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1. Introduction

Cellular automata are structures evolving on a lattice according to a definite deter-
ministic local law. They were first introduced by Von Neumann [12] and Ulam [11]
as examples of simple structures presenting some of the features of life. Recently,
there is some renewed interest in them due to the popularity of artificial intelligence
and parallel computing on the one hand and their suitability to simulate complex
physical phenomena on the other hand. We refer the reader to [8], [9], [13-14] for

more details.

Some cellular automata have a simplifying additivity property, i.e. their local tran-
sition rules are linear. A class of finite additive cellular automata has been studied
in a recent paper by Martin, Odlyzko and Wolfram [8]. A general framework for
additive cellular automata will be presented in a joint paper with M. Van den Bergh

[6].

In this paper we concentrate on the problem for a configuration to be periodic in
time for any type of infinite onedimensional additive cellular automaton. In a recent
paper Cordovil, Dilao and da Costa [4] proved that such configurations necessarily
have to be periodic in space, too. The generic spatial periodicity for a configuration
of temporal period n is denoted by a(n). In [4] a very time consuming algorithm

was given to compute a(n). In this paper we show that a(n) is precisely the period
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of the polynomial 7™ — 1 as defined in [2]. Berlekamps algorithm to compute the
period of any polynomial is recalled and adapted to the special case of interest to
us. Besides providing an efficient algorithm, it also gives short arguments for some
of the results from [4] and explains the large numerical values for a(n) in the tables
of [4].

Personally, it came as a surprise that deep number theoretical problems such as”
the factorization of generalized Mersenne numbers arise naturally from the study

of cellular automata.

2. The problem

e

Because it does not complicate our life, we will generalise the setting of [4] to any
finite field. As remarked above a general treatment of additive or linear cellular
automata will be presented in [6].

Let IFy be the finite field of characteristic p on ¢ = p” for some » € IN elements.
Of course, IF, = {0,1} is the case of prime interest to cellular automatists. With
IFqZ one denotes the vectorspace of r € Z elements. Of course, IF, = {0,1} is the
case of prime interest On IF qZ we have the shift operator o : IFqZ — IFqZ defined
by (oz); = Ziy1.

With IF,[o,0~'] we will denote the JF',-algebra of linear functions finitely generated
by the automorphisms {o" : » € Z}. For every 7 € IFy[o,07] we call the ordered
pair = (ZF:/’ ,7) the onedimensional infinite cellular automaton defined over IF,
with linear time evolution rule 7, that is if the configuration at time t is given
by z(t) = {x(t); : i € Z} then at the next clock pulse we have z(¢ + 1) where
z(t+1); = (1.2(%));. Some well known of these cellular automata (over IF;) are
Wolfram’s rule 90 where 7 = o0+0~! or rule 150 where 7 = ¢~*+1+0. Generalizing
[4,def 2.2] we define

Definition : Let A = (IFQZ, 7) be an additive cellular automaton as defined above
and let » > 1 be a natural number. We say that a configuration z of A has temporal
period n if and only if 7”2 = z. In this case we say that z is a periodic orbit of A.
The spatial period a(z) of the configuration z is defined to be the smallest natural
number 7 such that z;,, = ; for all ¢ € Z if it exists or a(z) = co other wise.

With «(n) we denote the largest a(z) from all the configurations z of A with

temporal period n.

We will now briefly discuss the Cordovil-Dilao-da Costa algorithms to compute
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a(n). =37 ,,Ao® with Ay, Ap» # 0 they denote s(7) = m” — m' and define
v(r) = s(7+1) if 7+ 1 7# 0 and y(1) = 1. Then (1) is called the breath of the
transition rule 7. Suppose z is a configurat ion of 4 = (Fzz , 7) with temporal period
n. Then from [4, 2.3.1] the entries are uniquely determined by the v(7") entries
{Xo, X1,000y Xy(rny—1}. Let X' € F;(Tn) such that for every 0 <1 < 4(7") — 1 we
have (X'); = X; then there exists a linear endomorphism of IF';'(Tn), say L, such
that for every m € Z and every 0 < ¢ < 4(7") — 1 we have in the canonical basis
of ]F;(Tn) : (L™2'); = ;. With respect to this basis the matrix corresponding to

L has the form

000 ... 0 a

1 0 0 ... O ay
A4=10 10 ... 0 a

0 0 O cos 1 a,y(.,-n)_l

where the a; can be determined from 7 by [4, 2.3.1.]. One says that A (resp.
L) is the companion matrix (resp. linear application) of the configurations of A
with temporal period n. The main result [4, Th. 2.10] then states that a(n) is
the smallest positive natural number such that A%(") = I the identity matrix.
Moreover, if d divides n then by [4, Cor. 2.11] a(d) divides a(n) and if n = 27d
then a(n) = 2"a(d).

Cordovil, Dilao and da Costa then risk the conjecture that there are no other
properties for a(n), i.e. there are no short cuts in the algorithm for general = and

general n other than those coming from the divisibility properties mentioned above.
3. An efficient algorithm to compute a(n)

In this section we will reduce the problem of finding periodic configurations to that
of finding zero divisors in finite groupalgebra over IF,. This will allow us to identify
a(n) with the period of a polynomial.

Let X = {X; : ¢ € Z} be a configuration of an additive infinite onedimensional
cellular automaton A = (IF qZ,T) which is temporal cyclic of order n and spatial
temporal of period a(z) > 4(7™). Since z is totally determined by its entries
{Xo, X1, ..., Xo(x)~1} We can consider it as an element of the finite group algebra
IFy|Z |0 X) Z) = IFy[0]/(c*X) —1). Since X is of temporal period n and a(X) >
¥(7™), then temporal behaviour of X is fully determined by its representant in
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IF,|Z [o(X)Z] with respect to multiplication with 7 in IF[Z /a(X)Z] where
we denote by T the image of c~™ 7 in IFy|Z [o(X)Z). The condition of being
temporal period of order n then translates into (7™ —1).X = 0 in IF[Z /a(X)Z].
Since the structure of these group algebras can be totally described (e.g. in case
P |/a(X) it is just the direct sum of extension fields of IF, corresponding to the
irreducible factors of the cyclotomic polynomial 6™ — 1; in general one first has to
divide out the Jacobson radical, see e.g. [1] for more details) it is perfectly possible
to describe all temporal period n configurations with spatial period o(X).
However, if we do not want to know all periodic configuration, but only a(n) we
do not really need to know the structures of the group algebras IF [Z /mZ] for
m € IN.

Following [2, p.150] we define the period of a polynomial v(¢) € IF,[o] with coef-
ficients in the finite field IF; to be the smallest natural number 5 such that (o)
divides 67 — 1 in the unique factorization domain IF,[o]. In view of the foregoing

remarks it is then easy to see that :

THEOREM : Let A = (IFf,T) be a cellular automaton defined over the finite
Aio® and denote t = o™ 1 € IF [s].

Then, for any natural number n the spatial period parameter a(n) coincides with

field IF; with transition function 7 = X7 _,,

the period of the polynomial ¢* — 1 in IF,[c].

Fortunately, there is an efficient algorithm to compute the period of any polynomial
[2, ch.6] due to E. Berlekamp. For the convenience of the reader we will briefly
outline the main steps.

Suppose that y(o) = I ;(f;(¢))™ is a factorization of the polynomial v(¢) in
irreducible factors. Assume that the irreducible polynomial +;(c) has period n;
over IFy (which is of characteristic p), then the period of (o) is the least common
multiple of the n; multiplied with the least power of p which is not less than any
of the m;, [2,th 6.21]. So, the period of a polynomial is determined by the periods
of its irreducible factors. Using Berlekamps factorization algorithm [2, 6.1] or [5]
it is perfectly possible to factorize binary polynomials of degree < 10.000. Since
we only need to factorize polynomials of the form t* — 1 in IF[o] we can speed
up things by first factorizing the cyclotomic polynomial ¢™ — 1 which can be done
very fast by considering polynomials of the form g = Sjcxo® where K is any set
of numbers which is closed under multiplication by ¢ modulo n and computing by
Euclid’s algorithm the greatest common divisor of 6™ — 1 and g — s for s € IF,, see
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[2, 6.4] for more details. The case IFy = IF'; is especially easy to handle. Once we
know a factorization of ¢™ — 1 we replace o in the factors by 7 and factorize these
polynomials further.

Since 0¢ — 1 divides o™ — 1 iff d/n and since 77°¢ — 1 = (7¢ — 1)?" we immediately

obtain from the above discussion the following generalization of [4, Cor.2.11].

COROLLARY : Let A= (qu ,7) be an infinite onedimensional additive cellular
automaton defined over the finite field IF\; where ¢ = p” and let d and n be two
positive natural numbers. Then, if d/n, a(d)/a(n); in particular (1) divides a(n).
Moreover, if n = d and 4(7) > 1 then a(n) = p®a(d).

We still have to determine the period of an irreducible polynomial f(o) in IF,[o].
Since the period of f(o) is equal to the multiplicative order of its roots it has to be
a factor of ¢™ — 1 if the degree of f(o) is m. Therefore, the first step is to find a
complete factorization of the integer ¢™ —1 = ||, p;* into prime numbers p;. We can
then determine whether the period is a multiple of p;’ by calculating the residue
of o(@™=1/7 modulo f(o). This can be implemented as in [2,6.2]. Repeating this
procedure for all prime factors of ¢™ — 1 we can determine the period of f(o).
Note that the hardest part in this algorithm is to find the complete factorization of
the generalized Mersenne numbers ¢"™ —1. At this moment, there are very powerfull
algorithms to factorize large (say about a hundreth digits) numbers e.g. by Lenstra’s
factorization method using elliptic curves [7], see also [10] for a discussion of other
algorithms. However, again there is a considerable shortcut in the case of prime
interest to us, that is I[F\y = IFy. Then, we have to factorize 2™ —1. Over the years a
huge amount of knowledge is accumulated about the factorization of these Mersenne
numbers. For instance Brillhart and Selfridge [3] gave already in 1967 the complete
factorization of all such numbers with m < 136. Since then the factorization tables
are significantly extended, see for example [10,tables] which contain the complete
factorizations for m < 260. So, we can bypass this problem by referring to the
tables. Sometimes, 2™ — 1 is itself a prime number (a so called Mersenne prime)
hence the period has to be 2™ — 1 explaining some of the large values of a(n) in
the tables of [4].

It came as a surprise to me that determining the spatial parameter a(n) of infinite
onedimensional additive cellular automata for moderatly large values of n needs
deep number theoretical results such as the factorization of generalized Mersenne

numbers ¢"™ — 1.
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