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Abstract

Isomorphism classes of semi-simple representations with dimension vector a
of a quiver Q are parametrized by the quotient variety R(Q,a)/GL(a). In this
paper we will describe the coordinate ring of this variety thereby determining
the polynomial invariants. Further, we will show that this variety admits a finite
stratification into locally closed smooth subvarieties corresponding to the different
types of semi-simple representations. Finally, we show how one can determine all

these types as well as the generic semi- simple representation type.
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1. Introduction.

After the work of P. Gabriel [3], it became clear that several problems from lin-
ear algebra could be formulated and studied in a uniform way in the context of
representations of quivers. Let us recall the setting. Throughout, we work over
an algebraically closed field of characterisric zero and call it €. A quiver Q is
a quadruple (Qo, Q1,t, h) consisting of a finite Qo = {1,...,n} of vertices, a set
@1 of arrows between these vertices and two maps ¢,k : Q; — Qo assigning to an
arrow o its tail £(¢) , and its head h(p), respectively. Note that we do not exclude
loops nor multiple arrows. However, we will always assume that the underlying

graph of the quiver is connected.

A representations V' of the quiver @ is a family {V(¢) : ¢ € Qo} of finite dimensional
@ -vectorspaces together with a family of linear maps {V(¢) : V(t,) — V (ho);
© € @Q1}. The n-tuple dim(V) = (dimV (¢)); € IN® is called the dimension type
of V. A morphism f : V — W between two representations is a family of linear

maps {f; : V(i) — W(é);¢ € Qo} such that for all arrows ¢ € @Q; we have :
W(p) o f(te) = f(hp) o V().

Given a dimension type oo = (a(1),...,a(n)) € IN® we define the representation
space of @, B(Q, @), to be the set of all representations of Q s.t. V(i) = @ «(®) for
all + € Qo. Because V € R(Q, a) is completely determined by the maps V () we
have that

R(Q,0) = @& Homg (€%t ¢otey= o M (€
(Q ) peEQ) C(‘ ) pPEQL ‘P( )

where M, (@) denotes the @ -vectorspace of all a(hp) by a(tp) matrices with

entries in @ .

We will consider the representation space R(Q, ) as an affine variety with coor-
dinating ring € [Q, o] and function field ¢ (Q, o). We have a canonical action of
the linear reductive group GL(e) = [[;_, GLa(;)(C ) on R(Q, @) by

(9.V)(©) = gnoV (©)gi}
for all ¢ = (g1,...,9») € GL(a). By definition, the GL(o)-orbits in R(Q, c) are

just the isomorphism classes of representations.
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In general, if G is a linear reductive group acting linearly on a vector space X,
an element z € X is said to be semisimple (resp. nilpotent) with respect to G
iff the orbit G.z is closed (resp. 0 € G.z, the Zariski-closure of the orbit). We
say that X = X, + X,, is a Jordan-decomposition of z € V if z, is a semisimple
element with respect to G, z, is a nilpotent element with respect to G, (the
stabilizer subgroup of z, in G, which is again a reductive linear group by a result

of Matsuchima [11]) and G, = G, N G,, where G, is the stabilizer group of y.

Using results of Luna [9], V. Kac [5, prop. p. 161] has shown that for any z € X
there exists a Jordan decomposition. Returning to the representation therory of
quivers, this result says that the classification of all isomorphism classes can be
divided up in two subproblems : (I) the study of the semisimple representations
w.r.t. G(e) and (II) : the study of nilpotent representations w.r.t. reductive

subgroups of GL(a).

We will primarily concentrate our attention to problem (I). However, concerning
problem (II) we will determine the finitely many reductive subgroups of GL(e)

which occur as stabilizer subgroups of semisimple elements.

Since semisimple representations are, by definition, those for which the corre-
sponding orbit GL(a).V is closed we see by Mumford’s theory [12] that the iso-
morphism classes of semisimple representation are classifified by the points of the
quotient variety R(Q,a)/GL(a) = V(Q, @), or if no ambiguity is possible we set
V(Q, @) = V(a). The coordinate ring of this variety € [V ()] is the ring of polyno-
mial invariants under GL(a) in € [Q, a]. In section two we will show, using results
of Procesi [13], [14], that this invariant ring € [V ()] is generalized by traces of
oriented cycles in the quiver Q. A result of Razmyslow gives us an upper bound

on the length of these cycles needed to generate € [V ()]

In section three we will give a nice stratification of V (). In general, if a reductive
group G acts on a vector-space X then the quotient variety X/G can be covered
by finitely many locally, closed smooth algebraic subvarieties (X/G)g consisting
of those points £ € X/G s.t. the fiber 77(¢) contains a semisimple element z

with stabilizer subgroup conjugated to H; there H is a reductive subgroup of G
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[10]. In our situation, these different strata coorespond to the different types of
semi-simple decompositions of representations of dimension type a. Moreover,
one strata lies in the closure of another if the corresponding representations are
deformations of each other.

Using these results we will determine in section four all dimension vectors which oc-
cur as the dimension type of a simple representation. This problem can be viewed
analogous to (but much easier than) the corresponding problem for indecompos-
able representations, which has been solved by V. Kat [4]. Our description is ex-

pressed in terms of the so called Ringel bilinear form, that is R = (r;;); ; € M, (%)
st.ri; = —#{pEQ1:tpo=14,hp=j}+6; and

R:T' X% —Z:R(a,B) = a".R.B

Therefore, we obtain a purely a purely combatorial method to determine all type
of semi-simple representations of dimensional type o and hence of all the reductive

subgroup of GL(«) which occur in subproblem (II) above.

From the stratification result it is clear that exactly one of the strata is an open
subvariety of the quotient variety V(Q, o). The semi-simple representation type
corresponding to it is called the generic semi-simple representation type. We will
present a method to determine this ‘generic type. Note that the corresponding
problem for arbitrary representations is still open, although A. Schofield [15] has

recently obtained some encouraging results.

In a subsequent paper we will concentrate on the local study of the quotient variety
V(Q,a). For each type 7 of semi-simple representations we will construct a new
quiver @, depending only on the dimension vectors of the simple components and
a new dimension type ¢, depending only on the multiplicities with which these
simple components occur s.t. the étale local structure of V' () near a point of type
7 is the same as that of the origin in the quotient variety R(Q,,a,)/GL(e;). To
be more precise, if 7 = (ey, B1;...; €1, B1) is a semi-simple representation type then
@ will be a quiver with vertices {1,...,/} and there are §;; — R(B;,8;) arrows
pointing from ¢ to j ; the new dimension vector ¢, will be (ey,...,e;). This

procedure simplifies our study in all points except for an m-dimensional subspace
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where m is the number of loops in the quiver Q.Moreover, it will enable us to
calculate the dimension of the quotient variety as well as to determine its singular
locus. If 7 = (ey, a1 ...; €k, ) is the generic semi-simple representation type, then
this dimension is Z:;l(l — R(eu, a;) and the nonsingular locus coincides with the

generic stratum except for low dimensional anomalities.
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2. The coordinate ring.

By Mumford’s theory, the coordinate ring of the quotient variety V(Q, a) is the
fixed ring @ [Q,a]GL("‘), i.e. the ring of polynomial invariants of the action of
GL(c) on R{Q, a). The main result of this section will be the following description

of this invariant ring :

Theorem 1.
The ring of polynomial invariants of GL(«) acting on IR(Q, ¢) is generated by
traces of oriented cycles in @ of length at most N? where N = (1) +... + a(n).

By this we mean the following : let C = (p1,...,©k) be an oriented cycle in

@, then one can consider the d by d matrix with entries in € [Q,q] :
Xo: Xpy oo Xp, = Xe

where d = a(tp1) = a(hpr), then the trace of this d by d matrix Tr(X,) is clearly
an invariant polynomial function. We will now show that these are essentially the

only invariants.

we begin by recalling the definition of the path algebra. € (Q) of the quiver Q. A

path of length [ > 1 from vertex ¢ to vertex 7 in a quiver Q is if form

(il‘pla veey @llj)

with arrows ; satisfying h(p;) = t(pj4+1) for 1 < j <! such that ¢ = t(p;) and
J = h{p1). In addition, we define for any vertex ¢ € Qg a path of length 0 denoted
by (¢]7). A path of length > ¢ from ¢ to ¢ is called an oriented cycle.

The path algebra @ (Q) of the quiver Q is defined to be the @ -vectorspace with
basis the set of all paths in Q. The multiplication of two composable paths is
defined to be the corresponding composition, the product if two noncomposable

paths is; by definition, zero. We obtain an associative algebra with unit element

(A1) +...+ (n|n).




For a quiver @, let Q°P be the opposite quiver, i.e. Qo = Q¢¥ and with a bijection
between Q; and Q7® such that ©°P : ¢ — j iff ¢ : j — ¢ (i.e. reversing the 3
orientation). Then the category of representations of Q can be identified with
the category @ (Q°P)-mod of left € (Q°P)-modules in the following way : given
a representation V' of @, the corresponding ¢ (Q°P)-module is given by és V(2)
with module structure if ¢t € Qo = Qg° then (¢t[t)v; = v; and if °P € g‘;lp s.t.
©°P 11 — j, the p°PXv; = V,,(v;). Conversely, given a € (Q°P)-module M. Let
M(3) = (s} M for all i € Qo = Qg and for p : § — ¢ let M(p) : M(5) — M(5)
be the multiplication with ©°P € € (Q°P).

Let N € IN, then we denote by ¢ (Q°P) ) the quotient of € (Q°P) by the ideal of
evaluations of N x N matrix identities. Thus, ¢ (Q°P)(n) is the universal quotient

of € (Q°P) of Pi-degree N and hence has a presentation

C(RQPYN) =G mn/I

as a quotient of a ring of m generic n by n matrices @ ,, v, i.e. the subring of
My = My(C[Xi;() : 1 < 4,5 < N,i <1 < m]) generated by the so called
generic matrices X; = (X;;(!));,;. In our case, m = #Qo + #Q; and the natural
epimorphism

X:Gma— C{QF)w)
is given by sending the first n = #Qo generic matrices to the idempotents (s]s), @ = |_
t € Qo, and the last #Q; generic matrices to the generators °P where ¢ € Q.

Then,
MN/MNIMN = MN(A)

where A = € [X;;() : 4,4,1]/J and J is the ideal generated by the entries of the

matrices in I. Thus, we have the following situation :

@ m,n —  Mn(C[X:;())])

| e

@ (Q°PP) — @ (Q°PP) () 2, My (A)
Let € [Tn(Q°P)] be the subring of A generated by the traces of o(€ (Q°PP)(x).
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Artin and Schelter proved in [1, Prop. 3.10., Th. 3.20] that € [T,,(Q°P)] is an affine
@ -algebra and the corresponding variety parametrizes the isomorphism classes of
N-dimensional semi-simple representation of € (Q°P).

There is a natural action of GLy (€' ) on € [z;;(!)] such that the image of z;;(!)
under o € GL, (@) is the entry (¢, 7) of the matrix o~ 1.Xj.a. Procesi proved [14]
that this action induces an action of GLy (€ ) in A such that

AGER(©) — @ [Ty (Q°P)]

This fact will enable us in a moment to describe € [T (Q°P)]. First, let us describe

A. Let k = #Qo,l = #Q1 and denote
G mn=C{X1,...,X1;71,..., Y1} C My (C [X;;(p)])

the the ideal I is generated by the relations

(I ) : Xz2 = X;
I): XY;=Y; i (p)=:
V,X;=Y;, if hlp;) =i
X;Y; =Y;X; =0 otherwise
(III): YiY¥;=0 if  h(p:) # tej)
These matrix relations give rise to relations among the z;;(p) in every entry. These
relations renerate the ideal J which is clearly GL,, (€' )-invariant.

Having described the kernel of : ¢ : € [X;;(p)] — A, we will now concentrate

on € [T,,(Q°P)]. Since GL,(C ) is a reductive group, the epi ¢ induces an epi
@1 € [Xi(p)|58 ) — AT () = @[T, (@)

By [13],C@ [Xij(p)]GLN(c) is generated by traces of @ ,, v and Rasmylov and
Formanek [2] showed that one may restrict to traces of elements of degree < N2,

So we get :

Proposition 1 : With notations as before, the ring € [Tn(Q°P)] is generated by

(a): traces of oriented cycles of length < N2 in the quiver Q*, i.e. Tr(Y;, ... Y:,)
if (]i,5---,94,[7) is a cycle.




(b): coefficients of the characteristic polynomial of the X; (the generic matrices

corresponding to the vertices).

In general, the variety corresponding to @ [Tn(Q°?)] is not irreducible. The irre-
ducible components are determined by the dimension types a = (a(1),...,a(n)) €
IN" s.t. Yo, a(f) = N.
If « is such a dimension type, then the corresponding component is determined
by the ring :

C [Tn(Q°?)]/Da

where D,, is generated by the a(z) + 1 minors of X; for all s <7 < n.

Moreover, associate to each vertex + and N by N diagonal matrix A4; =

z—1 T
diag(0,...,0,1,...,0,...,0) with 1’s from place ) a(7)+1to Y, a(j). To every
j=1 '
arrow p°P : 7 — ¢ in Q°P we associate an N by N matrix of indeterminates
j—1 J
Byor with zeroes everywhere except in place (p,g) where Y a(k) < p < Y a(k)

and Y5 a(k) < g < 3¢ ofk).

Note that the polynomial ring in all the entries of the Byer is just € [Q, a] and

that there exists a natural algebra morphism

C(QP)(n) — Mn(C [Q, o))

by sending X; |- A; and Y op F Byop. This induces epimorphism
A — C[Q,q]

A /
/Dax

Let V' be the closed subvariety subvariety of the variety of A determined by D,
then the GLy (€ )-orbits in V' are the same as the GLq (1) (@) X... X GLy(n) (€ ) =

GL(a)-orbits. By the‘universal property of quotient varieties this gives us
V/GLN(C) = V/GL(e)
whence (A/Da)%E¥(€) = (A/D,)L(®), We have epimorphisms
A— A/Dy— C€Q,0q]
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and since both GLy (€@ ) and GL(«) are reductive, we have epis :
C[Tn(QPP)] —  (A/Dy)En(E)
I
(A/Da)G’L(a) N C [Q, a]GL(a)

Therefore, proposition 1 finishes the proof of Theorem 1. g
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3. Luna’s stratification for V(o).

In this section we aim to give a concrete description of the Luna stratification of

quotient varieties [10,16]. Let us recall his construction.

Let a linear reductive group G act on a finite dimensional vectorspace X and let
m: X—V = X/G be the quotient map. If ¢ € V. its fiber #~1(¢) contains
precisely one closed orbit, say G.z. By a result of Matsuchima [11] the stabilizer
subgroup G of z in G is a reductive linear group.

Conversely, if M is is a reductive subgroup of G we can look at the set Vi)
consisting of all those points £ € V s.t. for corresponding z € X, G, is conjugated

to H in G. We then have [16, lemma 5.5.] :

(a): {V(m) : H reductive subgroup of G} is a finite stratification of V into locally
closed irreducible smooth algebraic subvarieties. In particular, for only finitely

many reductive subgroup H of G, V(@) is nonempty.

(b): V(aiy lies in the closure of V() if anly if H is congugated to a subgroup of

H', i.e. the smaller the stabilizer subgroup the larger the stratum.

We will now try to make this general result more concrete in the special case
of the quotient varieties V(). The points £ € V(a) correspond one-to-one to
isomorphism classes of semi-simple representations of Q of dimension type a. Let
V be a semi-simple representation in the fiber #~1(¢) where 7 : R(Q,a) —

V(a) = R(Q,a)/GL(c). Then we can decompose V into its simple components

| V=w2"o..owd* by
where W; is a simple representation of dimension type o; and occuring in V' with
multiplicity e;. We will then say that ¢ is a point of representation of dimension
type 7 = (ei,a1;...,€k,0x). In the next section we will give a combinatorial

method to describe all possible representation types.

With V(a), we will denote the set of all points ¢ of V() of representation type
t(é) =r.

Theorem : {V(a), : r representation type} is a finite stratification of V (c)
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into locally closed irreducible smooth subvarieties.

Proof. In view of the results mentioned above we have to verify that the

representation type determines the stabilizer group upto conjugation.

So, let ¢ be a point of representation type 7 = (ey,81;--.;€x, Bx) Where §; =

n R

(bi1y ..., bin) € IN® and we define b; = ), b;;. We can choose of basis of % ¢ >
j:l tEQ,

in the following way : the first e;b; vectors give a basis of the simple component
of type Wy with dimension vector 8; where V = eanB es is a semisimple repre-
sentation lying in the fiber 7~1(¢), and so on.
The subring of My (@) where N = ) a(z) generated by this representation V is
then (in this basis) :

M, (C)®1,,

1)
0
M, ((D' ) ® 1,

The stabilizer subgroup GL(a)y is easily seen to be the group of units of the
centralizer of I'(V). The centralizer of I'(V) is the ring
M., ((D’ ® lbl) 0

0 M, (C ®1,)
whence GL(a)y = GL,, (€) X ... X GL,, (¢') embedded in GL(a) (with respect

to the new basis) as
[GLe, (C ®1p,)

GL(OC)V =
0

i GL,, ((V ® lbh)
Using this computation it is now easy to verify that the conjugacy class of GL(a)v

in GL(e) depends only upon the type 7, finishing the proof.

Further one can verify that GL(e), is comjugated to a subgroup of GL(a), iff
semisimple representations of type 7 can be obtained as degenerations of semisim-

ple representation of type 7’.
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One can express this combinatorially in the following way. Two types 7 =
(e1,B15...5€r,8,) and 7/ = (e},B1,...,¢€l,B.) are said to be direct successors

r <7 iff

(1): ' =r+1and for all but one 1 < 7 < r we have (e;, 5;) = (€}, B;) for precisely
one j one for the remaining ¢ we have (e;, 8;) = (es, 8}; e;, B) where 8; = B}, + f].

Or

(2) : v’ = r—1 and for all but one 1 < 7 < 7' we have (e}, 8!) = (e;, B;) for precise
one j and for the remaining j we have (e}, 8;) = (ex, Bi; €, B}) where ex + e; = €.
Two types 7 and 7/ are said to be successors 7 << 7’ iff there exist type 71....,7;
st. =1 < ... < n = 7. Combining this with the result mentioned in the

beginning of this section we get :

Theorem : V(a) lies in the closure of V (), iff r << 7.

So, we see that the Luna stratification of V() can be described completely by
representation theoretic features. The remaining problem of which representation
types can occur, which comes-down to a description of the dimension types of

simple representations, will be solved in the next section.
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4. Simple representations.

In this section we will characterize the dimension vectors of simple representations
of a quiver Q.

A full subquiver Q' of Q is called a club iff every couple of its vertices belongs
to an oriented cycle. It is clear that we can divide @ into maximal clubs, say
G1,...,Gg. The direction of all arrows between elements of G; and elements of
G is the sameand can be used to define an orientation between G; and G;.
The clubquiver, Club(Q), of @ has as its vertices the maximal clubs and there is
one arrow from G; to G; iff there is an arrow in @ from an element of G; to an

element of G;. Note that Club(Q) is a quiver without oriented cycles.

It is fairly easy to deduce necessary conditions on the dimension vectors of sim-
ple representations. Consider a simple representation V of Q then we claim
that its support, supp(V), is a club. For otherwise, consider its club quiver,
Club(supp(V')), and let D; be a sink in it. Then one can find a proper subrepre-
sentation W of V' by

(1) : Wx =Vx iff z € D;; Wx = 0 otherwise
(2) : W(p) =V (p) iff o € (D1)1;W(p) = 0, otherwise.

In order to state the second necessary condition, let us recall some facts about the

bilinear form R onZ" (see e.g. [6] for more details) which is defined by
R(e, o) = 6;5 — 14

where r;; is the number of arrows from vertex 7 to vertex j and a; = (§;;); is the
standard basis of Z". If V; is a representation of @ with dim(V;) = ;,¢ = 1,2,
then

R(71,72) = dimg Hom(V1,Ve) — dimg Ext!(Vy, V2)

We now claim that if V' is a simple representation with dimV = ~, then R(e;,7) <
0 and R(v, ;) < O for all 1 <7 < n. Forlet v = (y(1),...,7(n)) then R(cs,v) =
~(2) — Y ri;7(J). Suppose that R(e;,7) > 0, then the natural map :

1y

® Vip):Vi-— & V;
. P . . P .

t—j i
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has a kernel say K which determines a proper subrepresentation W of V by W =

K;W = 0,5 # 1 and W(p) = 0. Similarly, R(y,0;) = 4(s) — Y rjsv(j) and if
j—i

R(~, &) > 0O, then the image of the natural map :

© Vip): & V;—V;
J—1 J—
£ 4 ¢

is not all of V;. Therefore, we have a proper subrepresentation W of V by W; =

Im(®@V(p)); W; =V; if ¢ # 7 and W(p) = V(p) for all p € Q.

The two conditions (1) : supp(y) is a club and (2) for all 1 <7 < n, R(a;,7) <0
and R(v, a;) < 0; are not sufficient to ensure that + is the dimension vector of a
simple representation of Q. For take the extended Dynkin diagram Xn with the

cyclic orientation

0 0
then v = (a,a,...,a) for a € IN, satisfies the conditions, however it is well known

that the only nontrivial simple representation has dimension vector (1,1,...,1).

Nevertheless, we will show that these are the only exceptions :

Theorem : v € IN] is the dimension vector of a simple representation of the
quiver Q iff
(a) : either supp(+) is an oriented cycle and all 4(z) are 0 or 1;

(b) : or supp(y) is a club and for all ¢ < 7 < n we have R(e;,7) < 0 and
R(y,0i) <0

The proof goes by induction on the number of vertices n of @ and on |v| =
> (9)-

15




We will need some extra terminology. We call a vertex 7 a focus (resp. prisma)
iff Ao € Q with tp = ¢ (resp. hp = ¢). A vertex ¢ is said to be large iff v(z) is
maximal among the ~(j).

" Finally, we call a vertex ¢ good iff ¢ is large and it has no large successor which
is a prisma nor a large predecessor which is a focus. We begin with an easy

observation.

Lemma : If @ is a club which is not an oriented cycle, then there is no cycle of

prisma (resp. focus) vertices.

Proof : Suppose there is a cycle of prisma (71,...,%;) then for each 5 the unique
arrow coming into ¢; belongs to the cycle. However, Q is not an oriented cycle so
there is not atleast one more vertex, say ¢, But there can be no path from 7 to any

of the ¢; contrary to the club assumption.

Using this lemma, we can find either a good vertex or a large prisma ¢ which has
no large prisma successors. Suppose we are in the second case, then the unique

predecessor of ¢ has to be a large focus, so we have the following situation :

=

and we can apply a shrinking process :

Lemma : If we are in situation (*) with v(¢) = 4(j) then + is the dimension vector
of a simple representation of Q iff 4" = (y(1),... ,'y(i), ...,7(n)) is the dimension
vector of a simple representation of Q' which is the quiver obtained from Q by

identifying ¢ and j.

Proof : Let V be a simple representation of Q@ with dim(V) = 4, then V(p) is
an isomorphism. For otherwise, either W determined by Wy = 0 if k£ # j,W; =
KerV(p) or W' determined by W[ = Vi if k # ¢, W; = ImV(p) is a proper

subrepresentation. Therefore, we can identify V; and V; and obtain a simple
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representation of Q’.

Conversély, let V/ be a simple representation of Q' and form a representation V'
of Qby Vi =V/fork#7¢and V; = Vi, V(e) = Ly:. We claim that V is a simple
representation of Q. If not, there are subvectorspaces Wy C Vj, s.t. W is a proper
subrepresentation. But then W', determined by W} = W} if k£ # ¢ would be a

proper subrepresentation of V/, a contradiction.

The foregoing lemma finishes the proof of the theorem in case (*) by induction

on the number of vertices.

So, we are left to consider the case of a good vertex ¢. If 4(¢) = 1, then all
v(7) = 1 for 5§ € supp(~) and defining for all V; = € and V(p) = 15 we get by
the club-assumption a simple representation V. If 4(¢) > 1 we replace v by '
where 7/(5) = 4(j) for j # ¢ and 4/(¢) = 4(f) — 1. Clearly, the supp(y’) is still a
club and we claim that R(y',a;) < 0 and R{e;,v') < Oforall 1 < j < n. The
only j’s where it might go wrong are direct predecessors or direct successors of 7.
Suppose R(a;,~') > 0, then 4'(5) > Z_rkj'y’(k) whence 4(7) = +'(j) must be
large and a focus with endpoint 7, conilac;(]licting the goodness of 1.

So, by inducting on || we may assume that there exist simple representations of Q
with dimension vector 4’. Take such a representation V' then since R(a;,~') < 0
and R(v',a;) < 0 we know that Ext!(V’,S;) # 0 # Ext'(S;,V’) where S; is the

trivial simple representation in .

Now look at the space of all representations V in R(Q,7) s.t. V|y' =V’ and V|a; =
S;. This is an affine space Xy of dimension }_ r;v(j) + X ri;v(s). Loosely
speaking, Xy consists of representations Wosz:zthan |44 EBTS-'? We can choose
V' s.t. Xy contains representations with a trace of an oriented cycle different
from the corresponding trace of V' & S;, for being simple in an open condition in
R(Q,4'). Therefore, the Jordan-Holder factors of these representations cannot be
V' and S;, see §2 but still these representations degenerate to V'@ S; hence by §3

they must be simple; finishing the proof.
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Recall that a representation V is called a Schur representation iff its endo-
morphisms ring is € ; the corresponding dimension vector is called a Schur root.
V. Kac has conjectured a purely combinatorial description of these Schur roots [6].
He calls an element o € IN’} an indecomposable root if o cannot be decomposed
into a sum o = B + 4 where 8,7 € IN} and R(8,7) > 0, R(v,6) > 0. He
then conjectured that Schur roots and indecomposable roots coincide. In general,
this conjecture is wrong, see [8]. However, it is clear from [7,lemma 3.2] and our
result that th Schur roots which are dimension vectors of simple representations

are indecomposable .

In view of the stratification result there is precisely one semi-simple repre-
sentation type 7jen such that the corresponding stratum is an open subvariety of
V(Q,a). We will now briefly describe how to determine this so called generic
semi-simple representation type. Given our quiver Q and a dimension vector o we
can consider as before the clubquiver Club(supp(a)). A simple subrepresentation
of a representation of dimension vector a must live on one of the sinks of this
clubquiver. Therefore, by induction it will be sufficient to find the generic semi-
simple representation type in case supp(e) is a club. In this case there is precisely
one dimension vector # < a with R(f,a;) < 0 and R(a;,8) < O for all . Then

the generic semi-simple representation type is
(1,85 (1) = B(1), @5 ... (n) — B(n), (n))

If we have determined the generic semi-simple representation type in one of the
sinks of the clubquiver, we delete this sink from it and proceed similarly untill we
reach the empty graph. The generic semi-simple representation type will then be

the sum of the generic types on the maximal clubs.
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