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Abstract.

Wildness of the rank two quiver P; provides a link between the study of rational matrix invariants and
that of stable vectorbundles over the projective plane. Using this dictionary, results of Formanek imply the
rationality of the moduli spaces of rank three and rank four vectorbundles. Further,we recover a recent
result of Van den Bergh showing that the field of rational n by n matrixinvariants is the functionfield of the
generic Jacobian variety for smooth plane curves of degree n.

1. Introduction.

(1.1) : Throughout this paper,we consider an algebraically closed field of characteristic zero and call
it @. Let GL,(C) act on m-tuples of n by n matrices X, , = M, (€') & ... ® M,,{C) by componentswise
conjugation. The topic of this paper is the field K, , of rational invariants for this situation. That is,
consider the rational field L, , = @ (2:;(!) : 1 < 4,7 < n;1 < I < m) and v € GL,(C) acts on it by sending
the variable z;;(I) to the (¢, 5)-entry of the matrix v~ X}y where X; = (z;;(1))i,; € My(Lm,»n). Then, K., ,,
is the fixed field under this action. ‘ ’

K, n is easily seen to be the field of functions of the variety of matrixinvariants V. p = X, n/GLn(T).
That is, the variety parametrizing simultaneous conjugacy classes of m tuples of n by n matrices which
generate a semi-simple subalgebra of M, (@ ). See for example [6],[14].

(1.2) : It is still an open question whether K, ,, is always a rational functionfield. For ringtheorists
this question is important because it would imply the Merkurjev-Suslin result for fields containing @ (the
Brauer group is generated by cyclic algebras). Let us scetch the argument : consider the ring of m generic
n by n matrices, that is the subring of M,,(L, ) generated by the matrices X;. This ring is known to be a
left and right Ore domain, so we can form its classical ring of quotients A,, , which is a division algebra of
dimension n? over its center K, . Rationality of K, , and a result of Bloch [3,Th.1.1] would imply that
Apm,n is Brauer equivalent to a product of cyclic algebras. Then by the generic property of the A, , for all
m > 2 every central simple algebra of dimension n? over a field L containing @ would be a product of cyclic
algebras in Br(L), see for example [15]. For more details we refer to [6],[15] and [17].

Procesi [13] proved that K, , is rational whenever K, is , thereby reducing the problem to two
matrices. He also solved the rationality problem for n = 2. Later, E. Formanek [4],[5] proved the rationality
for n = 3 and n = 4. He used the following elegant description due to C. Procesi of K3, : let {;,9;; [ 1 <
t,7 < n} be independent commuting indeterminates and let L be the subfield of € (z;,y;5 : 1 < 4,5 < n)
generated by {z;, Yis, Yi;¥si» Yij¥ikyri | 1 < 1,7,k < n}. Then L is a rational functionfield of trancendence
degree n? + 1 and the permutation group S, acts on it by o(z;) = Zo(i)s 0(Yi5) = Yo(i)o(;). Then, Kz, is
the fixed field under this action.

(1.3) : In this paper we aim to show that this rationality problem may also be of interest to geometers.
Using the results of K. Hulek [9] we will show that K5 ,, is the functionfield of the moduli space M(n, 0,n)
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of stable (rank n) vectorbundles over the projective plane with Chern-numbers (0, n). Therefore, Formaneks
results imply the rationality of M(3,0,3) and M(4,0,4) which was (perhaps) not known. Rationality of
M (2,0,2) was proved by Barth [2].

Another consequence of our result is a recent theorem of M. Van den Bergh [18] who showed that K, is
the functionfield of a Picard scheme of a bundle of nonsingular curves over a rational variety. This result will
now follow from the fact {9,1.7] that a sufficiently general stable vectorbundle over IP; having Chern-numbers
(0, n) is classified by a smooth plane curve of degree n and an invertible sheaf over it (generalizing the curve
of jumping lines and the ¢-characteristic in the rank two case , see [2]).




2. Vector bundles over 1P, .

(2.1) : In this section we aim to prove the following result :

Theorem 1: K3, is the functionfield of the moduli space M(n,0,n) of stable rank n vectorbundles
over the projective plane with Chern-numbers (0, ).

(2.2) : Let us recall the connection between so called s-stable vectorbundles over P, and certain
triples of n by n matrices A = (4o, A1, Az). One calls A prestable if for any v € € ™ we have dimg (4ov +
Arv+ A2v) > 2 and dimg (Afv + Av + A%v) > 2 where (—)7 denotes transposition. Hulek associates to a
prestable triple A a vectorbundle £4 in the following way :

Let Op be the structure sheaf of IP; and let Xo, X1, Xz be the usual basis for I'(Opp(1)). Let V =
I'(Op(1))* and let Yo, Y1, Y2 be a basis of V dual to Xo, X1, X2. Define a linear map ¢4 : ¢ @V — ¢ "@V*
by sending v ® ¥; to A;i41v® Xy — A;1v® Xipy forall v € @™ and ¢ = 0,1,2 mod 3.For a canonical
choice of bases for @' ™ and the bases defined before for V and V* the matrix of ¢ 4 is given by

0 Ay A
-4, 0 Ap
Ay -4 O

If U denotes the image of ¢4 , we obtain a complex of vectorbundles
My:C"@0p(-1)3Ue0p > C¢"e Op(1)
where a denotes the composite morphism
creop(-1) 2 ergve op % Ueop

and ¢ is the restriction to U ® Opp of the morphism 1® s : " @ V* ® Opp — €™ ® Op(1) where
s : T(Op(1)) ® Opp — Op(1) is the multiplication map and s* its dual. The complex My is a monad
in the sense of Horrocks. Its cohomology turns out to be a vector bundle £4 which is s-stable in the sense
that HO(E4) = H°(€4) = 0. The bundle £4 has rank rk($4) — 27 , has Chern-numbers (0,n) and the map
A — &4 induces a bijection between the set of isoclasses of s-stable vector bundles over IP; with Chern-
numbers (0,n) and isomorphism classes of prestable triples when considered as representations of dimension

vector (n, n) of the wild quiver P; N
[
o — O
—

that is, orbits of GLn(@) X GL, (@) acting on X, = M, (€) © M, (C) ® M.(C) by (71, 7v2)-(4o, A1, 42)
= (75 Aov1, ¥ T A1y, 75 L Azy1).

(2.8) : We can study the following projective quotient variety as a first approximation to the or-
bitstructure problem in X,. Consider the open subvariety X' consisting of triples (Ao, A1, A2) s.t. the
rank of the n X 3n matrix (Ao, 41, A2) is maximal. We can eliminate the action of the first component of
GLn(€) X GL,(@) on this subvariety and get the Grassmann variety Grass(n, 3n) as a representing space.
The second GL,(€') component acts on this space via its diagonal embedding in GLs,. (¢ ). The projective
variety of interest to us is Y,, = Grass(n, 3n)*® /GL,(C) where Grass(n, 3n)** is the set of semi-stable points
under this action. These points come from representations in X,, having no subrepresentation of dimension
vector (k,I) where 0 <! < k < n. The stable points come from representations having no subrepresentation
of type (k, k) where 0 < k < n,see [9].




We will show that the variety of matrixinvariants V3 ,, = X n/GL,(C') is birational to Y,,. On the open
subvariety X” of X' determined by those triples (Ao, 41, A2) s.t. det(4y) # O we can eliminate the action
of the first component of GL,(€¢) X GL,(¢) by multiplying on the right by A;' and get representants
of the form (I, By, B2). The action of the second component on these representants is .(I,, By, Bz) =
(vY,47 1By, v By) = (I, ¥~ B17v,7 1 Bz7y). That is, the orbits of GL,(€) x GL,(C) acting on X”
correspond to orbits of GL,(® ) acting on couples of n by n matrices by simultaneous conjugation. Clearly,
the map X, ,, — X” given by sending a couple (B, Bz) to the representation (I, By, B;) induces an open
immersion of V‘"m” ' in Y,. Here, Vs, “mple is the open set of V3, corresponding to couples which generate
M,(C) and therefore the corresponding representations give rise to stable points in Grass(n, 3n).

(2.4) : We now have all the relevant information to prove theorem 1 :

Consider the open subvariety Xj ,, of X3, consisting of couples (By, B;) which generate M, (@) and
such that [By, Bs] € GL,(€ ). The corresponding representation B = (I, By, B2) € X” is prestable. For
otherwise, By and B; would have a common eigenvector v , but then [B;, Bp]v = 0 whence v = 0. Therefore,
we can associate to B an s-stable vectorbundle g of rank n. This follows from (2.2) and

I, —-B, —-B, 0 B, —-B [Bi,B:] 0 0
o I, 0 -B, 0 I, |= * 0 I,
o 0 I, B, -I, 0 x —I, 0

By a result of Maruyama [10,Th.2.8] stability is an open property, hence there exist open subvarieties

5n C X5, and X* C X” whose points give rise to stable rank n vectorbundles over IP, with Chern-
numbers (0, n). Using the observations from (2-2) and (2.4) it is clear that V3, = X3 . /GL,(@) embeds in
M(n,0,n) finishing the proof.

(2.5) : Using the results of E. Formanek, we get as an immediate consequence :
Corollary : The moduli spaces M(n,0,n) are rational for n < 4

To the best of my knowledge, rationality of M(3,0,3) and M (4,0, 4) has not been noted before. Ratio-
nality of M(2,0,2) is due to W. Barth [2].

(2.6) : We take this opportunity to warn the reader for possible misuse of theorem 1 in view of
[11]. In this paper Maruyama claims stable rationality of the moduli spaces M(n,0,n) and hence , via
theorem 1, of Ky ,. By applying Bloch’s result twice this would immediatly imply the Merkurjev-Suslin
result for fields containing ¢. In fact, the method of proof of [11] would even give the stronger result
that K , is stably rational over K , (which would imply the full Merkurjev-Suslin result in characteristic
zero). For, if one takes z = (0,0,1) € IP; and the description of stable bundles by triples (I,, By, B) as in
(2.4) then it is fairly easy to compute that the variety Y,, constructed in [11,p.83] has as its functionfield
Ki,n. Maruyama constructs a vectorbundle V' on Y;, birational to a bundle Z over M(n,0,n) s.t. the
image of @ (Yy) in @ (Z) coincides with Kj,, as subfield of € (M(n,0,n)) = Kz ,. However, Snider has
remarked that this is impossible for n = 4 see for example [5,p.319] or [15] and proved by Colliot-Théléne and
Sansuc in ”Principal homogeneous spaces under flasque tori with applications to various problems” which
will appear in the Journal of Algebra.A possible gap in Maruyama’s proof was communicated to me by D.
Saltman ([11,p.86 L-7] the trivialization of H,, a1, 1s not a trivialization as GL(N)-sheaf) and by Le Potier
and Hulek which I hereby like to thank. D. Saltman also has an elegant extension of Sniders remark for any
non-squarefree n.




3. The generic Jacobian variety.

(8.1) : In [18,§6], M. Van den Bergh showed that V,, is birational to a Picard scheme of a bundle
of nonsingular curves over a rational variety. The projective space prn(nt3) parametrizes plane curves
of degree n. Let U be the open subvariety corresponding to nonsingular curves. Consider the flagvariety
W c IP? X U consisting of all couples (P,Y) s.t. P € Y. The projection W — U is a flat bundle of smooth
curves. Let PICw uy be the functor which associates to an U-scheme S the group

{group of invertible sheaves on W xy S}
subgroup of sheaves of the form p5(K) for K on S
2

PICwy(8) =

Since W — U is a bundle of smooth curves we can associate to invertible sheaves a discrete invariant, the
degree. PIC’{,i[, U is the subfunctor consisting of invertible sheaves of degree d. The sheafification of this

functor with respect to the flat topology is represented by the variety Pic%, U consisting of couples (Y, L)
where Y is a nonsingular curve of degree » in IP; and £ is a divisor on Y of degree d (which I like to call
the generic Jacobian variety for smooth plane curves of degree n).For more details we refer the reader to
[1],(8],{12,ch 6] or the preliminary sections of [18].

Theorem 2 : (Van den Bergh,[18,Th.6.1.3])
If d= in(n— 1), then K3, is the functionfield of the variety Pic, o

(8.2) : In view of theorem 1 we have to associate to a sufficiently general vectorbundle £ of rank
n over IP; with Chern-numbers (0, n) a nonsingular curve Y of degree n and an invertible sheaf £ which
determine & upto isomorphism. Hulek [9,1.7] has indicated how this can be done by a suitable generalization
of Barth’s characterization of rank two bundles by their curve of jumping lines and 6- characteristic , [2].
For the reader’s convenience we will briefly recall the main ideas of his proof.

Let &4 be an s-stable vectorbundle associated to the prestable triple A = (Ao, A1, A;) and define Ay =
det(AoYp + 41Y1 + A2Y0) € I‘(Olp; (n)) and let Y4 = {A4 = 0}. The discriminant A, is a homogeneous
polynomial of degree n and Y, C IP; will be a curve of degree n or the whole plane. The interpretation of
Y, is that it contains those lines L in IP; such that £ | L # 0P", so it generalizes the curve of jumping lines
in the rank two case.

In case Y4 is a curve (which is the generic case) one defines amap ¢4 = (A®1)o(1®s) : € "Q@Op+(—1) —
C"®V*® Opr —» €"Q Op,. Over a point L € IP; with coordinate vector y = (yo,y1,y2) the map ¢4 is
just A(y) = Aoyo + A1y1 + Azys. We can define a sheaf £ 4 by the sequence

(#):0>C"®0p+(~1) L4 ¢ " @ Op+ — L4 — 0

which has its support in Y4. By [9,1.7.8.iv] the pair (Y4, £s) determines £4 uniquely. Restricting the
sequence (%) to Y4 we obtain

0 — € "e0p(-1) ¥ ¢ "00p — Ls — 0
} }
Cre0y,(-1) “E ergoy, — £/ — o0

For sufficiently general A we get that rk(4 | Y4a) = n — 1 whence £’ is an invertible sheaf over Y4. The

induced map L4 — L' is surjective and will be injective too if every section in €™ ® O+ vanishing on
adj

Y, comes by 94. This is a consequence of %o, = det(4)1y» where det(4) : € ® Op+(—n) Ya,
C"® Op+(—1) — €" @ Op~+. So, for generic A we have that L4 € Pic(Yy) of degree zn(n — 1) by
[9,1.7.3.iiil.

Conversely, starting from a plane curve Y of degree n and £ € Pic(Y) of degree n(n — 1) one can
reconstruct a triple A which will be prestable ( and hence determine a vectorbundle ) for a sufficiently general
choice of Y and £ , [9,1.7].
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