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Abstract
In this note we show that the concomitants of a quiver with symmetric Ringel form
associated to a root from the fundamental chamber is a reflexive Azumaya algebra except

for low dimensional anomalities.
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1. Introduction

Throughout this note we work over an algebraically closed basefield of characteristic
zero which we will denote by @ . A quiver Q is a fourtuple (@, @1,%, k) consisting of a
finite set of vertices Qo = {1,...,n}, a set of arrows Q; between these vertices and two
maps t,h: Q; — Qo assigning to each arrow its tail (resp. its head).

A representation V of the quiver @ consists of a family {V(%) : ¢ € Qo} of finite dimen-
sional @ -vectorspaces together with a family of linear maps {V(¢) : V(i¢) — V(he); ¢ €
@1}. The n-tuple dim(V(7)); € IN™ is called the dimensiontype of the representation V.
For a fixed dimensiontype a € IN™, the set of all a-representations of @ forms a finite

dimensional vectorspace
R(Q,a) = ®4eq, My(CT )

where M4(C@ ) is the @ -vectorspace of all a(h¢) by a(tp) matrices with entries in €. We
will consider the representation spaée R(Q, ) as an affine variety with coordinate ring
@ [Q, o] and functionfield @ (Q, «).

There is a canonical action of the reductive group GL(a) = [[;n; GLai:)(¢) on
R(Q, ) by (9.V)(¢) = gh¢V(¢)gt;1 for all ¢ € GL(a). The GL(a) orbits in R(Q, o)
are precisely the isomorphism classes of representations.

The quotient variety V(Q, ) = R(Q,a)/GL(«) that is the variety associated to the
ring of polynomial invariants @ [Q, a]*¥(®) parametrizes the isomorphism classes of a-
dimensional semi-simple representations. The geometry of this variety has been studied
in [LP]. In this paper we are interested in the quiver concomitants, that is we want to

investigate the ring of polynomial maps
R(Q,a) —» M(C@)

which commute with the action of GL(a) on R(Q, &) as described above and by conjugation
on M;(C ). Herel denotes ) ., a(z). If a is the dimension vector of a simple representation
, then this ring of quiver concomitants which we want to denote by T'[@Q, ] is a nice affine
Noetherian prime p.i.-ring. In analogy with trace rings of generic matrices [L2] one can ask
whether it is a maximal order, or even stronger, a reflexive Azumaya algebra. Although

we believe that this will be virtually always the case (discarting possible low dimensional
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counterexamples as for trace rings the case of 2 generic 2 by 2 matrices) we will restrict

our attention here to the special case of quivers with a symmetric Ringel form.

We note that this special case is of interest even for finite dimensional algebras. For,
the preprojective algebra of a wild hereditary basic algebra is known to be a quotient of
the path algebra of a quiver with symmetric Ringel form. In a forthcoming paper we will
apply the results obtained here to the study of finite dimensional representations of these

preprojective algebras.

2. The fundamental chamber and simple representations

The dimension vectors of simple representations were described in [LP]. Let us briefly
recall the result here. If Q is an arbitrary quiver, we have the bilinear Ringel form R
on Z" determined by R(e;,e;) = &;; — r;; where e; = (6;;); is the standard basis for Z™
and r;; is the number of oriented arrows from ¢ to j. Further, we call a full subquiver Q'
of @ a club provided every couple of its vertices belongs to an oriented cycle within Q'.
Then : a € IN" is the dimension vector of a simple representation iff either supp(a) is one
oriented cycle and all a(%) are equal to 1 or supp(a) is a non-cycle club and for all 7 we
have R(e;, o) <0 and R(e;, o) < 0.

Further, we recall that the definition of the Tits form associated to the quiver Q is
determined by T'(e, 8) = 2(R(e, 8)+ R(B,«)). The fundamental chamber , see for example
(Ka] , is then defined to be the set F(Q) consisting of those nonzero vectors in IN® such
that T'(e;, ) < 0 for all ¢ and supp(«) is a connected graph.

Combining these fact we have the following

Lemma 1 : For any quiver @ with symmetric Ringel form the set of dimension

vectors of simple representations coincides with the fundamental chamber F(Q).

Therefore, the set of dimension vectors of simple representations is a solid cone in IN®
with bounding hyperplanes determined by the linear equations R(e,e;) = 0. There is just

one counterexample : the two point,two edges quiver.
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3. A combinatorial lemma

In this section we single out an easy but boring combinatorial lemma which will be

essential in the proof.

Lemma 2 : If o, 3, are dimension vectors of simple representations of a quiver @
with symmetric Ringel form such that o = 84+ and (%) > 2 for all 7 , then R(S3,7v) < —1
or we are in one of the following three situations

(A):a=(2,2,2),8=v=(1,1,1) and Q is the quiver

(B):a=(2,2),8=v=(1,1) and Q is the quiver

D —

(C):a=2,=9=1 and Q is the two loop quiver.

proof : Let us assume that R(8,v) = R(,8) > —1. Then, since R(B,¢e;) < 0
we know that for all but at most one ¢ € supp(y) (say 75) we have R(8,e;) = 0 and
R(B,ei,) = —1,7(io) = 1. Si,ilarly, for all but at most one j € supp(B) (say jo) we have
R(7,e;) = 0 and R(v,¢j,) = —1,B(jo) = 1.

Next, we claim that supp(«) = supp(B) = supp(~y). For, suppose: € supp(v)—supp(B)
then ¢ 5 4o since then a(iy) = v(ig) = 1. So, R(B,e;) = 0 but then R(ej,e;) = 0 for all
J € supp(B). This would imply that the matrix defining the Ringel form has the following

shape
supp(y) — supp(B) supp(B)

supp(y) — supp(p) { * 0 ]

supp(B) 0 *

which is impossible by the clubassumption on supp(a). Hence supp(y) C supp(y) and by
symmetry we obtain supp(y) = supp(B) as claimed.
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Consider first the case when iy # 75, then

R('Y’ 7’0) = R(eioa eio) + Z 7(j)R(ej, eio) =0
J#ie
By an argument as above not all R(e;,e;,) can be zero. So, R(e;,,e;,) = 1 (i.e. there is
no loop in ¢y) and there is a unique j (say ¢;) such that R(e;,,e;,) # 0 and R(e;,,e;,) =
""1,’)’(1:1) =1.If il 7é jo then

0= R(77ei1) = R(eiueh) -1+ Z 7(k)R(ek,ei1)
k#io,i1

< Y (k) R(esei)
ki1
whence for all k # 4g,%; we get R(eg,e;,) = 0. Similarly, if ¢; = j, we can repeat the same

argument with § instead of «v. Therefore, the quiver @ must be

—

—

and v = (1,1) contradicting that « is the dimension vector of a simple representation.
So, we are reduced to the case that 7y = j, = 7. That is we have 8(¢) = v(3) = 1,

R(B,e;) = R(v,e;) = —1 and for all k # ¢ we get R(B,er) = R(v,ex) = 0. Now,

~1=R(B,e;) = B(i)R(ei, ei) + ), B(k)Rlex, e:)
Assume first that there are no loops in ¢ , i.e. R(e;,e;) =1, then there are three possible
situations :

(I) : For all k # ¢,l,m we have R(ex,e;) = 0 and R(ei,e;) = R(em,e;) = —1 ,
B(l) = B(m) = 1. Then similarly also ¥(I) = 4(m) = 1. But then 0 = R(B,e;) =
B()R(e1,er) + B(i)R(er, e:)+ Ek#’lﬁ(k)R(ek,el) which is smaller or equal to the last
term which must be negative unless for all k 5 4,] we have R(eg,e;) = 0 . Similarly we
have for all k£ # ¢,m that R(e,en) = 0. This gives our first counterexample : the quiver

@ is then




and a = (2,2,2) , 8 =v=(1,1,1).

(II) : For all k 5 4,! we have R(ek,e;) = 0 and R(ej,e;) = —1, B(1) = 2 (and similarly
7(1) = 2).But then 0 = R(B, ;) is smaller or equal than 1+ >3, ., ; B(k)R(ex, er). Hence
for all k # 4,l,m we must have R(ex,e;) = 0 and R(em,€;) = —1, f(m) = 1. But then
R(B, e ) is smaller or equal than —1 which is a contradiction, i.e. this case does not occur.

(III) : For all k& # 4,1 we have R(eg,e;) = 0 and R(e, e;) = —2, B(I) = 1 (and similarly
(1) = 1). But then R(B,e;) is smaller or equal than —1 so this case too cannot occur.

Next assume there is a single loop in ¢, i.e. R(e;,e;) =0, then for all k£ # ¢,] we have
that R(ex, e;) = 0 and R(e,e;) = —1, B(I) = 1 and similarly () = 1. But then we obtain
from R(B,e;) = 0 that there are no loops at ! and for all k # 4,l we have R(ex,e;) = 0.

Hence, we get our second counterexample : the quiver @ is

—

and a =(2,2), =~ =(1,1).
The only remaining case gives our third counterexample : the two loop quiver in 3

anda=2,8=vy=1.

4. The singular locus of the quotient variety

T = (M, a1 ...; Mk, o) is said to be an admissible a-representation type if each of the
o; are dimension vectors of simple representations of the quiver Q and o = Ele m;a;.
With V(7) we denote the set of points in the quotient variety V(Q,a) = R(Q,)/GL(«a)
corresponding to semi-simple representations of type 7. These sets form a finite stratifica-
tion into locally closed smooth algebraic subvarieties of V(Q, ) , see [LP].The set of points

corresponding to simple representations forms an open subvariety V(1,a) of V(Q, ).

Proposition 1 : Let a be a root from the fundamental chamber of the quiver Q
with symmetric Ringel form such that «(7) > 2 for all vertices 7 , then the set of smooth
points of the quotient variety V(Q, ) coincides with V(1, o) except for the cases (A),(B)
and (C) mentioned above. In those cases the quotient variety is the five dimensional affine

space.




proof : Let us first consider the general case. If 7 # (1, «) it follows from the strat-
ification result of [LP] that V(7) lies in the closure of one of the subvarieties V(1,8;1,7)
where B and -y are dimension vectors of simple representations (use the fact that in this
case the set of all simple dimensionvectors is a convex cone). It is clear that V(1, a) con-
tains only smooth points. Assume now that there are more smooth points. Since they
form an open subvariety there must be smooth points in at least one of the V(1,3;1,~).
Let us compute the étale slice representation in such a point , see [LP] for more details.
The coordinate ring of the slice representation is the ring of polynomial invariants of the
quiver Q(8,~) on two points with 1 — R(8,8) loops in vertix 1 , 1 — R(~, ) loops in vertex
2 and there are —R(f3,~) directed arrows from 1 to 2 and from 2 to 1; the corresponding
dimensionvector is (1,1). Since this is a torus action one can readily verify that the coor-
dinatering is a polynomial ring in 2 — R(8, 8) — R(,v) indeterminates over the coordinate
ring of rank one —R((,v) by —R(f,v) matrices. This last variety always has a singularity
in the origin provided that R(8,~v) < —1 which is the case by lemma 2 . Therefore none
of the varieties V(1,8;1,v) can contain smooth points finishing the proof.

As for the special cases : we know that the coordinatering of the quotient variety is
generated by traces of oriented cycles in the quiver. In case (A) this ring is generated by
Tr(Az1 A1), Tr(AzsAss) , Tr((A21412)?),Tr((A2s As2)?) and Tr(Az; A15Ass Agy). In case
(B) it is generated by Tr(A;),Tr(A?), Tr(A12421), Tr((A12421)?) and Tr(A;413451). In
case (C) is is generated by T'r(A;), Tr(By), Tr(A2),Tr(BZ) and Tr(4A;1B;).

5. Concomitants are reflexive Azumaya algebras

Let us start by recalling the definition of a reflexive Azumaya algebra, see for example
[Yu] or [L]. Let A be an order over a normal domain R in a central simple algebra ¥ over
its field of fractions K. Then A is said to be reflexive Azumaya iff the localization at each
height one prime ideal p of R, A, is an Azumaya algebra over R, and if A is a reflexive

R-module. Note that a reflexive Azumaya algebra is a maximal order.

Proposition 2 : Let o be a root from the fundamental chamber of a quiver Q

with symmetric Ringel form such that «(7) > 2 for every vertex ¢ then the ring of quiver
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concomitants T'(@, «) is a reflexive Azumaya algebra except for the three cases mentioned

above where it is a maximal order.

proof : In view of the Artin-Procesi result, see for example [Ar] this result comes
down to checking that the codimension of the closed subvariety corresponding to decom-
posable semi-simple a-representations is greater or equal to two. Note that since « is the
dimension vector of a simple representation it follows from [LP] that the dimension of the
quotient variety V(Q, ) is equal to 1 — R(a,a). Moreover, it follows from the stratifi-
cation result mentioned above that every decomposable semi-simple representation lies in
the closure of one of the (locally closed) subvarieties V(1,;1,~) which are of dimension
2—R(B,8)— R(v,~). Since a = B+ and the Ringel form is assumed to be symmetric, the
condition that the codimension of V' (1, 8;1,7) is at least two comes down to the condition

R(f,7v) < —1 which is the content of lemma 2. This finishes the proof in the general case.

In the special cases (A),(B) and (C) the quiver concomitants are easily seen to be
isomorphic to M3(Tl,5), resp. My(Tl2,) and T, , where T, is the trace ring of two

generic two by two matrices which is known to be a (ramified) maximal order.

Reflexivity follows as in the proof of the Artin-Schofield [L2] result from the fact that
there is no bloWing up in the extension € [Q,a]%¥(®) C @'[Q,«] in view of the foregoing

results and the Luna slice theorem.

In contrast to trace rings of generic matrices it is no longer true that the ring of
polynomial invariants is a unique factorization domain and consequently that the the ring
of quiver concomitants has trivial centralizing or normalizing classgroup. An easy but
interesting example is givén in [LP1] : the quiver concomitants of the two point quiver
with two directed arrows from 1 to 2 and from 2 to 1 associated with the dimension vector
(1,1) gives a reflexive Azumaya maximal order which even has global dimension three
but is has an height one prime which is not generated by a normalizing element since the

classgroup of the ring of polynomial invariants is isomorphic to Z.

Finally we note that the cohomological interpretation of the reflexive Brauer group

obtained in [L] is explained in these cases by proposition 1.

9




References

[Ar]: M. Artin ; On Azumaya algebras and finite dimensional representations of rings
; J. Algebra 11 (1969) 532-563

[Ka] : V. Kac ; Infinite root systems,representations of graphs and invariant theory ;
Invent. Math. 56 (1980) 57-92

[L] : L. Le Bruyn ; A cohomological interpretation of the reflexive Brauer group ; J.
Algebra 105 (1987) 250-254

[L2] : L. Le Bruyn ; The Artin-Schofield theorem and some consequences ; Comm.Alg.
14(8) 1439-1455 (1986)

[LP] : L. Le Bruyn,C. Procesi ; Semisimple representations of quivers ; to appear

[LP1] : L. Le Bruyn,C. Procesi ; Etale local structure of matrixinvariants and con-
comitants ; Proceedings Algebraic Groups Utrecht 1986 , Springer LNM to appear

[Yu] : S. Yuan : Modules and algebra classgroups over Noetherian integrally closed

domains ; J. Algebra 32 (1974) 405-417

10




