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Abstract.

Wildness of the rank two quiver P; provides a link between the study of rational
matrix invariants and that of stable vectorbundles over the projective plane. Using this
dictionary, results of Formanek imply the rationality of the moduli spaces of rank three
and rank four vectorbundles. Conversely, the stable rationality result of Maruyama implies
the Merkurjev-Suslin theorem and gives a positive answer to the lifting problem for crossed
products to local algebras. Finally, we recover a recent result of Van den Bergh showing
that the field of rational n by n matrixinvariants is the functionfield of the generic Jacobian

variety for smooth plane curves of degree n.

1. Introduction.

(1.1) : Throughout this paper,we consider an algebraically closed field of characteristic
zero and call it @. Let GL,(@) act on m-tuples of n by n matrices X, , = M,(C) &
- ® M, (@) by componentswise conjugation. The topic of this paper is the field K, ,, of
rational invariants for this situation. That is, consider the rational field L, , = € (z;;(I) :
1<4,5<n;1 <1< m)and v € GL,(@) acts on it by sending the variable z;;(I) to the
(4, 7)-entry of the matrix v~ X,y where X; = (2;;(1))i,; € Mp(Lim,»). Then, K, , is the
fixed field under this action.

K n is easily seen to be the field of functions of the variety of matrixinvariants
Vinon = Xm,n/GLn(C ). That is, the variety parametrizing simultaneous conjugacy classes

of m tuples of n by n matrices which generate a semi-simple subalgebra of M, (C'). See
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for example [6],[14].

(1.2) : Tt is still an open question whether K, , is always a rational functionfield.
For ringtheorists this question is important because it would imply the Merkurjev-Suslin
result for fields containing @ (the Brauer group is generated by cyclic algebras). Let us
scetch the argument : consider the ring of m generic n by n matrices, that is the subring
of Mp(Lm,s) generated by the matrices X;. This ring is known to be a left and right Ore
domain, so we can form its classical ring of quotients A,, , which is a division algebra of
dimension n? over its center K, n. Rationality of Ky, , and a result of Bloch [3,Th.1.1]
would imply that A,, , is Brauer equivalent to a product of cyclic algebras. Then by the
generic property of the A,, ,, for all m > 2 every central simple algebra of dimension n?
over a field L containing ¢ would be a product of cyclic algebras in Br(L), see for example
[15]. For more details we refer to [6],[15] and [17].

Procesi [13] proved that K, , is rational whenever K, , is , thereby reducing the
problem to two matrices. He also solved the rationality problem for n = 2. Later, E.
Formanek [4],[5] proved the rationality for » = 3 and n = 4. He used the following elegant
description of Ky ,, : let {z;,4i; | 1 < 4,5 < n} be independent commuting indeterminates
and let L be the subfield of @' (z;, y;; : 1 < 4, 7 < n) generated by {z;, Yii, YisYsis Yii¥5kYki |
1<14,5,k <n}. Then L is a rational functionfield of trancendence degree n? + 1 and the
permutation group Sy, acts on it by 0(2;) = Zo(i); 9(¥i5) = Yo(s)e(j)- Then, Ky is the

fixed field under this action.

(1.8) : In this paper we aim to show that this rationality pfoblem may also be
of interest to geometers. Using the results of K. Hulek [9] we will show that K, ,, is
the functionfield of the moduli space M(n,0,n) of stable (rank n) vectorbundles over
the projective plane with Chern-numbers (0,n). Therefore, Formaneks results imply the
rationality of M(3,0,3) and M(4,0,4} which was (perhaps) not known. Rationality of
M(2,0,2) was proved by Barth [2].

Conversely, one can give ringtheoretical interpretations of geometrical results. For ex-

ample, M. Maruyama [11] has shown that the moduli spaces M(n, 0, n) are stably rational.
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By a theorem of S. Bloch and the argument given in (1.2) this implies the Merkurjev-Suslin
result . Moreover, using some ideas of D. Saltman [16] it also implies that every central
simple algebra over a residue field can be lifted to the corresponding local algebra. In
particular , the canonical morphism between the Brauer groups is surjective. This fact
also follows from the Merkurjev-Suslin result.

Another consequence of our result is a recent theorem of M. Van den Bergh [18] who
showed that K3 , is the functionfield of a Picard scheme of a bundle of nonsingular curves
over a rational variety. This result will now follow from the fact [9,1.7] that a sufficiently
general stable vectorbundle over IP; having Chern-numbers (0,n) is classified by a smooth
plane curve of degree n and an invertible sheaf over it (generalizing the curve of jumping
lines and the f-characteristic in the rank two case , see [2]). Added in proof : it is clear

from [11,p.88] that this result was also proved by M. Maruyama.




2. Vector bundles over IP; .

(2.1) : In this section we aim to prove the following result :

Theorem 1: K, , is the functionfield of the moduli space M(n, 0,n) of stable rank

n vectorbundles over the projective plane with Chern-numbers (0, n).

(2.2) : Let usrecall the connection between so called s-stable vectorbundles over IP;
and certain triples of n by n matrices A = (Ag, A1, A2). One calls A prestable if for any
v € €™ we have dimg (Aov + A1v + Azv) > 2 and dimg (AJv + Av + AZv) > 2. Hulek
associates to a prestable triple 4 a vectorbundle £4 in the following way :

Let Op be the structure sheaf of IP; and let Xy, X;, Xo be the usual basis for
T(Op(1)). Let V = I'(Opp(1))* and let Yo, Y1, Y3 be a basis of V' dual to X, X3, X5. Define
alinearmap ¢4 : C"®V — C"QV* by sendingv®Y; to A;41v® X;—1 — 4;1v® X
forallve ¢ ™ and 2 = 0,1,2 mod 3.For a canonical choice of bases for @™ and the bases

defined before for V' and V* the matrix of ¢4 is given by

0 A, —A4A
—Az 0 Ao
Ay -4 O

If U denotes the image of ¢4 , we obtain a complex of vectorbundles
My:C"®0p(-1) ﬁ»U@O]P—EbC"G)O]P(l)
where a denotes the composite morphism
¢ e 0p(-1) 2 ereve op & Ue op

and ¢ is the restriction to U ® Oyp of the morphism 1®3: ¢ "®V*®@ Op — € " & Op(1)
where s : I'(Op(1)) ® Opp — Opp(1) is the multiplication map and s* its dual. The
complex M, is a monad in the sense of Horrocks. Its cohomology turns out to be a vector
bundle £4 which is s-stable in the sense that H(E4) = HO(EX) = 0. The bundle £,
has rank rk{¢4} — 2n , has Chern-numbers (0,n) and the map A — €, induces a bijec-

tion between the set of isoclasses of s-stable vector bundles over IP, with Chern-numbers
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(0,7) and isomorphism classes of prestable triples when considered as representations of

dimension vector (n,n) of the wild quiver P
—_—

O — O

—
that is, orbits of GL,(C) X GL,(€) acting on X,, = M,(C) & M,(C) & M,(C) by

(71, 72)-(Aos A1, 42) = (75 1 Aov1, %5 “ 4171, 75 T A271)-

(2.8) : We canstudy the following projective quotient variety as a first approximation
to the orbitstructure problem in X,,. Consider the open subvariety X’ = {(A4o, 41, 42) €
X, | rg(Ao, A1, A2) = n}. We can eliminate the action of the first component of GL, (€ ) x
GL, (€ ) on this subvariety and get the Grassmann variety Grass(n, 3n) as a representing
space. The second GL,(€) component acts on this space via its diagonal embedding
in GL3,(€@). The projective variety of interest to us is Y, = Grass(n,3n)**/GL,(C)
where Grass(n,3n)®® is the set of semi-stable points under this action. These points come
from representations in X,, having no subrepresentation of dimension vector (k,!) where
0 <! < k < n. The stable points come from representations having no subrepresentation
of type (k,k) where 0 < k < n.

We will show that the variety of matrixinvariants V5 ,, = X3 ,,/GL,(C€) is birational -
to Y. On the open subvariety X” of X’ determined by those triples (Ao, 41, A2) s.t.
det(Ao) # 0 we can eliminate the action of the first component of GL,(€) x GL,(C) by
multiplying on the right by Ag' and get representants of the form (I,,, By, B;). The action
of the second component on these representants is «y.(I,, B1, Bz) = (v~ 1, 7v ' B1,y ' B;) =
(fns ¥~ 1B1v, 71 Bz7). That is, the orbits of GL, (@) x GL,(€@) acting on X” correspond
to orbits of GL, (@) acting on couples of n by n matrices by simultaneous conjugation.
Clearly, the map X3, — X” given by sending a couple (By, B2) to the representation
(I, B, B2) induces an open immersion of V;’;me '® in V,. Here, Va, ’;:np ‘¢ is the open set
of V5, corresponding to couples which generate M, (@) and therefore the corresponding

representations give rise to stable points in Grass(n, 3n).

(2.4) : We now have all the relevant information to prove theorem 1 :
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Consider the open subvariety X3 ,, of X3, consisting of couples (B, Bz) which gen-
erate M,(C') and such that [By, B3] € GL,(®). The corresponding representation
B = (I,, By, By) € X” is prestable. For otherwise, B; and Bz would have a common
eigenvector v , but then [By, BzJu = 0 whence v = 0. Therefore, we can associate to B an

s-stable vectorbundle {p of rank n. This follows from (2.2) and

I, —B; —B, 0 B, -B [Bi,B) 0 0
o I, 0 -B, 0 I, |= * o I,
o o I By, -I, 0 « —-I, 0

By a result of Maruyama [9,Th.2.8] stability is an open property, hence there exist open
subvarieties X3 , C X3, and X* C X” whose points give rise to stable rank » vectorbun-
dles over IP; with Chern-numbers (0,n). Using the observations from (2.2) and (2.4) it is

clear that V3, = X3 ,,/GL,(C) embeds in M(n,0,n) finishing the proof.

(2.5) : Using the results of E. Formanek, we get as an immediate consequence :

Corollary : The moduli spaces M(n,0,n) are unirational and they are rational for

n<4

To the best of our knowledge, rationality of M(3,0,3) and M(4,0,4) has not been
noted before. Rationality of M(2,0,2) is due to W. Barth [2].




8. Lifting crossed products.

(3.1) : As was pointed out to me by K. Hulek, M. Maruyama has recently proved stable
rationality of the moduli spaces M(n,0,n), [11]. Recall that a field K is said to be stably
rational over @ if K (3, ..., z,) is rational over @ for some r. Therefore, using theorem 1

we have the following (partial) positive answer to problem 11 from Formanek [7,p.34]

Theorem 2 : K, , is stably rational for all n.

(3.2) : So we can find r and s such that K3 (21, ..., z,) = € (21, ..., zs). S. Bloch proved
that the cokernels of the natural morphisms

K,(L), — Br(L),

Ko(L(z1s oy Tk))n — Br(L(zy, ..., 2))n
are isomorphic for all k and all fields L containing a primitive n-th root of unity. Therefore,
this map is surjective for @ (zy,...,2,) = K n(21,...,2,) and hence also for K3 ,. This
implies that Ay, , is Brauer equivalent to a product of cyclic algebras. Now, one can proceed

as in (1.2) to obtain

Theorem 8 : (Merkurjev-Suslin) If L is a field containing ¢, then the Brauer group

of L is generated by cyclic algebras.

(8.8) : Using some ideas of D. Saltman [16] we will give another consequence of
Maruyama’s result for Azumaya algebras. Let R be a local @ -algebra with maximal ideal
m and residue field £ = R/m. A central R-algebra A which is a free module of rank n? is

2 over its center k.

called an Azumaya R-algebra iff A/mA is central simple of dimension n
Two R-Azumaya algebras A and B are called equivalent if M, {A) & M,(B) for some 7, s.
The tensorproduct ® g induces a groupstructure on the set of equivalence classes which is
called the Brauer group of R, Br(R).

For a long time it has been an open question whether the natural morphism = :
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Br(R) — Br(k) is surjective. We will show that this is indeed the case. Actually, 2 much

stronger result holds

Theorem 4 : If R is a local @ -algebra with residue field k£ and if A is a central
simple k-algebra of dimension n?, then there exists an R-Azumaya algebra A such that

A@rk=A

(8.4) : Since V;, X A" is birational to some A*, we can find an open set U of V3,
and V of A® and a split morphism @ [U] -+ € [V] — € [U]. Since the ideal of central
polynomials defines an open piece of V2, we may assume that U is determined by some
central polynomial f. Let g € @ [z, ..., z,] be the corresponding element defining V. Let
A be a central simple k-algebra of dimension n?. As a k-algebra A is generated by two
elements, so we have a morphism ¢ : A — A from the ring of two generic n by n matrices A
to A such that A®4k = A. ¢ extends to Ay which is an Azumaya algebra over €'[U] (f is
a central polynomial for n by n matrices).We have the split morphisms n : € [U] — € [V]
and § : @ [V] — @ [U]. Take for any 1 <7 < s an element b; € R s.t. 7(b) = #(6(z;)) then
this defines a morphism p : @ [V] — R because u(g) € R* since n(u(g)) = 4(6(g)) # 0.

Then ¢' = pon extends ¢ and Ay ® 4 R is the desired Azumaya algebra

(8.5) : As an immediate consequence we obtain

Corollary : If R is a local @ -algebra with residue field k, then the natural morphism
Br(R) — Br(k) is surjective




4. The generic Jacobian variety.

(4.1) : In[15,36], M. Van den Bergh showed that V5 , is birational to a Picard scheme
of a bundle of nonsingular curves over a rational variety. The projective space Pinnts)
parametrizes plane curves of degree n. Let U be the open subvariety corresponding to
nonsingular curves. Consider the flagvariety W  IP? x U consisting of all couples (P,Y)
s.t. P €Y. The projection W — U is a flat bundle of smooth curves. Let PICy y be the
functor which associates to an U-scheme S the group

{group of invertible sheaves on W xy S}
{subgroup of sheaves of the form p%(K) for K on S}

PICyu(S) =

Since W — U is a bundle of smooth curves we can associate to invertible sheaves a discrete
invariant, the degree. PI C’{fv U is the subfunctor consisting of invertible sheaves of degree
d. The sheafification of this functor with respect to the flat topology is represented by the
variety Pic, /y consisting of couples (Y, L) where Y is a nonsingular curve of degree n in
IP; and £ is a divisor on Y of degree d (which I like to call the generic Jacobian variety
for smooth plane curves of degree n).For more details we refer the reader to [1],[7],[10] or

the preliminary sections of [15].

Theorem 2 : (Van den Bergh,[15,Th.6.1.3])

If d= in(n—1), then K, , is the functionfield of the variety Picg, o

(4.2) : Inview of theorem 1 we have to associate to a sufficiently general vectorbundle
& of rank n over IP; with Chern-numbers (0, n) a nonsingular curve Y of degree n and
an invertible sheaf £ which determine £ upto isomorphism. Hulek [8,1.7] has indicated
how this can be done by a suitable generalization of Barth’s characterization of rank two
bundles by their curve of jumping lines and ¢- characteristic , [2].

Let £4 be an s-stable vectorbundle associated to the prestable triple A = (Ao, A1, A3)
and define Ay = det(A4oYo + A1Y1 + 4A.Y2) € P(OIP; (n)) and let Y4 = {A4 = 0}. The
discriminant A4 is a homogeneous polynomial of degree n and Y4 C IP; will be a curve

of degree n or the whole plane. The interpretation of Y, is that it contains those lines L
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in IP; such that & | L # 0 1? ", so it generalizes the curve of jumping lines in the rank two

case.

In case Y} is a curve (which is the generic case) one defines amap ¢4 = (A®1)o(1®s) :
C"QO0p(~-1) = C"QV*® Op — & " ® Opp,. Over a point L € IP; with coordinate
vector ¥ = (Yo, y1,¥2) the map ¥4 is just A(y) = Aoyo + A1y1 + A2y2. We can define a

sheaf £ 4 by the sequence
(#):05€"@Op+(-1) Y4 ¢ @ Opr — L4 — 0

which has its support in Y4. By [8,1.7.3.iv] the pair (Y4, £L4) determines 4 uniquely.

Restricting the sequence () to Y4 we obtain

0 — C"e0p(-1) 4% ¢"e0p — Ls — O
! ! l
n ¢AIYA n !
C"®0y,(-1) = €"®0y, — L' — O

For sufficiently general A we get that k(4 | Y4) = n— 1 whence £’ is an invertible sheaf
over Y4. The induced map L4 — L' is surjective and will be injective too if every section in
¢ " ® Op+ vanishing on Y4 comes by 9 4. This is a consequence of ¢Zdjo¢ 4 =det(A)1gn
where det(4) : € ® Op+(—n) 7% C" @ Op+(—1) = € " ® Opp+. So, for generic A we
have that L4 € Pic(Y4) of degree n(n — 1) by [8,1.7.3.iii].

Conversely, starting from a plane curve Y of degree n and £ € Pic(Y) of degree
in(n — 1) one can reconstruct a triple A which will be prestable ( and hence determine a

vectorbundle ) for a sufficiently general choice of Y and £ , [8,1.7].
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