A is necessarily
isomorphic to RG*. It would not be so restrictive to restrict attention to Q-
algebras R but in order to allow rings of integers (over Z) etc... we include.

1.3.17 Proposition. Let R be a connected commutative ring and let
RG® — A represent [A] € CS(R),5, where G is an abelian finite group
and RG€ being an Azumaya algebra, then 4 & RG®.

Proof. In the proof of Proposition 1.3.15. we have seen that RG¢ — A4
factorizes through RG° — R(G/Z(G)reg)°— A and hence we may as-
sume that Z(G):eg = {e} without destroying the Azumaya condition put
on RGC. Consequently we may assume that Z(RG°) = R. If p is a prime
ideal of R then (R/p)G® — A/pA represents an element of CS(R/P),; and
Z((R)p/G*) = R/p. If |G| € p, let G, be a p-Sylow subgroup of G for
p = char(R/p). For 0 € G, we obtain u,u, = f%i’l%u,.ua. Since w2 € U(R)

c(r,o

it follows that (g%::;;;)p = 1, hence &o,7) = &(7,0) or u, mod pRG® is
central in (R/p)GFS, i.e. it is in R/p. The latter contradicts the fact that for
any p € R, u, — p cannot be in pRG®. Consequently the reduction to the
case Greg = {e} allows to assume that G, = {e} for every prime p of R such

that |G| € p i.e. to the case |G|™! € R cf. Remark 1.3.16(3).

1.3.12 Corollary. If the class of 4 in CS(R)s is represented by RG® — A
where RG° is an Azumaya algebra, then the root-group of ¢ has invertible
order in U(R).

1.3.19. Corollary. Let m be the order of the torsion part of U(R), where

R is a connected commutative ring, then :

1. CS(R)ap C Br(R)m,
2. CS(R)ua C [1,, Bx(R),
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3. If R is a numberfield £ then equality holds in 1. and 2..

Proof. 1. If [A] € CS(R)qp is represented by RG° — A then first we may
assume that G;.; = {e} in view of Proposition 1.3.15. If n is the exponent
of G then Remark 1.3.16(2) entails that n|m. The exponent of [4] in Br(R)

is a divisor of n hence of m.

2. If [A] € CS(R)y; is represented by 7 : RG® — A where G is nilpotent

then RG° = RG: ®r ... ®r RGfp‘t where each ¢; is the restriction of G to

Gp; and G is the product of its Sylow subgroups G,,,% = 1,...,%. Indeed,

if o € Gp,,7 € Gp, then u,u, = E%—:’—;%urua yields that EE:,’;; is a root of

unity for a p;-power as well as for some p,-power, hence ¢(o,7) = ¢(7,0) or
4, commutes with u,. The decomposition of A into a product of algebras
from Br(R), is then obtained by taking 4,, = m(RG), i = 1,...,t. Note
that A, does indeed define a class in Br(R),, with p;|m because Z(G,,) is
a non-trivial p;-group the exponent of which has to be a divisor of m.

3. In case R = k, the converse of 1. follows immediately from the Hasse-
Brauer-Noether theorem because this allows to replace 4 by a cyclic algebra
(I/k, H,d) where I/k has Galois group H and d € H?(H,k*),H a cyclic
group. Since k contains the m-th roots of unity, it follows that [ = kH® for
some [¢] € H?(H,k*). Therefore A = I* H may be obtained as an epimorphic
image of a twisted group ring kE¢ where F is a suitable central extension of
H{, ,H (see further for the actual construction of E and H, (e,d) * H). The

converse of 2. follows in a similar way.

The statement of Corollary 1.3.19(3) has been proved in [ ], there we also
find :

1.3.20. Proposition. Let k be a number field then CS(k) = Br(k). For an
(G,U(R)) to be the subgroup of H2(G,U(R))
consisting of the symmetric 2-cocyclies, i.e. those satisfying the relation

abelian group G we define HZ,
¢(o,7) = ¢(7,0) for 0,7 € G. We write Bryyn(R) for the subgroup of the
Brauer group consisting of algebra classes represented by a crossed product
algebra (S/R, G, c) where S/ R is a Galois extension with abelian Galois group
G and c represents a[c] € HZ,,(G,U(R)). Some caution is due here because
over general commutative rings it is not necessarily true that an Azumaya

algebra split by some Galois extension $/R is automatically equivalent to a
crossed product (S/R, Gal(S|R),c) i.e. in general Br(R)sym may be different
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from lim HZ _(G,U(R)). For local rings, more generically for rings R with

sym
G
trivial Picard group Pic(R), the forementioned problem does not present

itseldf.

1.3.21. Proposition. Let R be a connected commutative ring with
Pic(R) = 1 and assuming that R contains primitive n-th roots of unity for
all n, then Bryy,,(R) C CS(R).

If R is moreover a field k then :

Br(k) = CS(k) = CSun(k) = CSap(k)

Proof. The proof of the second statement follows from the Merkurjev-Suslin
theorem because every element of Br(k) may be represented by a product of
(symbols) cyclic algebras and the following proof of the first statement will
entail that the latter algebras are in CS,p(k).

Now consider [A] € BrBrgy,(R), say A = (S/R, H,d) where H is abelian
and [d] € H?(H,O(R)). The presence of roots of unity in R yields, by a
result of G. Bergman (by Kummer theory in the case of fields), yields that
S/R is H-strongly graded (in the sense of [ Jor[ ])and hence § = RH®
for some [e] € H?(H,U(R)) because Pic(R) = 1 cf. loc. cit.. Define an
action of H on itself by defining a group morphism y : H — Aut(H) as
follows : x(o)(7) = degyo(u,) where § = RH® = ®,cgRu, and o(ur) is
the image under the Galois action (that is homogeneous here). On H x H
we now define a group structure £ = H %, H by the multiplication rule :

(o,7)(es ') = (ox(7)(c"), 77")

Since e takes values in U(R) we have : o(u,) = Uy(a)(r)- In a straight-
forward way one may calculate that o given by : al(o,7),(o1,71)] =
e(o,x(7)(01))d(, 71), determines a 2-cocycle [a] € H?(E,U(R)). An R-
algebra epimorphism 7 : RE* — A may now be defined by (o,7) = usv,,
where A = ©,cgbu, with v,v,, = d(7,7) (in fact 4 & RE*). o

1.8.22. Corollary. If k is either a numberfield, or an algebraic extension
of a p-adic field or a field containing all roots of unity, then (CS (R)nil)p =
CSy(R).

Proof. Follows easily from the foregoing results.
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For a prime p, a divisor of the order, m, of the torsion part of k(R) we do not
know whether C'S,(R) = CS(R),. Obviously, in view of Corollary 1.3.19.(3),
this equality does hold when R = k is a number field. The main problem
here comes down to the following :

Problems 1. Let k be a field containing the n-th roots of unity. Let A be
a skewfield over k such that H,(A) is a twisted group ring G° is then A a
twisted groupring kH¢ where H is related to (& in a suitable sense, in fact

the following relation would then have some possibility of existing :

1—H —G—Z|nZ X Z|nZ — 1

2. Suppose Chark = 0 and k contains all roots of unity. Is it true that
CS(k)p, = CSp(k). Note that Br(k), = CS(k), does hold here. Just as in
1. the problem seems to be created by the necessity of obtaining all algebras
representing elements of CS(k), as epimorphic images of twisted group rings
(i.e. not only up to equivalence in the Brauer group).

3. For a field as in Proposition 1.3.21. k say, the equality Br(k) = CS(k),s
entails the Merkurjev-Suslin theorem. Now CS(k) = CS(k),; may be proved
here without referring to the Merkurjev-Suslin theorem so one might hope

to obtain a non-K-theoretic approach to this result by finding a proof of
Br(k) = CS(k) not depending on it.
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2. Generic Division Algebras and
the Merkurjev-Suslin Theorem

2.0. Introduction.
The best known general result on the generation of Brauer groups of a field

is the following one proved by Merkurjev and Suslin in [36] :

2.0.0. Theorem (Merkurjev-Suslin)
If k is a field containing a primitive n-th root of unity, then the n-torsion
part of the Brauer group of k,Br,(k), is generated by cyclic algebras.

The proof of this result depends on fairly heavy K-theory, see the survey
papers of Van der Kallen [47] and Soulé’s Bourbaki talk [45] for some of the
details. The original proof can be found in [36] and a simplified version in
[47].

Starting with the work of Amitsuf, ring theorists have tried to prove the
conjectural generation of the Brauer group by cyclic algebras via the so-
called “generic division algebras”. Using a result of S. Bloch, the rationality
(or stable rationality) of the center of these generic division algebras would
imply the Merkurjev-Suslin results as well as some (at this moment unknown)
results on Azumaya algebras of local rings. Moreover, recent results show
the importance of this (stable) rationality problem for as different field as
algebraic geometry and the representation theory of finite dimension wild

hereditary algebras.

We will outline the known results on this problem focussing on the more
recent ones. For this reason we will content ourselves with giving precise

references for the proofs of many of the more classical results.

2.1. The generic Division Algebras.
For the moment, k will be an arbitrary (but usually infinite) field. For all
integers n,m € IN we consider the polynomial algebra

P = klzij(k) :1<4,5 <n,l1 <k < m]
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that is, in as many variables as there are entries in m n by n matrices. The
fields of fractions of P,, , will be denoted by Ko n. The ring of m generic n
by n matrices, @ r, n, is the k-subalgebra of M,,(Pp,,) generated by the so

called generic matrices
X1 = (24j(1))s,; € Mn(Prmyn)

for all 1 <1 < m. Another interpretation of & ,, , can be given as follows :
consider the quotient of the free k-algebra in m variables

Hpyppm=k<zi1,...,2m > /1,

where I, is the T-ideal (i.e. an ideal closed under all k-endomorphisms of
k <zi,...,2m >, see [P, p. 43]) of all identities of M, (k). Then, there is a
natural morphism

ﬂm,n — m,n

by sending the variable z; to the generic matrix X;. This is easily seen
to be an isomorphism. This entails that @ m,n has the following universal
property. Suppose k C [ and A is a central simple [-algebra of rank n? which
is generated as l-algebra by éi,...,68,,. Then there is a morphism

T:@ o — A

by sending X; to 6; and 7®l is an epimorphism. Using this universal property

it is then fairly easily to prove the next result :

2.1.1. Theorem (Amitsur, )
For all n,m € IN,& ,, 5, is a domain.

For a proof see [40, p.63]. Since @ ,, ,, is obviously a ring satisfying a poly-
nomial identity we can apply Posner’s result [22] to obtain that @, is a
left and right Ore-domain and hence has a classical ring of quotients A, ,
which is a division algebra of rank n* over its center Z,, ,, see also [40, p.
63].

The division algebra A, , is called the generic division algebra for m n by

71 matrices.

2.1. The rationality problem :

Recall that a field L D k is said to be rational over k iff there exist ;,...,z) €
Lsst. L = k(z1,...,2) the purely trancendental field of trancendence degree
k.
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A field L D k is said to be stably rational over k iff a rational extension of L
is rational over k, i.e. there exist k,1 € IN s.t. L(y1,...,y%) = k(z1,-..,2;).

Finally, a field L D k is said to be unirational if I is contained in a rational
field over k,i.e. L C k(z1,...,2k).

Clearly, one has the following implications
rational = stably rational = unirational

The converse implication unirational N stably rational was called the
Luroth problem and stably rational =%» rational was called the Zariski prob-
lem. Both are now settled negatively, the Liiroth problem by a.o. M. Artin-D.
Mumford and the Zariski problem only recently by J. L. Colliot-Théléne and
J.J. Sansuc.

One of the main open problems in p.i.theory and in the study of Brauer

groups is :
Question 1. For which m,n € IN, is Z,,,, (stably) rational k ?

In the next section we will illustrate the importance of this question with
respect to the Brauer group. Other applications will be given later.
Clearly, Zn n C Kp,n hence Z,, ,, is obviously unirational. An easy but very

useful result on this question is :

2.1.1. Proposition (Procesi).

For anyn € IN,m > 2: Z,, , is rational over Zym

Proof : Let {ui,...,un2} be a basis of A, . We claim that the n?(m — 2)

elements
Tr(Xu;) 3<i<m1<j<n?

form a trancendence basis of Zim,n OVer Zy . Later on, we will independently
see that trdegZy,,, = (m — 1)n? + 1 for all m,n. Therefore, it is sufficient to
verify that this set generates Z,, ,. Let L = Zy o {Tr(X;u5):3< i< m,1 <
j £n*} C Ky, , and consider LA, ,, C Apmn. Then, LA; n = L ®z,, Az p

is a central simple algebra over L. For every generic matrix we have

n2
X; = E o5
i=1
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with o;; € Zp, 5 (this is because Z,, ,As , = A, n by simplicity) but then

n2
TI‘(X,;'uk) = Z aijTr(u_,-uk)
i=1
for all < and k. Since Tr(Xjuz) € L and Tr(ujur) € L (because they are
in Z, ,) we obtain that all a;; € L. Hence, X; € LAy, foralll < i< m

whence LA, p, = A, and so L = Zy, . o

This result reduces question 1 to the special case of two matrices. Since
clearly Z; , is rational with trancendence basis the coefficients of the charac-
teristic polynomial of X, a naive approach to question 1 would be to prove
that Z, , is rational over Z; ,. However, as we will see later this cannot be

true even for n = 4.

2.3. Stable rationality implies Merkurjev-Suslin

In this section we will clarify the main motivation for trying to answer ques-
tion 1 positively. As mentioned before this uses a result of S. Bloch proved
in 1973 but published only in 1981 [15]. Bloch states his result in terms of
K-theory, but we need the following formulation :

2.3.1. Theorem (Bloch, 1973)

Let k be a field such that the n-torsion part of the Brauer group is generated
by cyclic algebras.

Assume char(k) fn and k contains a primitive n-th root of unity. Let L
be rational over k, then the n-torsion part of Br(L) is generated by cyclic
algebras.

We recommend the Fein-Schacher proof of this result [18, p. 54] which is
based on the Auslander-Brumer-Faddeev theorem and a result of Rosset on
the relation between the trace map on K, and the corestriction on the Brauer
group. The initial assumption on k is satisfied if k£ is a local, global or
algebraically closed field.

Now, assume that Z, . is stably rational over k which is a field satisfying
the assumptions of theorem 2, then by applying Bloch’s theorem twice we
obtain that the n-torsion part if Br(Z, ) is generated by cyclic algebras. In
particular, A, , is Brauer equivalent to a tensor product of cyclic algebras.
That is, for some h

(%) My(Ampn) =51 ®52®...0 S,
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with S; cyclic. This fact plays a crucial role in the proof of the following

result.

2.3.2. Theorem (Procesi, 1981). Let k be a field satisfying the assump-
tions of theorem 2 and assume that Z,, , is stably rational over k. Then, or
any field [ D k the n-torsion part of Br(l) is generated by cyclic algebras.

The proof consists in an easy specialization argument, the most difficult part
of it consists in translating the italian of [41, p. 4]. Thus, stably rationality
of Z,, » gives a purely ringtheoretical proof of the Merkurjev-Suslin result.

Moreover, it would give new information such as :
2.3.3. Theorem. (Saltman, [43]).

Let R be a local ring with residue field [ containing a field k satisfying the
assumptions of theorem 2. If Z,, , is stably rational over k, then every
division algebra A over [ can be lifted to an Azumaya algebra A over R, i.e.
ARl A.

Note that the Merkurjev-Suslin result implies this result only upto equiva-
lence in the Brauer groups. Further, Saltmans result only presupposes so
called “retract rationality” of A,,,. For a proof and definition of retract
rationality we refer the reader to [43].

2.4. Sp-modules and Z,,,

There are two important realizations of Zm . as the invariant field of a group
action on a rational field. In a later section we will see that Zm n is the field
of GL,(k)- (really of PGL,(k)-) invariants acting on Konn-

In this section we will see that Z,, , is also the invariant field of a finite group
action on a rational field. The group is the symmetric group S, on n letters
and the rational field turns out to be a splitting field of A .

Consider the first generic matrix X;. The characteristic roots of X; are
algebraically independent over k. For, consider the specialization given by
sending X3 to
z11(1) 0
X, = ... i.e. 7@'(1) = 6;1':1313'(1)
0 Znn(1)

then the characteristic polynomial of X; specializes to that of X; and since
the coefficients of the characteristic polynomial of X; are independent over
k, the same is true for Xj.
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So, call the eigenvalues of X; {u,...,u,} and consider the subfield Fon=
Zmn(U1yeenytp) — —K_m’n the algebraic closure of K,,, ,,. One can then prove

the following important result :

2.4.1. Theorem (Procesi)

(1) : Fin,n is a splitting field for A, ,

(2) : Fron/Fmn is Galois with Gal(Fn/Zm,n) = Sp
(8) : Frm n is rational over k of trdeg = (m — 1)n? + 1

For a proof of this result, see [P. , p. 9 5]. Since by proposition 1 one can
restrict attention to the special case m = 2 we will now give the precise
description of F; ,, due to Formanek [19] :

Let K = —K:z,n, then there exists an invertible matrix T' € M,,(K) with all its
entries lying in Ky ,(u1,...,%,) (where the u;’s are the characteristic roots
of X, as above), such that

TX, T = diag(zq,...,2,)

Further, the diagonal entries of T X;T 1 (ﬁ) X and all entries of T.X,.71

(2 Y are algebraically idempotent over k. We will use the following notation :
=1 0 Yii .. Yin

X = . Y = :

0 T, Yni -+ Ynn

and L = k(21,...,2n; Y115+ -+ Ynn). With & we will denote the k-subalgebra
of M,(L) generated by X and Y. As before, & can be shown to be a
domain with classical ring of quotients A which is a division algebra with
centre Z. Then, it is clear that the map X; + X;¥; Y induces k-algebra
isomorphisms between & ,, and &, between Az, and A and between Z, ,
and Z.

Of fundamental importance will be a “nearly” short exact sequence of S,-

modules

(%) 1—A—B 25U v

where B =< 21,...,Zn;¥Y11,.-+,Ynn > is the free Abelian group of rank
n? + n written multiplicatively which becomes an S,-module via the action
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o (Xs) = Xo(s); 0(¥i5) = Yo(s)o(j)- Let U =< uy,...,u, > be the free Abelian
group of rank n with the permutation action of S, and V =< v > the free
Abelian group of rank one with trivial S,,-action.

One defines the S,-module homomorphisms :

a: B —U;a(X;) = 1,a(yij) = wsuj*
B:U—V;B(u;)=v

and defines A = Kera, then (**) is seen to be exact.

Moreover, A is easily seen to be free Abelian of rank n% + 1 (it is a f.g.
torsionfree Abelian gp) and the subfield F(4) C L is rational over k of
trancendence degree n? 4 1.

Further, A is generated by X;,...,X, and all the monomials of the form

Yiiz Yigig « » + Yigis with ¢ > 1.

Clearly, the S,-action on 4 induces an action of Sy as k-auto-morphisms on
k(A) and one can prove [19, p. 206] :

2.4.2. Thereom 6 : (Fomanek d’aprés Procesi).

Z = k(A)*"

2.5. The easy cases n=2o0or n=3
Theorem 6 allows us to prove rationality by hand for small values of n. This

has been done by Procesi and Formanek.

2.5.1. Proposition : (Procesi).
Zs,5 (and hence Z,, ,) is rational over k.

Proof. k(A4) = kok(z1,%2,y11,Y22,Y12y21) with the obvious S, = Z/22Z

action. It is easy to verify that

k(A)Sz = k(wl + T2, 2122, Y11 + Y22, ynyzz,ylzyu)

which is rational over k.

Actually, Procesi proved rationality in another way [P, p. 99]. He proved that
Z3,5 = (Tr(X1), T2(Y2), D(X1), D(X2), D(X; + X3)). It is an easy excercise
to see that the two approaches give the same field.
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2.5.2. Proposition : (Formanek, 1979).
Zy 3 (and hence Z,, 3) is rational over k.

For a full proof we refer to [19, p. 208]. We will here merely describe A and
k(A)%s :

A=< X1,X2,X3,y11,y22, Y33, Y23Y32, Y13Y31, Y12Y21, Y12Y23Y31 >

is the Abelian group on ten generators with the obvious Ss-action.

Define :
ap =X+ Xo+Xs, ax=X1Xp +XoX3+ X5X5, as=X1X,X;
aq = Y11 + Y22 + Y33, a5 = Xayin + Xoyoo + Xzyss
as = Xiy11 + X2y2s + X2yss
b= ya3ys2 + Y13Y31 + Y12Y21
V1 = YasYs2b T, v2 = Y1sYs1b 7Y, vs = Y12y b7

ar = X1v1 + Xovs + Xsvs, ag = X12'01 + ng’vz + prvs

P12Y23ys1d7 T, q = Y13Ys2y21d "
ag =p+g,ar0 = (XiXo + X2 X5 + X§X1)P + (X1 X2+ X X2 + X3 X?)q

Then, Formanek proves that k(A4)%® = k(ay,...,a10) and is therefore ratio-

nal.

In both cases, we see that k(4)° is even rational over the rational function-
field over the characteristic roots of X. In the next sections we will see that

this fails already to be true for n = 4.

2.6. Stable rationality and permutation modules.

Another advantage of theorem 6 is that one can invoke the fairly extensive
theory on permutation modules and rationality problems. In this section we
will briefly recall these results. In the next section we will apply them in
order to show that Z, 4 connot be stably rational over Zy 4.

Let G be a finite group. A G-lattice is a G-module which is a finitely gener-
ated free Abelian group. If M =< X,,..., X, > is a G-lattice, then G acts
on its group ring [N] and on its field of fractions k(M). Such an action is
called a lattice action.

A G-lattice is called a permutation module if it has a Z-basis which is
permuted by G. A G-lattice M is called permutation-projective if there is a
G-lattice N s.t. M @ N is a permutation module.
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The work of Masuda [33], Endo-Miyata [17], Swan [46], Voshresenskii [49]
and Lenstra [31] shows how results on G-lattices give info on the (stable)
rationality of fixed fields of lattice actions. In the following theorem we will

give some of their results :

Theorem (Masuda, Endo-Miyata, Swan, Voshresenskii, Lenstra).
Let G be a finite group acting faithfully on a field &, then

(1) If P is a permutation module, then k(P)? is rational over k%

(2) If P is a permutation-projective G-lattice andif1 > M — N — P — 1
is an exact sequence of G-lattices, then k(N)® = k(M & P)% as kC-

algebras.

(3) If P is a permutation module over G and 1 - M — N — P — 1 an
exact sequence of G-lattices, then k(M) is rational over k(M)C.

(4) If M is a G-lattice, then k(M) is stably rational over £ if and only if
there exists an exact sequence of G-lattices 1 - M — P — Q — where

P and @ are permutations modules.
How can this machinery be used in our setting. Consider again the exact
sequence of §,,-lattices (**)

1545 B-5U v 1

If we denote R =< Xi,...,X, > the standard S,-permutation module, then
it is clear that A = P @ Ay, B = P @ By where

1—Ag—B U veg 1 (% *)

Bo =< 411,¥125- -+ yYnn >, 0 = a|By and 49 = a|By and 4y = Kerag. So,
we can take as the field [ in the foregoing theorem ! = k(P), then [S» = Z, ,
the field generated by the characteristic roots of X and Zym = 1U(Ag)5.

By Theorem 7.(4) we then see that Z3 n is stably rational over Z1 1 if and
only if there is an exact sequence of S,,-lattices

1-——)A0 ————)Pl —-->Pz —s1

with P; an S,-permutation module. Note that (***) fails this objective
only because of V' a trivial S,-module. Nevertheless, this seemingly minor

obstruction turns out to be unsurmountable.
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2.7. Z,, is not stably rational over Z; ,

In this section we will show.

2.1.1. Proposition 4 : (Snider, unpublished)
Z3,4 cannot be stably rational over Z 4.

In fact, a similar result holds for all » non-square free (Saltman, 1986). Later
on, this observation will be used to invalidate Maruyama’s proof of the stable
rationality of the moduli space of stable vectorbundles on IP, with Chern-

classes ¢; = 0,¢y = n.

Proof of Proposition 4 : Assume Z; 4 to be stably rational over 21,4, then

there is an exact sequence of S4-lattices
(1) 1-——-—)A0————)P1—-—>P2—)1

with P; an Ss-permutation module. Let G & Z /AZ x Z |AZ; C Sy be the
group {(1)(2)(3)(4), (12)(34), (13)(24),(14)(23)}. Since G acts transitively
on U =< uy,uy,u3,uqy >, U & Z[G] as G-lattices. From (***) we then

obtain
B

1—Kerf— Z|G|—Z —1 (2)
exact as sequence of G-modules, whence
7Z(q1° L 7 = 7 — B (G, Kerf) — 0 (3)

Since Z[G]® = Z[uy+us+us+us] we have HY(Q,Kerf) = Z /4Z. Further,
By =< y11,...,Ya¢ > can be shown to be a free Z[G]-module, so from the
exact sequence

1— 49— By — Kerf—1

one obtains H?(G,A¢) & H'(G,KerB) = Z/4Z. For any G-permutation
module one has H'(G,P) = 0, so from (1) we obtain that H?(G,4y) —
H?*(@G, Py). Since P; is a G-permutation module

P = of  Z[G/H)
with H; subgroup of G. But
Hz(G,Z[G/Hi]) o HZ(Hi,Z) = Hom(H;,Q / Z)

and hence H?(@, P;) cannot contain an element of order 4 as it must because
of Z [4Z = H*(G, A¢) — H%(G, P;). Done. o
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Of course, this does not imply that Z, 4 is not rational over k. In fact, in an
extremely skilful but laborious paper Ed Formanek has shown.

2.7.2. Proposition 5 (Formanek, 1980) :

Zy,4 (and hence Z, 4) is rational over k.

For details of the proof we refer to the original paper [20]. One of the main
ideas of the proof is to use theorem 7(3) in order to reduce the problem of
studying the S;-action on A which is of rank 17 to that of an action on 3
variables.

2.8 : PGL,(k)-invariants.

Although the description of Z, ,, as the field of invariants of an S,-lattice

action is very usefull for small values of n, we will now need another inter-
pretation of Z, , in order to link it later with problems in algebraic geometry

and representation theory.

Denote

Tl ... Tin\ Y11 --- Yin
Trl «o. Tpn Ynl +o¢ Ynn

and

k[V] = k[mlla'“,mnn;ylly-- '7ynn]

where v is the vectorspace of dimension 2n? with basisvectors {z;, yij 1 1 <
i, < n}. There is a natural GL,(k)-action of V defined by :

ouyi; = (a.Y.a™1)(35)

{ .z = (a.X.a71)(ig)

for any o € GLy(k) (here A(75) denotes the (ij)-entry of the matrix A).
Through this action GL,(k) acts as a group of k-automorphisms on the
polynomial ring k[V] and on its functionfield k(V).
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2.8.1. Theorem (Artin, 1969) :
For any n, Z, , & k(V)GI(k),

For a proof see [P]. In fact, more is true : let T, , be the subalgebra of Apn
generated ny & ,,, and all its traces, then T, ,, is called the trace ring of
m generic n by n matrices. The advantage of T, ,, to & m,n 1s that it is a
nicer ring e.g. it is Noetherian, affine and even a maximal order. Moreover,

there are some indications that T, , also behaves nicely w.r.t. homology.

Consider the centre of T 'y, n, Ry n, then this is a normal, Cohen-Macaulay
and even factorial hence Gorenstein domain. Moreover, R,.» can be de-
scribed as being of the k-subalgebra of K, , generated by elements of the
form Tr(X;,,. .., X;,) with ¢ < n? (Razmyslov-Formanek). Clearly, the field
of fractions of R,, , is Z,, . Most of these results on R, , follow from :

2.8.2. Theorem (Procesi, 1976).

For any n,m : R, , = Pnci,l,'z"(k) where the action of GL,(k) on P, is
similar to the one on k [V] described above. In terms of Mumford’s geometric
invariant theory this implies that R, ,, is the coordinate ring of the quotient
variety V/GL,,. The geometry of this variety is now reasonably understood
(Le Bruyn, Procesi [29]). Finally, we note that the center k* C GL,(k) acts
trivially on V so it is really a PGL,(k)-action.

2.9. Vectorbundles over the projective plane.

In this and the next section we will show that question 1 can be rephrased
in geometrical terms.

Recall that a vectorbundle on IP, is a locally free sheaf. For an extensive
exposition on vectorbundles over projective spaces and their invariants we

refer to the monograph [39].

A very coarse classification of all vector bundles over IP; is given by their
topological invariants such as the rank and the Chern numbers. Given such
parameters r,¢; and ¢z one wants to study sufficiently general bundles having
these invariants. If turns out that they are stable which means that for all
coherent subsheaves F or our vectorbundle £ we have %J-;-_.l < 2-. One wants
to construct and study a variety M(r,c;,c2) whose points correspond to
isomorphism classes of stable vectorbundles £ of rank » with Chern numbers
c1(€) = ¢1 and ¢32(€) = ¢,. This can do done, again see [39]. The variety
M(r,c1,c2) is then called the moduli space of stable rk(r) bundles having

Chern-numbers ¢; and ¢;. Again, a major open problem is :




Generic Division Algebras and the Merkurjev-Suslin Theorem 35

Question 2 : For which numbers r,c; and ¢; are the moduli spaces
M(r,c1,¢z) rational (or stably rational), i.e. have a (stably) rational function
field.

The motivation clearly is that whenever they are rational one can find ad-
ditional algebraic invariants of bundles such that they classify freely and
completely sufficietly general bundles with the given topological invariants
ryc1 and cs. . ’

Not much is known about question 2. Barth proved rationality of M(2,0,2),
Le Potier of M(2,0,4) and rumour goes that Maeda proved rationality of
M(2,0,n). Apart from this, nothing seems to be known about the rationality
of M(r,0,n). What is the connection with the generic division algebras ?

2.9.1 Theorem (Le Bruyn, 1986)
Z3,n is the function field of the moduli space M(n,0,n).

Modulo the rationality results of Formanek mentioned before, this theorem
implies that 1(3,0,3) and M(4,0,4) are rational. At this moment there
does not seem to be an alternative proof for the rationality of M (4,0, 4).
The proof of theorem 10 is based on the following description of M(n,0,n)
due to K. Hulek [23] cfr. also the work of Maruyama [33].

Let A = (Ao, A1, Az) € My,(k) ® M,.(k)M,@ (k). A is said to be prestable if
for any 0 # 6 € k™ we have that

dim(Agv, 41v,43v) > 2; dim(AJv, A]v, AJv) > 2

Note that this is clearly an open condition on N,(h) & M,(k) ® M, (k).
Let V = I'(0p,(1))* with basis u,v,w dual to the usual z,y,z basis of
V* =T(0p,(1)) and define a linear map

Ak OV —Ek @V

given by the matrix

0 A, —A;
—4; 0 Ao | =%a
A; -4 0

If welet U = Impy and s.I'(Op,(1)) ® Op, — Op,(1) be the natural
multiplication map then we have a complex of bundles

k™ ® 01p,_,(—1) @ U® 6]32 L ®6P2(1)
1®s* pa®1 1®s
E"®V ®0p, E"@V*®0p,
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where a is monomorphism of bundles (i.e. locally split mono) and b is an
epimorphism. The cohomology bundle of this complex £ 4 has rank dimU —2n
and Chern numbers ¢; = 0, ¢ = n. Moreover one can show that £4 = £4
if and only if there are invertible matrices o, 8 € GL,(k) s.t. A} = a4;8 for
0<i<2.

On the other hand one can study this GL, X GL,-action on M,(k)®3.
There is open subvariety GL,(k) & M,(k) & M,(k) on which represen-
tants of the orbits under GL, x I, can clearly to be chosen of the form
(In, A, B). We have to investigate the action of I, x GL,, on these represen-
tants. (In,8)(In, 4,B) = (8,48, BB) = (8,1,).(I.,8~*AB,8 1 BB). That
is the action of GL,, x GL, on GL, & M,(h) & M,(k) is the same as the
action of GL,(h) on V = M,(h) & M,(h) described in section H.

Finally, the set of all prestable triples A s.t. rank £4 = n forms an open
subvariety so it has a nonempty open intersection with GL, & M,(k) ®
M, (k). So, the module space M(n,0,n) is birational to the quotient variety
GLyn(h) ® Myp(h) ® M,(h)/GL, X GL, = V/GL,(k) which has K, , as its
functionfield, done. o

Maruyama [34] claims to have proved stable rationality of M(n,0,n). In
view of theorem 10 this would settle our question 1. However, a closer inves-
tigation of Maruyama’s result (modulo the above sketched translation from
vectorbundles to conjugacy classes of couples of matrices) shows that he
proves a stronger result namely that K , is stably rational over K; ,n Which
we have seen to be impossible if n = 4. The error of Maruyama is where he
claims PG Ly,(k)-invariance of a map which cannot be the case.

2.10. Halfcanonical divisors on plane curves.

In this section we will give a very precise parametrization of an open piece of
the quotient variety V/G L, (k) by plane projective curves and points on their
Jacobians (or more precisely on an homogeneous space over the J acobian).

Recall that the projective space [p3mnts) parametrizes plane projective
curves of degree n. Let U be an open subvariety consisting of nonsingu-
lar curves. Consider the flagvariety W C IP? x U consisting of all couples
(P,C) with P a point on C. The natural projection W — U is then a flat
bundle of smooth curves.

We can then investigate the relative Picard scheme introduced by Grothen
dieck [21] and studied by Artin [13] and Mumford [35]. This functor Picyw/u
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associates to an U-scheme S the following group

{gp of invertible sheaves on W XS}
{subgroup of sheafs of form p %, (K) for K on S}

where p2, the projection on the second component. Since W — U is a bundle

PICy,u =

of smooth curves we can associate to invertible sheaves a discrete invariant,
the degree. With Pic‘Ii;V/U we denote the subfunctor consisting of invertible
sheaves of degree d. The sheafification of this functor with a spect to the flat
topology is represented by the variety Pic‘{l,V/U consisting of couples (C, £)
where C is a nonsingular plane curve f degree n and £ is a divisor on C of
degree d. With this terminology one has the following beautifull result.

2.10.1. Theorem (Van den Bergh, 1986)
Z, » is the function field of the relative Picard scheme Pic“i,V/U for d = In(n—

1).

Note that since the degree of the canonical divisor on a smooth curve of
degree n is n(n — 1), this variety can be viewed as the generic variety of
halfcanonical divisors on plane curves. For the original proof of Theorem
11 we refer the reader to [48]. Here, we will outline how his result can be
deduced from theorem 10. So, we have to associate to a sufficiently general
vectorbundle £ over IP? of rank n and with Chern-classes ¢t =0,cp=na
smooth plane curve C of degree n and a halfcanonical division £ on it. Again,
Hulek [23, 17] has indicated how this can be done by a suitable generalization
of Barth’s characterization of rank two bundles by their curve of jumping lines
and ©-characteristic [14].

Let £4 be a stable vectorbundle associated to the triple A = (4, 43, 4,) if

n by n matrices as in section I and define
Ay = det(Aou + Aiv -+ Az'UJ) S I‘(a_p; (n))

The discriminant A 4 is a homogenous polynomial of degree n and we can
consider the curve C' 4 C IP; it defines. The interpretation of C4 is that it
contains those lines I C IP, such that £|L # %™ so it generalizes the curve
of jumping lines in the rank two bundle case.

One can define a map

ba=(A®1)o(1®s): k" ®Op;(—1) »— k" Q@ V* @ Oppx — k" ® by

Over a point L € IP, with coordinates (yo : y1 : ¥2) this map is just A(y) =
Aoye + A1y1 + Azys. One can define a sheaf £4 by the sequence

0——>kn®€p;(——1)lpi>kn®91p;-—->£,4——>0 (+)
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which has its support on C 4. Moreover by [23, 1.7.3. iv] the couple (C 4, £ 4)

determines £ 4 uniquely.

If we restrict the sequence (+) to C4 we obtain the commutative diagram

0O — kn®0p;(——1) _1!)_,4)

| L

@b, (1) 4 e, — £ — 0
For sufficiently general A we have that rk(¥)4]C4) = n — 1 whence L' is an
invertible sheaf over C4. The induced map L4 — L' is surjective and can

kn®0p; — Ly — O

be shown to be injective, too. So, for generic A we have that £4 € Pic(C4)
of degree in(n — 1) [23, 1.7.3 iii]. Conversely, starting from a plane curve
G and £ € Pic(C) of degree in(n — 1) one can reconstruct a tripje A s.t. is
prestable for sufficiently general G and £ [23, 1.7.], done. o

Theorem 11 gives another proof of rationality of Z,,. For, in the case of
degree 2 (i.e. rational) plane curves, Pic* = 0 hence Pic‘{l;V/U ~ U — IPS.

More surprisingly is that one can give a geometrical proof of the rationality
of Z5,5 due to Van den Bergh [48, §7] : Let (C, £) represent a point of Pic%V’U
for the case n = 3, i.e. C is an elliptic curve £ € Pic’(C) = Jac(C) = C i.e.
L determined by a point D on C.

Fix a line L ¢ IP? and denote by {Pi,P2,P;} = L N C. Note that this is
only canonical upto an element of S5. There are uniquely determined points
Qi on C s.t. P; 4+ D ~ Q; where ~ denotes linear equivalence. Moreover,
Q; + P; ~ Q; + F; and hence R;; = line(P;, Q;) N line(P;, @;) also lie on C.
Conversely, if we are given points P;, Q; and a curve C of degree 3 passing
through the points {P;, Q;, R;; : 1,7} then D is uniquely determined as the

divisor class containing Q; — Pj.

Now, define W, as the variety parametrizing the tuples ((P;)i = 1,2,3;
(Qi)i=1,2,3) with P1,P»,P; on L. Let W/ be the variety parametrizing tu-
ples ((P;)i=1,2,5;(Q:)i=1,2,3; C) where Py, Py, Ps lie on L and C is a curve of
degree 3 passing through the points {P;, Q;, R;; : 1 < 4,5 < 3}. Then, there
is a natural Ss-action on W' via 0.(P;, Q;, C) = (Po(s); Qu(s); C) and W} /Ss
is birational to Pic‘{l,V/U.

One can then verify that k(W) is rational over k(W) of trancendence degree
one. Hence, k(W{) is the functionfield of a conic over k(W1)%s which
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itself is a rational field over k. Finally, this conic has a rational point since
W{/Ss — W;/Ss has generically a section by fixing a point § € IP? and
associating to a tuple (P;,Q;) the unique curve of degree 3 passing through
{P;, Q:, Ri;, S}, so k(W])%s is rational over k, done. o

2.11. Representation theory of hereditary algebras.

Form now on we assume that the basefield k is algebraically closed. If A is a
finite dimensional, basic, connected hereditary algebra it is well known that
A is the path algebra of some quiver Q. The study of finite dimensional A-
modules then coincides with the study of representations of Q. Let us recall

some of the basics :

A quiver @ is a quadruple (Qo,Q1,%, ) consisting of a finite set Qy =
{1,...,m} of vertices, a set Q; of arrows between these vertices and two
maps t,h : @1 — Q. assigning to an arrow ¢ its tail £, and its head hyp,
respectively. ‘

A representation V of the quiver @ is a family {V(¢) : i € Qo} of finite
dimensional k-vectorspace together with a family of linear maps {V(yp) :
V(ty) = V(hp);e € @Q1}. The m-tuple dim(V) = (dimV(:));e IN™ is
called the dimension type of V. A morphism f : V — W between two
representations of the quiver, @ is a family {f(¢); V() — W(3);2 € Qo} such
that for all arrows ¢ € Q, one has W(p) o f(tp) = f(hp) o V(). ‘
Given a dimension vector a = (a(1),...,a(m)) € IN™ we define the rep-
resentationspace R(Q, ) to be the set of representations V of Q such that
V(i) = k> for all 1 € Qy. Because V & R(Q,a) is completely determined
by the maps V() we have that

R(Q,a) = Bpeq, My(t)

where M, (k) denotes the k-vectorspace of all a(h,,) by a(tp) matrices with
entries in k.

We will consider the representationspace R(Q, ) as an affine variety with
coordinatering k[Q, ] and functionfield k(Q, «). We have a canonical action
of the linear reductive group GL(a) = [[i=; GLy;)(k) on R(Q, ) by the
rule

(9-V)(9) = gho- Vg,
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for all ¢ = (g1,...,9m) € GL(a) and V € R(Q,a). Note that the orbits
under this action correspond precisely to isomorphism classes of representa-
tions of @ and hence to isoclasses of A-modules if A is the path algebra of
Q.

This action induces an action of GL(a) as a group of k-automorphisms on
k@, a] and k(Q,a). The geometrical interpretation of the invariant field
k(Q, a)Gi("‘) is that it is the functionfield of the variety parametrizing the or-
bits of representations in sufficiently general position. So, proving rationality
or stable rationality of these invariantfields would be a decisive step in un-
“ derstanding the representation theory of wild hereditary algebras. Note that
C.M. Ringel [42] proved rationality of k(Q, a)¢X(®) in case Q@ (or equivalently

A) is tame.

The following reduction is due to V. Kag [25] : a = B +...+ B is said to be
the generic decomposition of the dimension vector o provided representations

V of @ in sufficiently general position decompose as
V=weoe...0W,

where the W; are indecomposable representations of dimension type g;.
Moreover, Ka¢ shows that the 3; are so called Schur roots. That is, there
is an open subvariety U of R(Q,f;) s.t. for W € U one has End(W) & k.
One can use the generic decomposition in order to reduce the problem of
studying the rational invariants k(Q,a)%%(®) to the study of rational invari-
ants for Schur roots in the following way : let 8; = (8;(1),...,B:i(m)) and fix

decompositions
pe(d) — @;‘?:1 £Bi ()

then this given inclusions @®%_, R(Q,B;) — R(Q,a) and Xij__:lGL(,Bj) C
GL(e). Note that if 8;(z) = B;(z) for some j # j' we have an involution
oi(7,7') on the space @;‘-;1 R(Q, B;) which permutes k% (%) and k8i(*), Denote
by X, the group generated by all these involutions. One then has :

2.11.1. Theorem. If o = fB; + ... + B is the generic decomposition of o
and if ¥, is defined as above. Then,

k(Q, ) ) = [®§=1k(Q,ﬂj)GL(ﬁ;)]2°‘

For a proof we refer to [26, prop. 5 p. 153]. This result urges us to investigate

the rational invariants £(Q, a)%¥(®) for a Schur root a.
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Note that rationality of k(Q, a)%(®) would follow immediately from a pos-
itive solution to a rather daring conjecture of Ka& : he conjectured in [26]
that the variety of indecomposable representations of Q of dimension vector
o admits a finite cellular decomposition into locally closed subvarieties each
isomorphic to some affine space k. Since for a Schur root « there is an open
subvariety U C R(Q,a) consisting of indecomposables, this would immedi-
ately imply that k(Q, a)%L? is rational. Unfortunately, at this moment there
is not much evidence to support this conjecture.

In the next sections we will show how stable rationality of the rational in-
variants k(Q, @)% for a Schur root a and any quiver Q would follow from
a positive solution to problem 1. The proof of this result rests on two major
results : the so called “no-name-lemma” in invariant theory on almost free
actions and the Bernstein-Gelfand-Ponomarev theory of reflexion functors.
We will first recall these results.

2.12. The no-name lemma.

The following result seems to be common knowledge to people working in
invariant theory. However, there does not seem to exist an establashed ref-
erence for it and therefore it is called the no-name lemma (some even say :
no-proof lemma).

Recall that two k-fields K and L are said to be stably equivalent if
K(Xy,...,X1) % L(y1,. .., Ym) for some ] and m. Further, a linear reductive
group G is said to act almost freely on a finite dimensional vectorspace V
if the stabilizer of a sufficiently general point is trivial. Of course, G then
acts as a group of automorphisms on the functionfield (V) and one wants
to study the rational invariants k(V)®. The no-name lemma gives us some
freedom in the particular choice of V as long as we are interested in stable

equivalence :

2.12.1. Theorem (No-name lemma)

Let a reductive linear group G act almost freely on vectorspaces V and W.
Then the fields of rational invariants k(V)¢ and k(W)@ are stably equivalent.

Since there is no fixed reference, we will outline the proof of this result due
to Le Bruyn and Schofield [30] which is based on some results of D. Luna
32].

Because the coordinate ring of V, k[V], is a unique factorization domain hav-

ing only trivial units we can apply [32, p. 103 lemma 2], in order to obtain
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a non-empty affine G-invariant subvariety V' of V such that k(V)€ is the
field of fractions of k[V'/G] = k[V']%, or equivalently, generic orbits in V'
are closed. So, take a generic point v € V', then by the étale slice theorem
(32, p. 97] there exists an affine (!) subvariety V" of V' containing v such
that the G-action on V' induces an étale G-morphism :

b:Gx V" — V!

such that the image U of 4 is an open affine (!) IIys-saturated subvari-
ety of V'(mwy : V! — /@ is the canonical quotient map) and the canonical
morphism :

P/G:(GxV"))G=2V"—TU/G

is étale and gives rise to a G-isomorphism
al H ~ "
Gx V"'« UmU/GV

Therefore, 7y : U — U/G is an affine (!) principal G-bundle in the étale
topology.

But now we can apply an old result of J.P. Serre [44] : let 7y : U — U/G
be an affine principal G-bundle in the étale topology and W a variety with
G-action. Define a G-action on U X W by g.(u,w) = (ug™?, gw) and denote
by U xgW = (U x W)/G, then U xg W is the total space of a fibration of
type W with basis U/G.

But this implies that (in case W is a vector space) k(U xg W) = k(U @ W)¢
is a rational extension of k(U/G) = k(U)® = k(V)®. We can repeat the
same argument with W instead of V and obtain that k(V @ W)€ is rational
over both k(V)% and k(W)@ finishing the proof. =

What has the no-name lemma to do with our investigation of rational invari-
ants of quivers ?

Well, a being a Schur root of a quiver Q is equivalent to PGL(e) = GL(a)/k*
acting almost freely on R(Q, ). Hence, we get as an immediate consequence
of theorem 13 :
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2.12.2. Proposition (Le Bruyn-Schofield)
Let o be a Schur root of the quivers @ and @', then the rational invariants
E(Q, @)L and k(Q', a)L(®) are stably equivalent.

2.13. Reflection functors.

Theorem 13 allows us to correlate the rational invariants for a Schur root «
with respect to different quivers. Now, we will see that one can also vary
the dimension vector a by applying the theory of reflexion functors due to
Bernstein, Gelfand and Ponomarev [16].

Let ¢ € Qo be a sink, that is for no ¢ € Q; we have tp = ¢ and let « be a
dimension vector. We form a new quiver Q' by reversing the direction of the

arrows connected to 7 and we define a new dimension vector 8 by 8(j) = «(j)
if ¢ £ j and B(3) = Z,w:i a(te) — o).

Consider the set
R(Q,0) ={V € R(Q,2); ®V(p) : ®rp=iV(tp) — V(i) is surjective}

and observe that all indecomposable representations belong to R'(Q, a) so in
case o is a Schur root for @ then R'(Q, ) is an open subvariety of R(Q, o).
Similarly we consider the set

R(Q',8)={V € R(Q',B): dV(p) : V(4) — Bp=iV (he) is injective}

then, if R'(Q, ) is open in R(Q,a) so is R'(Q’,8) in R(Q, B).

2.13.1. Theorem (Bernstein, Gelfand, Ponomarev)
With notation as above, there exists an homeomorphism between R'(Q,a)/
GL(e) and R'(Q',')/GL(B) such that corresponding reservations have iso-

morphic endomorphism rings.

For a nice proof of this result we refer the reader to the excellent survey
paper by Kraft and Riedtmann [28]. Here we content ourselves by indicating

the map between R'(Q, ) and R'(Q’, B). Consider a V € R'(Q,a), then we
have the exact sequence

0 — Ker @ V() —= @nopiV (t0) ZXEV(5) — 0
Now, the corresponding representation W € R'(Q',8) consists of W(j) =

V(j)if i # j and W () = Ker® V(p). Moreover, the maps corresponding to
the arrows in Q' beginning in ¢ are pr; O % Of ourse, for all other ¢ € Q) :
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W(p) = V(p). From theorem 14 it follows that 3 is a Schur root for Q' and
k(Q, 0)¥H = k(Q', B)9H®.

2.14. Connection with matrixinvariants.

We are now in a position to link our study of the representation theory of
(wild) hereditary algebras to that of matrix-invariants.

2.14.1. Theorem. [Le Bruyn, Schofield 1987]
Let o be a Schur root for the quiver Q. Let n = g.c.d.(a(?) : 1 < 5 < m).
Then the field of rational invariants k(Q, o) ¥X(%) is stably equivalent to Za -

Proof. Let i € Q. be such that a(7) = kn is minimal and let § € Q, be such
that a(j) = In and k& does not divide I, say [ = ak — b with 0 £ b < k.

We can now form a new quiver Q' on the same vertex set with precisely a
arrows pointing from ¢ to j. We demand that all other arrows live on Q) — {7}
in such a way that « is a Schur root for Q'. Note that this can always be

done for example by throwing in lots of loops.

Example :
Q Q' Q"
0 0 0 0 0 0
2n 3. 2n 3n 2n n

From proposition 6 it follows that k(Q,a)%%®) is stably equivalent to
k(Q' ,a)GL(a). Now, we can apply the reflexion functor in the vertex j and
we obtain a quiver Q" and a dimension vector " s.t. a"(I) = (1) for I # j
and o'(j) = bn < kn. Moreover, by the results mentioned in section m we
have that k(Q', «)?L(®) is isomorphic to E(Q",0)%H(®), Note, that Q" has

a vertex with smaller dimension than o.

Applying the same game to the quiver Q" a finite number of times we end
up with a quiver @"' and a dimension vector o'’ s.t. g.c.d. («"'(i)) = n and
for some i € Qg : &"'(2) = n.

Now, we form a quiver Q1 with precisely k arrows pointing from ¢ to j if
a"'(7) = k,n and two loops in 3.

In our example

QIII Q-+
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then o' is easily seen to be a Schur root for Q. So, the rational invariants
k(Q, a)¥(®) are stably rational to k(QT, a™)CL(@™) | Now, we can apply
reflexion functors in all vertices j # ¢ and we end up with the fact that

k(Q', o")CH™) = k(M (k) © M, (k)5 = Z, ,

which finishes the proof. o
Again, applying Formanek’s results on the rationality of Z, , we obtain.

2.14.2 Proposition : Let a be a Schur root for a quiver Q with g.c.d.
(af?) : 4 € Qo) < 4, then the rational invariants k(Q, a)¥X(® are stably

rational.

As an example of the usefullness of theorem, 15 let us consider the special
case of the n-subspace problem. This problem asks for the determinations
of the possible positions of r subspaces in a vector space, or, equivalently, of

the indecomposable representations of the quiver

1
2
; 00 (@)

To

on r + l-vertices, i.e. the study of modules over the finite dimensional k-

algebra
kE k& k k
0 £ O 0
Ar = 0 .
0 k
For a given dimension vector (ag; a1,...,a,) the geometrical problem is that

of studying G L(ao)-orbits in the variety
Grass(a1, ag) X ... X Grass(a,,a,)

which was one of the testingexamples for Mumford’s Geometric Invariant
Theory. It turns out that one can only have a nice quotient variety provided
there are stable points. We will not go into the formal definition of stability
w.t.z. a groupaction on a variety (see [37]) but we merely recall that Mumford
gave a combinatorial description of stable points in the above variety. He
proved that a point (u1,...,u,) in Grass(a1,a9) X ... x Grass(a,, aq) is stable
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w.z.t. the natural GL, (k)-action if and only if there does not exist a proper
subspace 0 £ V € k% s.t.

E:'"=1 dimk(Vﬂ U.,;) > ZdimkUk _ E:__:l a;
dimy (V) - a4

When one has stable points one can construct the quotient variety
X;_,Grass(a;,a0)/GL(ao),

see e.g. [37], [38], [27]. Apart from some easy cases where one can explicitly
describe this quotient variety nothing seems to be known about its rationality.
A. Schofield has shown that & = (ag;a1,...,a,) is a Schur root for the quiver

@~ if and only if there are stable points for the groupaction. So, we get

2.14.8. Proposition : Suppose there are stable points for the natural action
of GL(ao) on Grass(ai, a.) X ... x Grass(a,, ag). If n = g.c.d.(ag,ay,...,a,),
then the functionfield of the quotient variety is stably equivalent to Z5 ,. In
particular, if n < 4 the quotient variety is stably rational.

One again, there does not exist a geometrical proof of this result. We hope
to have shown that a seemingly innocent problem in p.i. theory turns out to
have deep connection with algebraic geometry. Surprisingly, ringtheoretical
results such as Formanek’s rationality give new geometrical results, such as
rationality of M(3,0,3) and M (4,0, 4) or stable rationality of many instances
of the r-subspace problem, for which there is no geometrical proof at this
moment. In short, good ringtheory cannot be so bad after all.
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