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Abstract :

Recent results of M. Maruyama on vector bundles over the projective plane give
new information on the problem of classifying m-tuples of n by n matrices upto
simultaneous equivalence.

As an application we also give a line%rization procedure for partial differential

equations of the form ) aij‘kg;%%%;r = c™P.
t+5+k=n
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1. Introduction.

In this paper we aim to show how certain recent results of M. Maruyama [14], [15]
can be applied to obtain some grip on the following "hopeless” problem.

Question 1 : Parametrize m-tuples of n by n matrices under simultaneous equiv-
alence.

That is, we aim to study the orbits of the group GL,(C ) x GL,(C) acting on
M, (€ )®™ by
(a, ﬂ).(Al, e ,Am) = (aAlﬂ, e ,aAmﬂ)

If m = 1, different orbits correspond to different ranks. If m = 2 and A, is invert-
ible, then the orbit of (A1, A;) is completely determined by the Jordan normal
form of A;I.Az.

If m > 3, however, this problem is known to be wild since it corresponds to
classifying representations of the wild quiver
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upto equivalence. In this paper we will restrict attention to representations which
are generic, i.e. in sufficiently general position. To be more precise, we want to
find an open subvariety Up,, of M, (€ )®™, and a morphism 7 : Up,n — Vin,n
having the property that for each ¢ € V,,, ,, the fiber #~1(¢) consists of precisely
one orbit. The main open problem concerning these parametrizing varieties Vm,n
is :

Question 2 :
Is Vin,n (stably) rational ?

In the next two sections we will see that a positive solution to this question would
be important also for the study of Brauer groups of functionfields and for the
study of vectorbundles over the projective plane. We mention that question 2
would follow immediately from a positive solution to a rather daring conjecture
of V. Ka& [11]. He conjectured that, for any quiver Q and any dimension vector
a, the variety parametrizing isoclasses of indecomposable a-representations would
allow a cellular decomposition into locally closed subvarieties each isomorphic to
some affine space. Since generic equidimensional representations of the two point
quivers are indecomposable thin would imply rationality of Vi, p.

2. Connection with Brauer groups of functionfields.

For a long time, one of the main open problems on Brauer groups has been.
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Question 3 : If X is a variety over @, is the Brauer group Br@ (X) of the
functionfield € (X) generated by cyclic algebras ?

Recall that a cyclic algebra is an n®-dimensional central simple ¢ (X)-algebra
generated by two elements z and y satisfying the relations :

z" = a,y" = b,zy = wyzr

where a,b € € (X)* and w is a primitive n-th root of unity.

Question 3 was recently solved (in a more general setting) by Merkurjev and Suslin
using heavy tools from algebraic K-theory, see for example [24].

Ringtheorists have tried to solve this problem by using generic methods. Let us
briefly scetch their approach. For any m,n € IN, consider the polynomial ring

Pppn = Clzii(k) : 1< 4,7 <n1 <k <m]

The ring of m generic n by n matrices, & y, n, is the subring of M,,(Pp, ») generated
by the generic matrices

X = (Xij(k))s,; € Mp(Pm,n)

It is well-known, see for example [17], that @ ,, ,, is a left and right Ore-domain so
we can consider its ring of fractions A,, ,, which is a division algebra of dimension
n? over its center Ky, p.

Ap,n is called the generic division algebra. Procesi [19] has shown that if all Am,n
are Brauer equivalent to a product of cyclic algebras, then question 3 has a positive
solution.

Moreover, S. Bloch [4] has shown that if L is a field containing ¢ then Br(L) is
generated by cyclic algebras if and only if Br(L(zy,...,2,)) is generated by cyclic

algebras.

So, by applying Bloch’s result (twice), (stable) rationality of K,,,, would imply
the Merkurjev-Suslin result for fields containing € .

What is known about the rationality of K,,, ? Procesi [17,] has proved
that Ky, »,m > 3, is rational over K, , thereby reducing the problem to two
generic matrices. Moreover, he proved that Ki 5 = € (Tr(X1), Tr(Xz), Det(X1),
Det(X3), Tr(X1, X32)) setling the problem for 2 by 2 matrices.

Formanek, [8] and [9], has proved rationality of K, 3 and K, 4.

Apart from these results, D. Saltman [20], [21], has obtained some partial results :
he proved that the unramified Brauer group of Kp,n is trivial and that K,, ,, is
retract rational for n prime.

Further, we note that the obvious approach (i.e. trying to prove that Ky, is
rational over Kj ,) fails for n = 4. This was shown by R. Snider and mentioned in
[9] and [19]. A proof of this fact is contained in the paper [7] by Colliot-Thélene
and Sansuc. D. Saltman has communicated to us that K3, cannot be stably
rational over K, , for any non-squarefree n.
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What does all this have to do with our problem ? The connection is given by the
(easy) proof of the wildness of the quivers for m > 3. Consider the open subvariety

Unn = GLn(C) & M, (€ )®™!

of M,,(® )®™, then a representant for the orbit under action of the first component
of GL,(€) x GL,(@) is of the form

(In; Az;...;4m)
Now, we have to calculate the action of the second component on these represen-

tants
(Ins IB)-(In, Agj..y Am)
= (,Ba A2,B7 v ’Amﬂ)
= (In'ﬂ—'lALBa e aﬁ—-lAmﬂ)

That is, the orbit structure of GL, (@ ) X GL, (T ) acting on Uy, , is the same as
that of GL, (@) acting on (m — 1)-tuples of n by n matrices by componentswise
conjugation.

Procesi [18] has shown that the quotient variety M, (¢ )®™~1/GL, (€ ) has as its
function field the field K,,_1 . Therefore,

Proposition 1. : V,, »(m > 3) is birational to the quotient variety
M (€)™ /GL, (@)

Therefore, rationality of V,, , would imply a positive answer to question 3. More-
over, from Procesi’s observation that K,,n is rational over K, we also obtain
the following (perhaps surprising) result :

Proposition 2 : V,, ,(m > 3) is birational to V3, x Mm=3n® wpeeh basically
reduces question 1 to the special case of triples of n by n matrices. That is, from
now on we will restrict attention to the isomorphism problem of equidimensional
generic representations of

L]

3. Connection with vectorbundles over IP,

A very coarse classification of all vectorbundles over the projective plane IP, is
given by topological invariants such as the rank and the chern classes, which can
be interpreted as integers in the case of projective spaces.

Given the numbers r,¢1, ¢z one wants to study how sufficiently general bundles
with these invariants look like. Such bundles will turn out to be stable, i.e. for all
coherent subsheaves 7 € £ we have 5 7. < L,
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Precisely as parametrizing problems in representation theory one therefore wants
to study a variety M(r,c1,cz) whose points correspond to isomorphism classes of
stable bundles £ of rank r and with Chern numbers ¢;(€) = ¢; and ¢2(€) = c2.
Again, a major open problem is

Question 4 : which of these moduli spaces M(r,c1,c2) are (stably) rational ?

The motivation is that in case they are rational we can find additional algebraic
invariants of bundles such that they classify freely and completely sufficiently gen-
eral bundles with the invariants r,¢, and ¢;. What is known about this problem ?
Barth has shown in [1] that M(2,0,2) is rational. Moreover, M(2,0,2) is just the
variety of nonsingular plane conics. Unfortunately, his proof of the rationality of
M (2,0,n) contains a gap. The only other moduli space M(2,0,n) which is known
to be rational is n = 4 and will by published by Le Potier. Apart from this,
nothing seems to be known about the rationality of M(r,0,n). What has this to
do with our problem ?

Hulek [10] gave the following elegant description of M(r,0,n) which can be

rephrased in terms of representions. He calls an equidimensional representation
—

A = (Ap,A1,A2) of 0 — O prestable if and only if for everyv € €™ :

—

dim (on, Alv, Az’v) 2 2
dim (Adv, A],v, AJv) >2

Remark that this is an open condition on M, (¢ )®3. With such a representation
one can construct a bundle over IP; in the following way.

Let V = T'(fp,(1))* with basis u,v,w dual to the usual z,y, z basis of I'(fp, (1)),
then we can define a linear map

pr:C"QV —C"QV*

given by the matrix

0 Ay —Ay
—A2 O Ao | =Yg
Ay A 0

and denote U = Impy4. Further, s : I'(fp2(1)) ® (6p, — 0Op,(1) is the natural
multiplication map and s* is its dual. Then we have a complex of vectorbundles :

" 0p,(—1) e, U bp, LN " op,(1)
1®s*l pa®1 J 1®s
C"QV Q bp, C"QV*Qbp,




where a is a mono and b is epi. The cohomology of this complex is a bundle €4
of rank dim U — 2n and with Chern-numbers ¢1(€4) = 0,¢2(£4) = n. Moreover.
Hulek has shown that isoclasses of prestable representations and isoclasses of the
corresponding bundles coincide. Clearly, for sufficiently general representations,
the corresponding bundle will be of rank n and stable. Therefore, we obtain :

Proposition 3 : V3, is birational to the moduli space of stable rank n bundles
over IP; with Chern-numbers ¢; = 0,¢; = n; M(n,0,n)

In particular, rationality of V3,n would imply rationality of the moduli spaces
M(n,0,n).

4. Some consequences.
In the foregoring two sections we have reduced our original problem to that of two
existing varieties :

V3n

M, (¢ )®*/GL,.(C) M(n,0,n)

where ~ denotes birationality. Note that we did not have to use anything but the
—_—

wildness of the quiver 0 — 0 to prove these results. Nevertheless, we get using
—_—

Formanek’s result on the rationality of the quotient varieties M, (€ )®2/GL,(C)
the following rather surprising result :

Proposition 4 : The moduli spaces M(3,0,3) and M(4,0,4) are rational.

As far as I know these results were not known. In [16] M. Maruyama claims
stable rationality of M(n,0,n) for all n € IN. As we have mentioned before such a
result would immediately imply the Merkurjev-Suslin result for function fields of
varieties. Unfortunately, in view of Sniders’s remark mentioned before the method
of proof of [16] cannot be correct. In fact, D. Saltman, K. Hulek and Le Potier
have communicated to us a gap in [16]. For more details we refer the reader to
[13].

5. Plane Curves and their Jacobians. |

Although we have reduced reduced our original problem on classifying simultane-
ous equivalence classes of m-tuples of square matrices to some existing varieties it
is by no means clear that these varieties are easier to handle than Va .

In this section, we will outline an elegant approach originally due to Maruyama
[15] and rediscovered in [13] and [23].




Let us start by considering the open subvariety
Us,p = {A = (Ao, A1, A2) : det(Aoz + A1y + Az2) # 0}
of M, (€ )®3. With such an A we can associate a monomorphism of vectorbundles
Ag = Aoz + A1y + Azz : Op, (—1)®" —>01?;n
and we can consider its cokernel :
0 — 6p,(—1)%" —'\->01€>an — L(1)—0

then it follows that £ is a torsion sheaf satisfying H°(IP2, L) = H'(IP;,L£) = 0
and ¢;(L) =n.

Conversely, suppose we start off with a torsion coherent sheaf £ on IP, with
HO(IP3, L) = HY(IP2, L) = 0 and ¢;(L) = n, then it follows that £ is 1-regular
in Mumford’s terminology [12]. That is, HY(L(1 — ¢)) has to vanish for all ¢ > 1.
A pleasant consequence of this is that £(n) is generated by its sections H°(L(n))
for all n > 1 [12]. That is, we get an exact sequence :

0-—+7-——>01€?2n———+£(1)—+0

Because [ is torsion, ¥ is a vector bundle and using Horrock’s classification of
vector bundles which are sums of line bundles, see for example [3], one can show

that 7 is & 0(a;). Finally, using ¢;(L) = n one gets ¥ = p,(—1)®". That is, we
t=1

have an exact sequence
0— e, (—1)" 48" — L(1) — 0

—_—

and hence a representation A; = (4o, 41,43) of 0 — 0. Moreover, isoclasses
—

of representations correspond to isoclasses of torsions sheaves. Therefore we have :

Proposition 5 : Orbits in Uz , correspond bijectively to isomorphism classes of
torsion coherent sheaves £ on £ on IP, satisfying H°(IP2, £) = H'(IP2, L) = 0
and ¢; (L) = n.

At first sight we have not gained much. We reduced our problem again to some
moduli problem.

However, it is fairly easy to show that the torsion coherent sheaf £ associated
to a representation A = (Ao, A1, A2) lives on the curve Cy < 1P, of degree n

determined by
det (Aoz + Ay + A22) =0

Moreover, Barth [2] has shown that if C4 is reduced and if z is a smooth point
of Cy4, then L, is invertible. Therefore, if C4 is a nonsingular curve of degree
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n, and hence of genus g = ﬁ!‘:_%’_‘_i), then £ is a divisor over it. Because
H°(cL) = H'(cL) = 0 we obtain from the Riemann-Roch theorem for C :

X(L) = degl +1—g

that the degree of L is d= g—1= -'-‘—(1’;-—3-)—

Conversely, let C € IP; be a smooth plane curve of degree n, then the degree
determines an exact sequence

0 — Jac(C) — Pic(C) Sy AN

where Jac (C) is the Jacobian variety of C. Restricting to the set of all divisors
of degree d we get an homogeneous space Picy(C) over Jac(C).
Moreover, there exists an open subvariety Pic,_;(C) C Pic,—1(C) consisting of
those divisors £ s.t. H°(C, L) = H'(C,L) = 0. One can show, see for example
[6], that Pic;_,(C) is precisely the complement in Picy—1(C) of the image of the
natural map

Tg—1 * C X‘. .o X C—)Picg_1(C')

g—1 copies

associating to a (g — 1)-tuple of points of C the divisor 8(py + ...+ py—1)-

In view of the vast amount of theory on Jacobian varieties and the explicit de-
scription of m;_; one can consider Pic,_,(C) as a tractable variety.

Now, let us restrict attention to the following open subvariety of Us y :
U?:,n = {A = (Ao, 41, 43)|Cy4 is smooth}

then we have the following answer to our pfoblem 1:

Theorem 1 : Orbits of GL,(C') X GL,(C) acting on U;,, by simultaneous
equivalence can be parametrized by couples (C, L) where

(1) C is a smooth plane curve of degree n
(2) £ePic, ,(C)

Let us check the dimension of this variety. Smooth plane curves of degree n form
an open subvariety of ]P(n+1)2(n+z) _y» 1.e. is of dimension @—ﬂéﬂ — 1 and the
dimension of Pic;,_;(C) is equal to that of Jac(C) which is known to be equal to
the genus = @_—1)2(—n—21 Therefore, the dimension of the parametrizing variety
V3,n is

(n+ 1)(n +2) 4 (n—1)(n—-2)

—1=n?+1
2 2 wE

as expected.




Purists who like to know the structure of this variety rather than a description of
its points may consult [15], [13] or [23]. In short, the variety is a relative Picard
scheme of a smooth family of curves.

6. Linearization of partial differential equations.

The Schrodinger equation of a free particle in relativistic free quantum mechanics

i k2D — e Aoy )

where |¢(F, )| is the probability that the particle is in place 7 at time ¢ and H is
the Hamiltonian, i.e.

2
H=2_ LVt
2m+ (72)

One is primarily interested in solutions of the form
V(7. 1) = Y(F)e ¥
where E denotes the energy. Substituting this form in equation (1) we obtain
E(7,t) = Hy(F,t)

where the energy E is an eigenvalue of the Hamiltonian operator. For a free
particle (V (7,t) = 0) we obtain

2 2 2 2
2m  2m \ 9z2 8y2 022

and we therefore obtain the equation

2 2 2
0% 9% 9%

357 T 57 T g7 = 2mEY = (V2me)2y (2)

In order to solve this equation (2) one tries to replace it by a system of first order
partial differential equations. In this case, the Pauli matrices :

= (5 0)e= (3 1)e=(5 )

do this so called linearization trick. For,

d 8 9\’ 9 82 92
<A5"+B'a_+°az) B (3:1:2 + dy? + 6z2> Iz
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and therefore any solution to the system of first order partial differential equations :

42 ¥

3z TPy +C_ (Vame)p.§

where S € M(€) s.t. $2 = I is a solution to (2).

Of course, one can try to generalize this linearization procedure to more variables
and/or higher order equations. The present knowledge of this problem is as follows,
see for example [5] :

In two variables partial differential equations of any order can be linearized and
for any number of variables second order equations can be linearized. The first
open case, that of three variables and a third order partial differential equation
was (under some extra assumptions) recently solved by M. Van den Bergh [22].

In this section we will use the results of the foregoing section to give a linearization
procedure for partial differential equations of the form :

Yt oy (3)

. “ ’“axzayzazk
t+j+k=n

Proposition 6 : Partial differential equations of type (3) can always be linearized.
Proof. Suppose that we can find n by n matrices (4o, A1, A2) such that

., 0 7] 7] a"
det (A°5—+Ala +Azaz> = D ik gaingiaaE

then one can show using the Cayley-Hamilton polynomial that any solution to the
system of first order equations

oY ¢
Ao—a—- + Ay — By

3¢

+Az>a

= ¢S

where S € SL,(€) is a solution to (3).

For notational reasons let us write X = 'a?E’Y = %,Z = 53;. If Za,-ij‘"YjZ k
determines a smooth curve such matrices exist by §5.

Y aijrX ‘Y7 Z* determines an irreducible curve C having singularities one can
look at the desingularization

f:5—+CL+]P2

and take an element £ € Pic;_l(a), then f.(L) is a torsion coherent sheaf on
IP; having the required properties and hence it determines the wanted triple of
matrices.
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3 . s
In case ) a;;xX'Y?Z k=TI fi (X,Y, Z) is a factorization, one can construct tor-

=1
sion sheafs on each of the fi{X,Y, Z), say L;, and then @L; is a torsion sheaf of
the required type. g
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