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1. Introduction.

The purpose of this paper is to investigate the automorphisms of the ring of 2 generic
2 by 2 matrices G. Along the way, we will have to analyze the automorphisms of related
algebras as well : the trace ring T, its center C, the ring of 2 generic 2 by 2 trace zero

matrices T° and some Clifford algebras.

In [Be], G. Bergman has constructed wild automorphisms of rings of generic matrices
in connection with the commutative tame automorphism problem that we recall in sec-
tion 1. Concentrating on the ring of 2 generic 2 by 2 matrices, one can get more specific
information on the automorphisms. According to [FHL] and [Pro], the center of the cor-
responding trace ring is a polynomial algebra in 5 variables and one can then investigate
the induced automorphisms. The main result is that all automorphisms of G that we can

construct induce tame automorphisms of C.
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On the other hand, the study of 7° leads to automorphisms that can reasonably be
considered as wild as is defined in section 4 and such that the induced automorphisms
on the 3-dimensional polynomial center is Nagata’s automorphism up to a linear change
of coordinates. This last automorphism is commonly considered as a good candidate for
a wild automorphism on 3-dimensional affine space; and it appears as the restriction to
the center of a wild automorphism of a 3-dimensional, yet 2-generator non-commutative

algebra T°. Perhaps this adds evidence to its conjectural wildness.




2. Tameness and Nagata’s automorphism.

(2.1) : Let k be a reduced commutative ring and let GA, (k) be the group of k-
algebra automorphisms of £[X4,..., X,]. GAn(k) has two natural subgroups ; Af,(k) the
affine automorphisms and BA,(k), the triangular (or Jonquiére) automorphisms. They

are defined by

I 1 a1
Afn(k) : x:2 — 0. a::z + o
Zn z.n an
z a1z + Pi(z2, ..., Ts)
BAL(K) : :1:'2 _ agzy + Pz.(xs, ey Ty
:B.n OnZy

where 0 € GLy(k), a; € k , a; € k* = Gpu(k) and Py(zi11y..., Tp) € k[Tit1, ..., Ty] for all
1<:<n—-1.
The subgroup of GA, (k) generated by Af,(k) and BA, (k) is called the group of tame

automorphisms. The main open problem in this context is
Problem 1 : If k is a field, are all automorphisms in GA, (k) tame ?

For n = 2, this is a classical result which describes GA3 (k) as an amalgamated product
of Afz(k) and BAa(k) along their intersection ([Ju],[Na],[Re],[Va]). If k is not a field,

Nagata considers in [Na] the following automorphism of K|[z,y, 2] where K is a field :

—  z—2y(y? + z2) — 2(y? + z2)?

T
o:y — v+ 2(y? + z2)
z — 2

Theorem (Nagata) : o considered as an element in GA2(K|[z2]) is not tame, but it

is tame considered in GA3(K][z,271])

To the best of our knowledge, the following problem is still open

4




Problem 2 : Is o tame considered as an element in GAz(K) ?

(2.2) : Non commutative analogues of this problem have been studied extensively.
The tameness notion is adapted to the considered non commutativity, the central idea
being to be generated by the most natural automorphisms. In the sequel we take k = ¢

in order to simplify the notation

(a) : The free algebra of rank 2 : In this case, tameness is defined as in the commutative

case and one has the following theorem ([Co],[Cz],|Di],[Ma1l])

Theorem :  There is a natural isomorphism between Auty @ < X,Y > and

Auty € [z7 y]

(b) : The Weyl algebra A;(@) : A1(C) = € [p,q] where [p,q] = 1. In this case,

tameness is defined by considering the subgroups S and B defined as follows

ap+ g+

s:?
‘g - dp+flet+y

where o' — Ba’ =1 and 4,4 € € and

where P(g) € @ [g] and o € @ *.Then, one has the following theorem ([A],[Dix],[Ma2])

Theorem : Auty (A3(C)) is the amalgamated product of S and B along their

intersection

(c) : Low dimensional enveloping algebras :
(i) : g soluble , dim(g) = 2 or 3 and ¢ not nilpotent. In this case tameness is defined
replacing Af, (@) by the group generated by Auty g and the translations, and BA,(C)

by automorphisms triangular with respect to a basis of g adapted to the derived series of
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g. In [Sm1], the automorphism groups of U(g) are determined for different g’s and simple

inspection reveals tameness in all cases.

(ii) : g = si(2, € ). In this case, tame automorphisms are defined to be the ones which
are generated by automorphisms of U(sl(2, €')) fixing an element X € si(2,€ ). In [Jo], it
is shown that there exists wild automorphisms of U(sl(2,€))

(iii) : g = g3 , the nilpotent 3-dimensional Heisenberg algebra. In this case, tameness
is defined as in (i) , the derived series being replaced by the central descending series. In
[A], it is shown that a modified version of Nagata’s automorphism which accounts for the

non commutativity gives an example of a wild automorphism of U(gs)

The case of generic matrix rings was considered by Bergman [Be| and we will briefly

recall some of his results in the next section.




3. Bergman’s wild automorphisms of generic matrices.

In [Be], G. Bergman constructs different types of wild automorphisms of generic matrix
rings.In the special case of 2 generic 2 by 2 matrices, we will compute the extension
of certain automorphisms to the trace ring and their restrictions to the 5-dimensional
polynomial center. The wild automorphisms at the non coxﬁmutative level induce then

Nagata like automorphisms which become tame as we will see in the last section.

(3.1) : Let G be the ring of 2 generic 2 by 2 matrices , that is , the subring of

R = M3(C@ [zy, z2, %3, T4; Y1, Y2, Y3, Y4]) generated by the generic matrices

X=($1 xz);Y__:(yl yz)
I3 T4 Ys Ya

With Z we will denote the center of G and T will be the trace ring of G , that is , the
subalgebra of R generated by G and the traces of its elements. With C we denote the
center of T. Finally we introduce the ring T° of 2 generic 2 by 2 trace zero matrices, that
is, the subalgebra of R generated by X° = X — 1T(X) and Y° = Y — 1T(Y) where T(-)
is the trace map. The following result describes the relationship between these algebras

[FHL)

Theorem (Formanek,Halpin,Li) :

(i) : The commutator ideal of G is equal to T.[X,Y]

(ii): C=C[T(X), T(Y),D(X),D(Y), T(XY)] and T is a free C-module with basis
1,X,Y, XY

(iii) : G/[G,G] = € [z,y] a polynomial ring in 2 variables

(3.2) : For our computations, it is more convenient to consider 7° and its center
C° = ¢ [D(X°), D(Y?),T(X°Y°)]. One has the following relations
(i) : X°% = —D(X°), Y°% = —D(Y?), X°Y° + Y°X° = T(X°Y?)
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(ii) : D(X) = D(X°) + iT(X)?, D(Y) = D(Y°) + {T(Y)?, T(XY) = T(X°Y°) +
LT(X)T(Y)

(i) : [X,Y] = [X°,Y°] = T(X°Y°) — 2Y°X° = 2X°Y° — T(X°Y?), [X°,Y°]? =
T(X°Y°)? — 4D(X°Y°)

Hence in particular, C = @ [T(X),T(Y),D(X°),D(Y°),T(X°Y°)] and T is a free
C-module with basis 1, X°,Y°, X°Y°

(3.3) : Following Bergman, consider the diagram

¢c<xvy> % ¢

!
{’\ ¢ [z,y]
which induces the diagram

Autg @ <X, Y > 5 AutgG

il
P \ Autg € [z,y]

According to 2.2 (a) , ¢ is an isomorphism so ¢ is mono and 7 is epi. Now, let us define
the tame automorphisms of G to be the ones which are induced by automorphisms of

¢ < X,Y > (which are all tame); they are generated by the following types

X - X+P®)
Ty S Y

where P(Y) € € [Y]

X = X
'y 5 v
where c€ @ *
0.X - Y
'Y - X

Therefore, any non-trivial automorphism of G in the kernel of 7 will be wild. Let us give

a few examples :

(1) : Bergman gives the following wild automorphism of G

o X X+[X,Y]?
Ly o Y




One easily checks that oy fixes T° and that the induced automorphism on C is the
triangular one fixing all variables except 7'(X) which is mapped to T'(X) + 2[X,Y]? =
T(X) + 2T(X°Y°)2 - 8D(X°)D(Y°).

(2) : A slightly more complicated example which gives rise to Nagata like automor-
phisms is

on - X — X+Y[X,Y)?
'Yy - Y

Then, one verifies that o, induces an automorphism on T°. In the next section we will give

a more consistent procedure to produce automorphisms of the generic trace zero matrices.

Moreover, the induced automorphism by o3 on the center of the trace algebra C is given

by
rX) - T(X)+T(Y)[X,Y]?
T(Y) — T(Y)
D(X%) — D(X°)-T(X°Y9)[X,Y]?+ D(Y°)[X,Y)?
D(Y°) - D(Y?°)
T(X°Y°) — T(X°Y°) — 2D(Y°)[X,Y)?

The restriction of o2 to C° is then a Nagata like automorphism of C°. In the last section

we will see that o3 | C is a tame automorphism.




4. Constructing weird automorphisms.

In this section we will present a method to construct automorphisms of T°, the generic
trace zero ring for 2 2 X 2 matrices. This method rests on the description of 7° as a
generic Clifford algebra, see [LB]. Our construction can be used also to construct weird
automorphisms on commutative polynomial ring and on the ring of m generic 2 by 2 trace

zero matrices T3,.

(4.1) : Let us first recall some basic facts on quadratic forms and their Clifford alge-
bras, see for example [Ba] for more details.Let R be a commutative ¢ -algebra. Then any

quadratic form

m
q= Z ;i X X;

t,5=1

with ;5 = «;; € R induces a symmetric bilinear form on a free R-module of rank m
P=Re; ®...D Rey,

by defining B(e;, e;) = a;;. The Clifford algebra of P associated to the quadratic form ¢
is defined to be the quotient of the tensor R-algebra T(P) of P by the ideal generated by

the elements of the form

p® p— B(p,p)

for all p € P. If we give the tensor-algebra the usual gradation, it follows that the Clifford
algebra CI(P,q) has an induced Z/2Z-gradation, i.e. CIl(P,q) = Co ® C;. There is a
canonical R-algebra automorphism on CI(P,q) sending co @ ¢; to ¢o & (—c¢;) which is

called the main automorphism.
In [LB] the so called generic Clifford algebras Cl,,, were introduced. Cl,, is the Clifford

algebra over the polynomial algebra

Sm=Cla;;:1<:< j<m]
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that is, the homogeneous coordinate ring of the variety of all symmetric m by m matrices,
corresponding to the generic quadratic form
m
Im = Z a;i; X X;
2,5=1
Genericity here means that any Clifford algebra of an m-ary quadratic form over € can
be obtained as a specialization of Cl,,. One can show, [LB] , that Cl,, is isomorphic to

the iterated Ore extension
Clai; : 1 <1< j < mai][az,02,62]...[am,0m; 6]

where 0;(a;) = —a; and 6;(a;) = 2a;; for all ¢ < j and trivial actions on the other variables
and a;; = a?. In particular, Cl,, has finite global dimension equal to —@L";lll, is a maximal
order ans has p.i.-degree equal to 2% where « is the largest natural number smaller or equal
to %

Restriction of automorphisms of Cl,,, to S,, gives an exact sequence
1 Z/2Z — Auty Cly, — Auty Sy = GAmimsny (C)
2

the kernel being generated by the main automorphism. Therefore, in order to describe
the automorphism group of the generic Clifford algebra we aim to compute Aut(S,, :
Cl,,) which is the subgroup of Auty Sy, consisting of those automorphisms which can be
extended to Cl,,. A large subgroup of them can be described in the following way :

Let o be an automorphism of S, , then o extends to Cl,, if and only if Cl,, =, Cl,,
as Sy,-algebras where ,C1,, is equal to Cl,, as an abelian group and with S,,-action given
via s ¢ = 071(s).c for all s € Sy, and ¢ € Cl,,. Now, it follows from the definition that

«Cl,, is the Clifford algebra over S,, associated to the m-ary quadratic form

o7Mg) = Y o (ai) XuX;
1,j=1
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Now, it is well known that two Clifford algebras are isomorphic if their corresponding
matrices are congruent.That is, if there exists an invertible matrix A € GL,,(Sy,) such
that

A" (ai5)i5. A = (07" (ai;))s,
These observations make it possible to determine lots of elements of Aut(S,, : Cl,,) by
determining which of the endomorphisms of S, determined by sending a;; to the (7, 5)-
entry of the matrix A"(a;;); ;A for A € GLy,(Sy) are automorphisms (which can be tested

by calculating the Jacobian).

(4.2) : We will now see what the above general procedure gives us in the special case
that m = 2. For notational simplicity we will let £ = @11,y = @12 and z = a32.Let us

consider the easiest case of an elementary matrix

(5 3)

for some f € € [z,y, 2] = S;. As we have seen above, this matrix induces an endomorphism
on € [z,y, 2] which is given by

— z+2fy+ f22
— v+ Sz
— z

LCI =

To check when this is an automorphism we can calculate its Jacobian

1+2y0.f +2f20.f 2f+2y0yf+2f20,f =
20, f 1420, f
0 0 1

If we set the determinant equal to 1 we get the equation
2y8.f +20,f =0

which implies that f € € [z,y% — z2]| as can be readily verified. Moreover, any such f

clearly induces an automorphism on € [z,y, 2] .
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(4.3) : Note that for any m there is a natural epimorphism
b/ G < Xl, seey Xm >_’ Clm

which is determined by 7(X;) = a;. Therefore, the natural notion of tame automorphisms
of Cl,, is that they are the automorphisms which can be lifted to tame automorphisms of

the free algebra ¢ < X, ..., X,, >. Using this convention we can now prove
Theorem : If f € @ [y? — z2]|, then the induced automorphism on Cl; is wild

Proof : In generalif an endomorphism of S,, determined by an element A €
GL,,(Srm) is an automorphism, the extension of it to Cl,, is given by sending a; to the

i-th entry of the vector
ay

AT
Cm

Now, if f € € [y? — z2], the induced automorphism on Cl; is given by

a — a1+fa2
a; — as

It is east to verify that this automorphism fixes the normalizing element [a;, a;] and hence
induces an automorphism on the quotient Cly/Cl3[a;,az] which is a polynomial ring in
the images of the a; say @ [u,v]. Since [a;,a2]? = y® — zz it is clear that this induced au-

tomorphism on @ [u,v] is the identity. But we have seen before that the natural morphism
Auty € < X4, Xy >— Auty € [u,v)

is an isomorphism, so the automorphism on Cl; being non-trivial cannot be lifted to an

automorphism of ¢ < X7, X, > and hence is not tame.

Remark that the special case when f = y2 — zz gives us the Nagata automorphism so

the foregoing result may add some evidence to the conjectural wildness of this automor-
phism.
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Of course, one can repeat the same argumentation for more general elements of
GL.(C [z,y,2]). Note that there is a fairly precise description of this group as an amal-
gamated product with GL,(C) as one of the components. This prompts the following

question

Problem 3 : Is the subgroup Aut(S2 : Cl3) of GA3(C ) an amalgamated product

with GLy(€ ) as one of the components ?

At a time, we had the following fairly optimistic procedure to find a counterexample
to the Jacobian conjecture in three variables : consider the elements A € GLo(C [z,y,2])
such that the Jacobian of the associated endomorphism of S, is invertible. Then (modulo
the Jacobian conjecture) the endomorphism of Cl; given by sending a; to the i-th entry
of A.(a;); should be an automorphism fixing the normalizing element [a1,a2] and hence
should induce an automorphism on the quotient Cl3/Cls[ay,az| = € [u,v] for which there
exists a test by computing the Jacobian. At first sight there is not much relation between
these two Jacobians but , due to lacking technical support , we were not able to construct

interesting A’s to verify whether this aproach has any chance.

(4.4) : Of course, the general method can be used to provide weird automorphisms on
arbitrary polynomial algebras. Let us consider, as an example, the case m = 3 and denote

Q12 = ¥,013 = V, 033 = W,01] = T,d23 = Y,a33 = z and consider an elementary matrix

1
A=1o0
f

where f € € [z,y,2,u,v,w]. Then the induced endomorphism is given by

O = O
= O O

z+2fv+ fiz
Yy
2z
u+ fw
v+ fz
w

S e ey
Pl
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Setting the Jacobian equal to one gives this time the condition
WOy f + 20y f +2v3,f =0

which gives as possible solutions f € € [uz—vw, v —zz,y, 2, w].For example, is the special

case when f = uz — vw a tame automorphism ?

(4.5) : It is about time to clarify what the above has to do with our original topic.
If T denotes the ring of m generic 2 by 2 trace zero matrices, then there is a natural
epimorphism

Tom 2 Cly, ——)T,?‘

sending a; to X and a;; to $T(X) X9).This epimorphism is an isomorphism in case m = 2
or 3 and in general the kernel is the unique graded ideal of Cl,, lying over the ideal of S,,
generated by the four by four minors of the generic symmetric matrix (a;;); ;. Note that
this ideal is invariant for all automorphisms of the form described above, therefore any
automorphism of Cl,, corresponding to a matrix A € GL,,(Sy,) induces an automorphism
on TP, thus providing a large class of interesting examples. In particular, the automor-
phism on Cl; = T° induced by the triangular matrix with f = y? — zz is the restriction

of o, determined in the previous section to 7°.
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5. Stable tameness and central tameness.

(5.1) : The following stable tameness result is due to M. Smith.

Definition : (i) Let D be a derivation of € [z, ...,Z,]. D is said to be triangular if
D(z;:) = ¢i(Zit15.er2n) forall1 <i<n-—1and D(z,) =0

(ii) D is said to be locally nilpotent if for every P € @ [zy,...,Z,] We can find n(P) €
IN* such that D*(P) =0

Theorem (M. Smith,[Sm2]) : Let D be a triangular,locally nilpotent derivation
of € [z1,...,z,] and v € Ker(D). Then, uD is locally nilpotent and the automorphism

exp(uD) becomes tame when extended to € [zy,...,Z,,t] by fixing t.

(5.2) : Let o be an automorphism of G. Then, theorem 3.1 implies that ¢ induces an
automorphism of G/[G,G] which has to be tame by the Jung-Van der Kulk result (2.1).

Up to a tame automorphism of G, o can then be brought in the following form

X — X+t1[X,Y]
Y — Y +1tX,Y]

where ¢1,2 € T. Unfortunately, we cannot continue the analysis in this generality. Re-

stricting to automorphisms of the form

X - X+tX)Y]
Y — Y

for t € T, one can show the following lemma
Lemma : ¢t has to be of the form (P, + P2Y)[X,Y] with P; € C

Proof : First, remark that o([X,Y]) = A[X,Y] for some A € € *.This implies the

following equivalences
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[X,Y] + [t{X,Y],Y] = A[X, Y]
= [XO, V0] + [¢[X°,Y°], Y = A[X°,Y°]
= [ X0, Y0, Y% = (A - 1)[X°, Y7
= [¢, YO X°, YO + ¢[X°,Y°],Y°] = (A — 1)[X°, Y7
i [¢, Y O)[ X0, Y0]—-2tY [ X°,Y 0] = (A-1)[X°, Y] (since [[X°,Y°]Y°] = —2Y°[X°, Y]}
2 [t,Y°] — 2¢tY% = XA — 1 (since T is a domain)
Now, if we let t = a + bX° + ¢Y° + dX°Y° with a,b,¢,d € C then this is equivalent to
: [bX°, Y0 + d[X°V°, VO] — 2tY° = A —1
: b(2XOY0 — T(X°Y0)) + d(2X°Y0 — T(X°Y°))Y° — 2a¥° — 2bX°¥° + 2¢D(Y°) +
2dD(Y°)X° = A —1
which entails then that
2¢D(Y°) = bT(X°Y°)
2¢ = —dT(X°Y°)
By factoriality of C, there exists an element u € C such that
b=2uD(Y°), ¢ = uT(X°Y?)
We then have that ¢ is equal to
@+ dX°Y° + 2uD(Y°) X° + uT(X°Y°)Y°
= £(~T(X°Y°) + 2X°Y°) + u(—2Y°*X° 4+ T(X°Y°)Y?)
= 2[X°,Y°) + puY°[X°, Y = (£ + uY°)[X°,Y?|

Remark : Unfortunately, not every ¢ of this form will give an automorphism as the
following example shows : consider the endomorphism ¢ of G defined by

X + T(X)[X,Y]?

"
-~ Y

X
Y

Then, T(X) is send under the extension of ¢ to T to T(X)(1 + 2[X,Y]?) whereas
T(Y),D(X°),D(Y°) and T(X°Y?) are fixed. But by computing the Jacobian on C we

see that this is not an automorphism. So, additional restrictions on ¢ are necessary. The
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following result summarizes the most general automorphisms we can construct and their

behaviour on C

Theorem : (i) : All tame automorphisms of G induce tame automorphisms on C

(ii) : All wild automorphisms o of G of the form

X - X+ (P +PRY)XY)?
Y — Y

where P, € € [T(Y),D(X°),D(Y°),T(X°Y°)] and P, € € [T(Y),D(Y°)] induce tame

automorphisms on C

Proof : (i) : This is an easy verification on the generators ny,€.,8 of the tame

automorphisms given in 3.3

(ii) : Remark that o = 01 0 02 where o; fixes Y and 0;(X) = X + P;[X,Y]? whereas
02(X) = X + P,Y[X,Y)? and both o; and o, are automorphisms of G. We will first
consider oy

oy fixes T(Y'), D(X°), D(Y°) and T(X°Y°) and it sends T(X) to T(X) + 2P;[X,Y])?
, hence oy | C is a triangular automorphism.

On the other hand, o2 has the following action on C

T(X) + T(Y)P[X°,Y°)?

T(X) —
T(Y) — T(Y)
D(X%°) — D(X° -T(X°Y%)P,[X°,Y°?+ D(Y°)(P,[X°,Y?)?)?
D(Y% - D(Y°)

T(X°Y°% — T(X°Y°) — 2D(Y°)P,|X°,Y°)?

Now, we define
0 2 0y,0 2
A=-2D(Y )G—T(XOYO) - T(X°Y )__aD(XO)

Then A is a triangular, locally nilpotent derivation of C. Moreover, A(Pz[X°,Y°]?) =
Py A(T(X°Y°)2—4D(X°)D(Y®)) = 0. Now, put C; = € [T(Y), D(X°), D(¥°), T(X°Y?)]
then o2 | C1 = exp(P2[X°,Y°2A). By M. Smith’s stable tameness result in 5.1 , o3 | Cy

becomes tame when extended to C by fixing T'(X). Composing this last automorphism
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of C' with the triangular one which sends T'(X) to T'(X) + T(Y)P2[X°,Y°]? and fixes the

other variables one gets o | C, finishing the proof of the tameness of ¢
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