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1. Introduction

Let us fix an algebraically closed field of characteristic zero which we will denote by @ . Consider
the polynomial ring :
Prn=C[zi(l):1<4,7<n,1<1<m]
and form the so called generic matrices

X1 = (i5(1))i,5 € Ma(Pon,n)

The ring of m generic n by n matrices , &,y ,, , is defined to be the sub @ -algebra of M,(Ppy,.)
generated by the generic matrices Xj, ..., X;,. It is well known that this ring is a left and right Ore-
domain, so we can form its classical ring of fractions, A,,,, , which is a division algebra of dimension

2

n’ over its center Ky, ,. One of the main open problems in the theory of rings satisfying polynomial

identities is :

Problem 1 : Is the center K,, ,, of the generic division algebra A,, ,, rational , i.e. is it purely

trancendental over ¢ 7

It is well known that the trancendence degree of K, , over € is equal to (m — 1)nZ + 1.
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algebra in m variables. Therefore, V,,,, would be birational to (m — 1)n% + 1 affine space giving
an affirmative answer to problem 1.The main aim of this paper is to collect some evidence for this

stronger conjecture.

In section two. we recall some terminology which will be needed throughout the paper.We have
tried to minimalize the representation lingo since we are mainly concerned with one specific quiver,but
some results like the étale local structure of matrixinvariants are expressed most naturally in quiver
terms. These results arising from joint work with C. Procesi are explained in section three.In the
next section we explain the Kac conjecture in the special case of the bouquet quivers. For more
details and a readable account of Kac’s main result on the representations of quivers, we refer the
interested reader to the excellent paper by H.P. Kraft and C. Riedtmann [KR|.At the end of section
‘four we give a generalization of problem 1 based on some joint work with C.M. Ringel on semi-simple
arepresentations of quivers.In section five we recall the results on the cellular decomposition of the
orbitspace of representations of S; which we will need to simplify the computations.In the next section
we have tried to describe the cellular decomposition of the orbitspace in the easiest noncommutative
case, l.e. representations of S; with dimension vector 2. In section seven we outline the idea of Kac to
check his conjecture by computing the zéta functions of the orbitspaces defined over finite fields.The
next two section contain the details for these computations in the special case of interest to us. Since
we know the decomposition for S; the calculations can be simplified a bit.It is somewhat surprising
to realize that the computation of the zita functions for the wild quivers Sy, ( m > 2 ) would follow
from a thorough understanding of the tame quiver S;. Probably the computations can be simplified
even more by a specialist in the combinatorial aspects of GL,(IF;) (which i am not). The next four

___sections are concerned with the explicit calculations of the zéta functions for n < 5. Unfortunately (for
me but not for mathematics) the obtained results are consistent with the Kac conjecture. Therefore,
our calculations can be viewed as an extra indication for the rationality of K s.In the final section
we prove a mysterious fact namely that there is no cellvin/ the (conjectural) cellular decomposition of
codimension one. I am willing to treat the one who can explain me this fact to a ridiculous amount
of pints of Belgian beer. Finally, some connections with other fields {such as the rationality problem
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Further, Procesi has shown in [Prl] that K, , is rational if K, , is rational which reduces
the problem to two matrices. He also showed that K, is rational with trancendence basis
Tr(X1), Tr(Xz), Tr(X1X3), Det(X1), Det(Xz). Later, E. Formanek proved the rationality of Ko 3
and K34 and gave a trancendence basis for them [Fol],[Fo2]. However, the technical and compu-
tational difficulties in the 4 by 4 case are so tremendous that it seems rather unlikely to prove the
rationality of K 5 ’by hand’.
D. Saltman has proved some weaker versions of the rationality problem. In [Sal] he showed that
.Kp,p is ’retract rational’ for prime numbers p and in [Sa2] he proved that the ’unramified Brauer
group’ of K, ,, is trivial. Saltman seems to make a habit of re-inventing definitions and terminology ,
so let us translate his second result in more established lingo. The variety of matrixinvariants Vin,n has
as its field of functions Ky, . Its coordinate ring @ [V,,,] is the center of the trace ring of m generic
n by n matrices, Ty, , which is the subring of M, (Pp,,») generated by @&, , and the traces of its
elements. Its points correspond to isoclasses of semi-simple n-dimensional representations of the free
algebra in m variables. As we will see below, the geometry of this variety is reasonably well understood
[LP]. Saltman’s result states that the Brauer group of the desingularization of Vin,n is trivial. If Vo,
is rational (i.e. K, rational) then this desingularization is birational to (m — 1)n? + 1 dimensional
projective space. Now, Grothendieck has shown that the Brauer group of projective space is trivial
and that the Brauer group is a birational invariant among smooth projective varieties. So, Saltmans

result can be viewed as a fairly strong indication for the rationality of K, .

In this paper we would like to close in from the other direction, i.e. we would like to test some
stronger conjectures. In the representation theory of wild quivers there is a very powerfull conjecture
of Kac [Kal] which would immediatly imply the rationality of K, . He conjectures that the variety
of isoclasses of indecomposable representations of a quiver of a fixed dimension vector admits a cellular
decomposition in a finite union of locally closed subvarieties each isomorphic to an affine space (we
will define all these terms lateron). In the special case of the bouquet- quiver Sy, , i.e. the quiver with '
one vertex and m edge-loops , and dimension-vector n we would get that the unique cell of maximal
dimension has an open set consisting of isoclasses of simple n-dimensional representations of the free
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for the moduli space of stable vectorbundles with Chern-numbers (0, %) over IP?) are mentioned with

the promise to come back to them in a future publication.




2. Some quiver lingo

Although we have tried to minimalize the quiver terminology in this paper, some results (e.g.
the étale local structure of the varieties V,,, ,) must be expressed in this language. This short section
contains the necessary definitions.

Throughout this section, ¢ will be an arbitrary field. A quiver @ consists of a finite set Qo =
{1,...,n} of vertices, a set @, of arrows and two maps ¢,k : Q; — Qo assigning to an arrow ¢ its tail
t¢$ and its head hg. One does not exclude loops nor multiple arrows.

A representation V of @ is a family {V'(3) : 4 € Qo} of finite dimensional @ -vectorspaces together
with a family of linear maps {V'(¢) : V(t8) — V(h¢) | 6 € Q1}. The vector &im(V) = (dim(V(3})); €
IN™ is called the dimension vector of V. A morphism f : V — W is a family of linear maps {f(s) :
V(i) — W(z) | € Qo} such that W (@) o f(tp) = f(h$) o V() for all arrows ¢ € Q;.

The representation space R(Q,a) of Q of the dimension vector & = {a(1),..., 2(n)) € IN" is the

set of all representations

R(Q,c)={V:V()=€*D;1<i < n}

Since V € R(Q, o) is determined by the maps V(¢)

R(Q,a) = @ My(@)
QL

where M4(C€') is the set of all a(t¢} by a(hg) matrices with entries in €. We consider R(Q, o) as an
affine variety with coordinate ring € [Q, o] and functionfield € (Q, a}.

The linear reductive group GL.(€) =[]}, GL,(;y{€') acts linearly on R(Q, ) by
(9-V)(¢) = g(hg) ™" o V() o g(t9)

for g € GLy(C). By definition, the GL,(C )-orbits in R(Q, @) are just the isomorphism classes of
representations.

The main aim of the representation theory of quivers is to describe the isoclasses of representations
which by the Krull-Schmidt theorem reduces to the study of indecomposable representations (i.e.
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representations which cannot be written as the direct sum of proper subrepresentations). Kac [Kal]
or [Ka2| has proved that the dimension vectors of indecomposable representations form a root system.
Since we will not need this in the sequel, we do not go into this here. Finally, let us recall the definition
of the Ringel bilinear form.Let r;; be the number of arrows ¢ such that t¢ = 7 and h¢ = 7 and let

@; = (61iy oy 6ni). The Ringel bilinear form R(—,—) on Z" is then defined by
R(aiy a5) = 635 — rij

The quiver @ is said to be wild if the symmetric bilinear form associated to R is indefinite.
In the sequel, we will be primarely interested in the bouquet-quivers S, i.e. the quiver with one

vertex and m edge loops.For a given dimension vector n € IN we get
R(Spmyn) = Mp(C) &...0 M,(C)

the vectorspace of m tuples of n by n matrices. The group acting on R(Sy,,n) is GL,(C ) which acts
by componentswise conjuga,tion.Thérefore, the classification problem is to study m tuples of n by n
matrices under simultaneous conjugation.

A first aproximation to the description of all the orbits is to restrict attention to the closed orbits.

In the next section we will recall some results in this direction.
3. The geometry of matrixinvariants

The results in this section are obtained jointly with C. Procesi. Proofs and more details can be
found in [LP].

By Mumfords geometric invariant theory [Mu] we know that the closed orbits are in one-to-one
correspondence with the points of the so called quotient variety R(Sy,n)/GL,(C ) whose coordinate

ring is by definition the fixed ring

@[Sy n)CE ) = @ [V, ]
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by Procesi’s result in [Pr2]. Moreover, Artin has shown that the closed orbits correspond to isoclasses
of semi-simple representations (of course, a simple representation is one which has no proper subrep-
resentation).So, we can associate to each point £ € V,, ,, its representation type 7 = (e1, k1; ...; er, ky)
if the corresponding semi-simple representation is built from r distinct simple representations of di-
mension vector k; and occuring with multiplicity e;. If 7 is such a representation type we call V;,, »(7)
the subset of V,,,,, consisting of all points of representation type r.

Usually, the varieties V,,, , have lots of singular points. The next result shows that it is possible

to cover V,,, ,, with manageable smooth subvarieties :

Theorem 1 : (Le Bruyn-Procesi) The sets V,, ,(7) form a finite stratification of V,, ,, into locally

closed irreducible smooth algebraic subvarieties.

This result describes the global character of V,, ,. Next, we would like t; know how V,, , looks
like in a neighborhood of a point ¢. This can be done in the following way : let ¢ be of representation
" type 7 = (e1,k1;..;¢r,k;) , then we will form a quiver Q" such that Qf = {1,..,7} and ry; =
bi5+ (m—1)k;k;. Then, look at the dimension vector o = (ey, ..., ¢,) and consider the representation
space R(Q",a”). Denote by V(QT,a") the corresponding quotient variety R(Q",a”)/GLqar (€ , ie.
the variety parametrizing isoclasses of semi-simple representations of Q* of dimension vector a”. As
in the case of Vj,,,,, one can show that the coordinate ring of V(Q", &) is generated by traces of

oriented cycles in the quiver Q7. We obtain

Theorem 2 : (Le Bruyn-Procesi) A neighborhood of ¢ in V,,, , is analytically isomorphic to a

neighborhood of the origin in V{(Q7, a").

If the field @' is not the field of complex numbers one can replace this analytic isomorphism by
an étale mapping. This result reduces the local structure of V,, ,, to easier problems except for points

of representation type (n, 1).




4. The Kac conjecture

In this section we will describe the Kac conjecture on the structure of indecomposable represen-
tations. As promised, we will restrict to the case of m tuples of n by n matrices. A decomposable

representation is an m-tuple V' = (V4, ..., V;,) such that there exists an element A € GL,(C) such

(5 %)

for some proper diagonal blocks % of fixed dimension for all :. For e;.ny V € R(Sy,,n) we will denote

that each A~1.V;.A has the form

by M(V) the subalgebra of M, (€ ) generated by the m matrices V;,...,Vin. It is clear that the
endomorphism ring of the representation V coincides with the centralizer of M(V) in M, (€). It is
fairly easy to verify that the representation V' is indecomposable if and only if End(V) is local, that is,
the nilpotent endomorphisms form an ideal of codimension one.Equivalently, @ * is a maximal torus
in Aut(V) or every semi-simple element of Aut(V) lies in @' *.

We will now show that the set I{Sy,,n) consisting of all indecomposable representations in
R(Sm,n) is a constructible set, i.e. a finite union of locally closed sets , see [KR] for arbitrary quivers.
By Chevalley’s theorem [Kr,II.2.6] the function from R(Sy,,n) to IN assigning to a representation V'

the dimension of End(V) is upper semicontinuous so each of the sets

R(Spm,n)(d) = {V € R(Sm;n) | dimg (End(V)) = d}
is locally closed (intersection of an open and a closed) in R(Sy,, n). Now, consider the closed subvariety
N of R(Sm,n) ® M,(€) consisting of the couples (V, f) where f is a nilpotent endomorphism of V .If
7 : N — R(Sp,,n) is projection onto the first factor then, again by Chevalley’s theorem, the function

V — dim(zx~1(V)) is upper semicontinuous so the set
{V € R(Sm,n)(d) | dim(z~1(V)) > d— 1}
is closed in R(Sp,,n)(d) , but this is also precisely the set of indecomposable representations in

R(Spm,n)(d) which we can call I(S,,, n)(d). Finally, since

I(Sm,n) = U I{8m,n)(d)

d<n?
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we get that I(Spm, n) is constructible.

Next,we want to construct a variety whose points parametrize the isoclasses of indecomposable
representations. For this we need a general remark about the action of a connected algebraic group
G on an irreducible algebraic variety X. By a result of Rosenlicht, there exists a dense open subset
U of X such that U is G-stable and all orbits in U are closed. Therefore, the quotient variety U/G
parametrizes the G-orbits in U. To classify the remaining orbits one can repeat this procedure on
the irreducible components of X — U and so on.Finally, we get varieties Z; such that the points of
L] Z; parametrize the G-orbits in X. Clearly, one can also perform this procedure for a éonstructibie
variety X. Therefore, we know that there must be a theoretical variety parametrizing isoclasses of
indecomposable representations , which we will denote by I**°(S,,, n). Usually, such orbit-spaces are

rather wild animals but Kac conjectures that they have a fairly nice structure in quiver-situations.

Kac conjecture for S, : I**°(S,,,n) admits a cellular decomposition by locally closed subva-

rieties isomorphic to affine spaces.

In the special case of rank two quivers and dimension vectors (n, 1) the orbit space of indecompos-
able representations is a Grassmann variety which has such a cellular decompositions. This example
must have been in the back of Kac’s mind when he dared to make this conjecture.

In a forthcoming publication with C.M. Ringel we will study the structure of semi-simple rep-
resentations of arbitrary quivers and generalize the results of section three. One of the key results
is the determination of all dimension vectors o for a given quiver @ such that there exists a simple
representation of dimension «. This condition is that the support of & must have the property that
any two vertices in it belong to an oriented cycle in it and that R{a, ;) and R{a;, ) are < 0 for all
¢ in the support (with the possible exception that the support is one oriented cycle, then, of course,
the only possibility for « is (1,1,...,1)).

An immediate consequence of the conjecture of Kac would be that the quotient variety of R(Q, a)

would be rational for such a dimension vector c.




5. Cellular decomposition for S; and any n .

In this section we recall a result due to Dixmier-Kraft or Peterson showing that the orbitspace
of R(Sy,n) under GL,(@) admits a cellular decomposition in affine spaces. Note that the Kac-
conjecture implies the existence of a cellular decomposition by affine spaces of the total orbitspace

(by the Krull-Schmidt theorem).

The classification problem we have to solve is the description of conjugacy classes of n by n
matrices. By the Jordan-normalform theorem we know that the conjugacy class of 4 € M,(C)

contains a matrix of the form

Ji 0 0
0 J, 0
o 0o J

where each of the diagonal blocks J; has the form

Moreover, this matrix in uniquely determined upto interchanging these blocks. The numbers \; are
the roots of the characteristic polynomial of A and J; is an m; by m; matrix if the multiplicity of the
root A; is m;.

Let us first consider the special case of 2 by 2 matrices. Then,

(3 O)wearU(; 3)rea

describe all conjugacy classes. Therefore, the orbit space R**°(Sy,2) has a cellular decomposition as
cyet.

We will now derive this result in another manner which will be more helpfull to understand
the next section. The quotient variety R(Sy,2)/GL2(@) (i.e. the variety parametrizing the closed
orbits) is ¢'? and the morphism x : R(S1,2) — €% is given by assigning to a matrix A the couple
(Tr(A), Det(A)). Now, we have to count the number of orbits lying over a point (z,y) € ¢'2. The
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statification result of section 3 can be made more concrete in this situation as follows. Consider
the parabola P : X2 — 4Y = 0, points in @2 — P correspond to matrices with distinct eigenvalues
and hence are of representation correspond to matrices with distinct eigenvalues and hence are of
representation type (1, 1;1,1) whereas those on P are of representation type (2,1). Points in ¢ Z_p

have as their 7-fiber precisely one conjugacy class whereas those on P have a fiber with two conjugacy

classes.So, the orbitspace has a decomposition into

(ez-pP)JPL|P

and because P = @ we obtain the same result.

Let us go back to the general case. The multiplicities of the roots (m,ma,...,m,) (we may
assume my > mg 2> ... > m,) form a partition of n , ie. ) m; = n.Consider the conjugate of this
partition (71, ...,n,) where n; is the number of m; such that mj 2 %,

Conversely , for a partition A of n we can consider R(S1, n)()) which is the set of all A € R(S;,7)
s.t. the conjugate partition of the rootmultiplicity-partition is equal to A. It can be shown that
dimg (End(A)) is constant on R(Sy,n)(A) , so all orbits are closed in R(Sy,n)(A) (if B lies in the
closure of the orbit of A , then dimg (End(B)) > dimg (End(A)) if B does not belong to the orbit
itself). This dimension is equal to d(A) = Y, mZ where M = (my,...,m,) is the root multiplicity
partition (ie. A’ is the conjugate of A).Hence, the quotient variety of R(S1,n)(}) is equal to its

orbitspace. The main result can now be stated as follows, see [Kr2},[Pe] :

Theorem 8 : (Dixmier-Kraft-Peterson)

(1) : The connected components of R(Sy,n)(d) are the subsets B(S;, n)(}) such that d(A) =d
(2) : Each R(Sy,n)(X) is a smooth algebraic subvariety of R(Sy,n)

(3) : The orbitspace R(S;,n)(A)/GL,(C€) is in a natural way an affine space of dimension equal

to the number of distinct roots

As an application, let us compute the number of cells in B#*°(S;,7). We get the following table
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of partitions and cells :

(7) ¢’
(6,1) ¢®
(5,2) ¢®

(5,1,1) ¢®
(4,3) ¢t
(4,2,1) ¢!
(4,1,1,1) ¢
(3,3,1) ¢l
(3,2,2) ¢®
(3,2,1,1) c¢?
(3,1,1,1,1) ¢?®
(2,2,2,1) ¢?
(2,2,1,1,1) ¢?

(2,1,1,1,1,1) ¢?
(1,1,1,1,1,1,1)  @*

Therefore, R“"(S’l, 7) admits a cellular decomposition into

¢’ |e°| |2.0%| |3.04] |e0®] |3.€2] |e*
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6. Cellular decomposition for S, and n =2

In this section we will show that the conjugacy classes of couples of 2 by 2 matrices admit a cellular
decomposition. First note that the quotient variety V3,5 is @ ® and the quotient map « : R(S2,2) — @°

is given by

(4, B) — (Tr(A), Tr(B), Tr(AB), Det(A), Det(B))
First, we like to have an explicit description of the stratification result (theorem 1) in this situa-
tion. We have three different representation types (1,2) (the simple representations) , (1,1;1,1) and
(2, 1).Couples op matrices (A, B) mapping to points in ¢ 5 of the last two representation types satisfy
(AB — BA)? = 0. Translating this equation in the coordinates of @° we obtain that the simple

representations are precisely those points of @ ® not lying on the hypersurface
H:22—z 2 2, _ -
$x3 12223 + 2175 + 2524 — 42425 = 0

In this hypersurface we still have to distinguish between points of representation type (1,1;1,1) and

those of type (2,1).The last ones have a representant-couple of the form

(a 0) ( b 0)
0 a/’\0 b
So, they lie on the surface S in @ ° of all points of the form (2a, 2b, 2ab, a2, b2).

Next, we have to compute the number of distinct orbits in the fiber #~1(¢). If ¢ is a simple
representation, the fiber is a single conjugacy class, i.e. #71(¢) & PGLy(®). If ¢ has representation
type (1,1;1,1) then n~1(£) consists of two conjugacy classes with representants say Vi and Va such
that

M= (G 3)mwa=(8 2)
Finally, if £ is of type (2,1) it is not difficult to verify that 771 (¢) consists in the representant-couple

given above and a one-parameter family of conjugacy classes parametrized by IP*. Ify = (yor 1) € P!

(52)( %)
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We can simplify the computations by the process of ’separating traces’, i.e. we can replace R(Sz,2) by
R’ consisting of couples of trace zero matrices and @ ® by @ 2 where the projection map «' : R — @3
is given by sending a couple (4%, B?) to (T'r(4°B°), Det(A°), Det(B°)). Then it is easy to see that
H = @?xY whereY is the surface in @ ® determined by the equation y? — y2ys = O (the affine cone)
and § = @ ? x o where o is the origin of the cone.So it suffices to determine the cell decomposition of
this simpler problem and after crossing with @ 2 we get our wanted decomposition.

Over a point of Y there are two conjugacyclasses of trace zero couples. The first one has as a

(5 ) (b %)

ie. an indecomposable representation and the second one is represented by

(5 %)-(5 %)

i.e. a decomposable one.Gluing the first type with the uniquely determined orbit over pointsin € 3—Y

representant

gives a cell @3 of indecomposable representations. The second type gives a cell € 2 of decomposable

representations. The remaining orbits lie over the origin , they are parametrized by

965

thereby giving a cell €'L.

Crossing with @ 2 we obtain the following result

Theorem 4 : The orbit space R**°(Sz,2) admits a cellular decomposition into ¢ °| € *| | @3

The orbit space of the indecomposables I*°°(S5, 2) admits a cellular decomposition into ¢ ®| | @3
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7. Implications on the zéta functions

In 1949, André Weil stated his famous conjectures concerning the number of solutions of polyno-
mial equations over finite fields. These conjectures suggested a deep connection between the arithmetic
of algebraic varieties defined over finite fields and the topology of algebraic varieties defined over the
complex numbers.

In this section we will show what implications the Kac-conjecture has on the rational form of the
¢-function of certain varieties. We will not give too much details about the reduction steps from € to
finite fields since they follow from some general yoga and the fact that affine space is a representable
functor.

So, let us start with our algebraically closed field of characteristic zero ¢ and suppose the Kac
conjecture is true over it , then it is also true over the field @ the algebraic closure of @ .But then it
has to be true also over allmost all IF, where IF,, is the finite field on p elements.

‘ In the preceeding sections we have seen that I**°(S,,,n) is a constructible variety over any alge-
braically closed basefield. Since there are only a finite number of equations involved in its definition,
I#*°(8,,,n)(IF,) is defined over some finite field IF, where ¢ = p° , that is, there exists a variety V
over IF, such that V ® IF,, = I**°(S,,, n)(IF,). Now, what is this variety V ? At first sight one might
think that V' is the orbit-space for the indecomposable representations over IF,. This is allmost true,
except that we have to replace ’indecomposable’ by ’absolutely indecomposable’. Recall that an m
tuple of n by n matrices is called absoltely indecomposable over IFy if it remains indecomposable over

its algebraic closure IF,.We will denote this variety by
AT**(Spn, n)(FFy)

Now, if the Kac conjecture is true then AI**°(S,,, n)(IF,) needs to have a cellular decomposition into

affine spaces. But then its number of points must satisfy the equation
B(AI**°(Sm, n) (IFg)) = ang™ + ... + 19 + a0

if there are a; cells of dimension ¢. Of course, in this case N = (m — 1)n% + 1 and one can show that
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ay =1, [Ka2]. If one is interested in counting points on varieties over finite fields , tradition wants
us to associate to this problem a zdta function. Let us abreviate §{AI**°(S,, n)(IF,) = aim,x»(g) and

form the power series

1
$m,n,q(2) = ezp(z ;am,n(qk)zk
k21

which is an element in @ [[2]].If the Kac conjecture is true and if ai,, n(g) is given by the above

equation, then this z&éta-function has the following rational expression

1
§m,n,q(z) = (1 - qu)aN...(l — qz)"'l(l - z)ao

This follows from the fact that if a variety is a disjoint union of locally closed subvarieties, then its
zéta-function is the product of the zéta-functions of these subvarieties ([Ha,Ex 5.1,p 457]) and clearly
the zeta-function of affine r-space is (1 — ¢"z) 1.

In the rest of this paper we aim to show how one can compute these zéta-functions and that the
obtained results (for small values of n) are consistent with the above form and hence can be viewed

as extra evidence for the Kac-conjecture.
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8. Conjugacy classes in GL,(IF,)

In order to compute the z&ta function, we have to recall some results on the conjugacy classes in
GL,(IF,). More details can be found in [Mc].

Each g € GL,,(IF,) acts on the vectorspace IFy and hence defines a IFy[t]-module structure on IFy
with the property that t.v = gv for all v € IF;. We shall denote this module by V,. Two such modules
Vg and V;, are isomorphic if and only if g is conjugated to h. The conjugacy classes of GL,(IF,) are
thus in one-to-one correspondence with the isoclasses of IF4[t]-modules V of dimension n such that
t.v = 0 implies v = 0.

Because IFy[t] is a p.i.d. any finite dimensional module is of the form
V = el,[t/(£)™
for some m; > 1 and irreducible polynomials f;. Therefore, V' determines a partition valued function
p:®— Par

from the set of all irreducible polynomials over IF, (with the exception of t} ,®, to the set of all

partitions. If we denote u(f) = (u1(f), #2(f),...) then
V 2 @i/ (£)4)
Of course, if dim(V) = n then p must satisfy

s:pl= Y deg(HOmlf)) =n

fEP t

In this way we find that there is a one-to-one correspondence between conjugacy classes in GL,(IF,)

and functions p satisfying *. We can make this a bit more explicit in the following way : for each

f=1t- :-i=1 a;t*~! € & we can form its companion matrix J(f)
0 1 0 0
0O 0 1 4]
0O 0 O 1
a a2 Qag aq




and for each integer m > 1 let us denote by Jp,(f)

J(f) Iz o .. 0
0 J{f) Is ... O
0 0 0 .. Jf

with m diagonal blocks J(f}. Then the Jordan canonical form for elements of the conjugacy class
associated to the function yx is the diagonal sum of the matrices Jui(5) (f) foralli>1and f € 9.

In order to compute the number of conjugacy classes we have to know how many irreducible
polynomials there are over IF, of given degree d. For d = 1 this number is ¢ — 1 since we excluded ¢
from ®. For d > 1 we have

H{f € ®:deg(f) =d} = ;II‘ZM(J')Q%

) jld
where M is the classical Mdbius-function ie. M(1) = 1, M(d) = (—1)* if d is the product of k&
distinct prime numbers and M(d) = 0 if d has a multiple prime factor.
From the Jordan normal form given before it is not that difficult to deduce that the centralizer
of an element in the conjugacy class associated to u has order
au= [T aun(a®)

fEP

where

ar(g) = @27 IHa-g).-g™®)

if A’ is the conjugate partition of A and m;(}) is the multiplicity of the number ¢ occuring in the

partition A. Finally, we recall that the order of the group GL,(IF,) is equal to

T g - 1)(¢® - )e(a* - 1)
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9. How to compute the zéta function ?

In this section we will outline the method to compute the rational form of the zéta-function for
arbitrary values of m and n. In the next few sections we will give the details of the computations for
n < 5.

If we denote by X/G the number of orbits of a group G acting on a variety X we will define
om,n(q) = H{(R(Sm; n) (IFg)/ GLn(IFy))

tm,n(q) = H(I(Sm, n)(IFg) /G Ln(IFy)) = ﬂ(Iiso(Sm’ n)(IF,))
@im,n(@) = H(AI(Sms n) (Fg) /G Ln(TFy)) = H{AT***(Spn, n)(IF,))
Our first task will be to compute the orbit-number 0,,,(g). A general result which is attributed to
Burnside states that the number of orbits of a finite group G acting on a finite set X is equal to
geG
where X7 is the set of elements of X fixed by g. This expression can be rewritten as follows

/)= 3= (o

Clg)

where the summation is taken over all conjugacy classes C(g) in G and where Cg(g) denotes the
centralizer of the element ¢ in G.

In this formula we can substitute the information on conjugacy classes in GL,(IF,) of the foregoing
section. If u is a function from ® to Par satisfying * and if g, is a representant of the corresponding
conjugacy-class (e.g. the Jordan normalform described before) then one can show that

dimp (Mo (F)%) = 3 deg(f). (Z (N3
re®
Therefore, we have all the necessary material at our disposal to compute the orbit number. We get

q(m--l) Efea» deg(£)(32,(A})
Om,n = _ _
“ s [1:(1— g@es0))...(1 — gmiX)desl )
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The difficulty in computing this number is of course the vast number of possible functions u. We will
now indicate another method which reduces somewhat the number of calculations (and errors !).
Again, our starting point is the Burnside result, that is

1 -~
om,n(q) = M, (TF)? ™
( ) IGLYL(]FQ) I geGLEl(IFq) I ( q) l

For any function p satisfying * we will define

dw)=§:dwUﬂ§:mUTﬁ)

fee

It is clear that d(u) has to be one of the numbers ), A? where A = (A4, Az, ...) is a partition of n.Then
we can rewrite

Omn = TR ] @O+ 4 an(@)e™™)
where a;{g) is the number of elements of GL,(IF;) whose conjugacy class is determined by a function
 satisfying d(u) = ¢.Notice that this number depends only on n. We can reformulate it as follows :
a;(q) is the number of elements of GL,{IF,) such that its commutator ring in M, (IF,) has dimension
1. Of course, we can compute this number as follows

= 3 LGLalE)|

pid(p)=i “
But maybe there is a closed expression of a;(g) known to people more familiar with the combinatorial
aspects of GL,(IF,) than i am. At any rate, the advantedge of this approach is that most functions
¢ have a low value for d(p) and it is not necessary to compute ay,(g) and a,+2(g) because they can

be deduced from the following two equations

n:l

| GLn(IFy) |= Ea,-(q)

n

3
1 < ;
01,n(9) = 77—y 2 @il9)e
(9) = ey 2 0
and 01,,(g) can be readily computed from the results of section 5. That is

i 1y

o1nlg) = D_#{A: DA =i}d’

i=1

20




where A = ()3, ...) runs trough all partitions of n.As we will see in the next sections, this reduces the

number of computations drastically for small values of n.

Once we know the values of oy, x(g) for all £ < n we can calculate the number 7,, ,(g) by using
the Krull-Schmidt theorem. Indeed, as in section 3 we can associate to a point in the orbitspace
R(Sm,n)/GL,(IF,) its decomposition-type 7 = (e1, k1;...; e, k,} if it corresponds to a representation
which is the direct sum of r distinct indecomposable representations of dimension vector k; and
occuring with multiplicity e;. The number of points of decomposition-type 7 can then be computed

from the numbers %,, &, (g) which we know by induction since 2,,,1(g) = om,1{q)-

Finally, we have to pass from %, n(g) to aim,n(g).Now, every absolutely indecomposable repre-
sentation has a minimal field of definition. Let us denote by maim, (g) the number of isoclasses of
absolutely indecomposable representations in R(Sy,,n) with minimal field of definition IF,. Then,

clearly

(1) : @t nlg) = Z Matn,0(q')
IF,cIF,

9
Now, suppose we hg,ve an indecomposable representation V' over IF, which is not absolutely inde-
composable. Assume that IFy- is its minimal splitting field, i.e. the minimal field extension such
that V ® IFyr is the direct sum of absolutely indecomposables. Let G = Gal(IF,-, IFy) which is a
cyclic group, then G acts on all the representation spaces R(Sy,, k)(IF,r) by letting G act on all the
entries of the matrices. Then an easy Galois-descent argument shows that there exists an absolutely

indecomposable representation I € R(Sy,, 2)(IF,-) such that
V ® ]qu o @aeGO'.I
Therefore, we have the following equality

. . | S \
'Lm,n(Q) = azm,n(Q) + Z ;mazm,%(q')
rinsr#l

Now, we can apply Mébius-inversion to (1) and substitute this in the above equation in order to get

imnla) = 2 73 M(e)aim, 3 (%)

dln  e|d
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Therefore, we are able to compute a7,,,,(g) (and hence the rational form of the z&ta function) from

tm,n(g) and aipm, x(¢') for k < n.

22




10. The zéta function for 2 by 2 matrices

Let us first consider the trivial case of 1 by 1 matrices, then GL;(IF;)} acts trivially on

R(Sm, 1)(IF';) and therefore we get

0m,1(9) = im,1(q) = atm,1(q) = ¢™

ans so the zéta-function is just

1
$m,1,0(2) = 70—

qmz
Now, consider the case of 2 by 2 matrices. There are only two possible values for d(u) namely 2 and
4. So,

omald) = Ty (e + aala)e™)

q(g - 1)(

where the functions a;(g) satisfy the equations
a(g—1)(¢* — 1) = a2(q) + ca(q)

9(g— 1)(¢° — 1)o1,2(q) = aa(q)¢* + e2(g)¢®
Since 01,2(¢) = ¢* + g we obtain that
as(g) =g -1
ag) =¢*—a® - +1
In this case it is still possible to rewrite the obtained formula for o,, 2(¢) in a polynomial form for any

m
Om,2(a) = (¢33 + ¢4m5 .. 4 gZmHL 4 21y 4 g2m
In order to compute %,,2(q) we note that there are three decomposition-types (1,2) , (1,1;1,1) and

(2,1).Therefore,

ima(0) = omal@) = (30 ) = ima0)

and substituting the information obtained before we get

. _ _ _ 1 1
zm,Z(Q) — (q4m, 3+q4m 5+m+q2m+1+q2m 1)+ _2_q2m_ §_qm,

23




Finally, to compute at,, 2(q) we have to use the formula

, , 1. 1,
@im,2(9) = im,2(9) = 5im,1(¢%) + S0im,1(q)
2 2

whence we obtain
aim,z(Q) — q4m—-3 + q4m—5 + o+ q2m+1 -+ q2m—1

or, for the rational form of the z&ta-function

1
smaal?) = G g1 = g5 (1= 7 1a)
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11. The zéta function for 3 by 3 matrices

In this case there are three possible values for d() namely 9,5 and 3. There is only one type of
function g with d(p) = 9 namely sending precisely one irreducible polynomial of degree one to the

partition (1,1,1). There are ¢ — 1 such functions. Therefore

3 g-D@-0@~1) _
oold) = 0= = 0= A= ¢

as(g) and as{g) are then solutions to the following two equations
(g~ 1) +as(g) +es(g) = ¢*(¢ - (¢ - 1)(¢° - 1)

(¢ = 1)¢° + as(q)d® + asq® = ¢®(g — 1)(¢* — 1)(¢® — 1)o1,5(q)

where 01,5(g) = ¢® + ¢? + ¢ . Solving these equations gives us

1 Om 5m 3¢
om,3(q) = (g -1 -1)(g -1) (2o(g)t™™ + as(g)t™™ + as(q)t™)

where we have

as(g) =¢-1
as(q) = ¢° = ¢® — 26>+ ¢+ 1
as(g) =¢° —¢®—¢" ~®+2¢° + ¢* +* - " —¢
Let us give a few concrete examples

02,3(q) = ¢'° + ¢® +2¢" +2¢° + 2¢° + ¢*

03,3(a) = ¢*° + ¢ + %% + %% + g1 + 2% + 2912 + 21! + 3¢ + 2¢° + 24 + ¢”
In this case the different representation-types are

.

(3
(2,5
(ls 1;1
(1,2
1

)
.
)
)
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where the degenerations are given from bottom to top.Therefore
. - . . _ Z.m,]_(Q) . . _ .
im,3(9) = 0m,3(q) = Im,2(9)ém,1(9) 3 tm,1(9) (Em,1(9) — 1) — i1 (9)

Again, we will compute the first two examples

. 4 1
i2,3(q) = ¢+ ¢+ + gq“ +¢°+q* - ng

. 4 1
i5,5(0) = 00+ ¢+ + ¢+ ¢+ 20"+ 02+ 20 +2¢"0+ 2¢° +¢° + 4T — 2

Finally, in order to compute the number of absolutely indecomposable orbits we have to use the

formula

. ) 1. 1.
i, 3(a) = tm,3(q) — Z0im,1(¢) + Zaim,1(q)
3 3

and this gives us in our examples
aizs(e) =40+ ¢* +q" +¢®+¢° +¢*
ais,3(q) = ¢*° + g7 + ¢'% + 15 + 1% + 2¢%% + ¢1% + 21 + 2¢10 4 ¢° + ¢® + 47

consistent with the Kac-conjecture.
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12. The zéta function for 4 by 4 matrices

Here §(p) can take the values 16, 10, 8, 6 and 4. As in the previous section it is easy to show
that a16(g) = g — 1 so we have to calculate a30(g) and ag.There are precisely two types of functions

g with d(u) = 10 namely
(n): P - (2,1,1)

(I1): p - (1,1,1)
Q — (1

where the subscripts give the degrees of the irreducible polynomials.There are ¢ — 1 functions of type

(1) and (g — 1)(g — 2) of type (II).Therefore,cx10(g) is equal to

PN Cl ) [ Calal VI Col Y Cala Y. v oy Mg 1)(e® — 1)(¢® - 1)(¢* ~ 1)
(¢ — 1). 0 =21 =42 + (¢ —1)(a - 2). O1— g 2(1-g2)(1—q9)

There are three types of functions p with d(x) = 8 :
(1) : P - (2,2

(In : P, — (1,1)

(I11) : P — (1,1)
Ql —* (1:1)

where subscripts indicate the degree of the polynomials. Therefore, there are ¢ — 1 functions of type

(1), ﬂq—;—ll functions of type (II) and (_«L—_112_(_¢;;g)_ of type (III). This enables us to compute ag(g)

which is equal to

¢®(g —1)(¢> - 1)(¢* - 1)(¢* - 1) L= Pla-Y(? -1 -Y(¢* - 1)

O G T Pl--7)
Lla=1la-2) ¢®lg=1(¢* = 1(¢® - 1(¢* ~ 1)
2 T (l—g)F(1-g7%)?

As before, the functions ag(g) and a4(g) are then the solutions to the following set of equations
Y aile) =¢%(g—1)(¢* - 1)(¢® - 1)(¢* - 1)

Y eilg)d' = ¢%(a — 1)(d® — 1)(¢® — 1){g* — Dos,4(q)
where 01, 4(q) = ¢* + ¢® + 2¢% + ¢. Solving these equations we get that o, 4(g) is eqaul to

1
¢*(g—-1)(¢* - 1)(¢® - 1)

=) (@16(9)4*™ + c10(2) "™ + @5(2)a®™ + 06(9)g°™ + a(9)g*™)
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where

a6(g) =¢—1
ato(g) =¢* —q" —2¢* +¢° +1
as(g) =¢%-¢°—2¢" +¢® —¢® +2¢* +4% — ¢
aG(q) — q13_q12_3q10+49+q8 +4q7+ 2q6_2q4_2q3_q2
a4(q)=q16_q15_q14 __q13+q12+2q11+2q10_3q8_2q7_2q6+q5+2q4+q3

Let us give a few examples :
02,4(q) = g7 + ¥ + g1% + 2% + 242 + 31! + 440 + 6¢°

+5¢% +5¢" +3¢°+¢°
03,4(q) = ¢®° + ¢°* + g% + 2¢%° + ¢28 + 3¢?7 + 2¢%° + 4¢%°
+3q24+5423+5q22+7q21+6q20-1;9q19+8q18+10q17
+9¢® + 10¢18 + 9% + 942 + 6422 + 5g*! + 3¢ + ¢°

In this case the different representation-types are

(4,1)

N,

— T
(3; 1;1, 1) (2’ 1;2, 1)
~o e \
‘(2: 1; 1]: 1;1, 1) \\

(2, 1'; 2,1) - (2,2)
T (LuLLL,2)

el ~
(1,1;1,3) (1,2;1,2)

~

e
"

(la 1;1,1;1,1;1, 1)
N /,//

.
~. L

(1,4)

where we have indicated the possible degenerations.The number of indecomposable orbits is therefore

given by the formula

tm,4(0) = 0m,4(9) — tm,1(9)im,3(g) — (im’;(q)> — %m,2(9) (im,;(q))
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_ (im,i(Q)> _ (im,;(Q)) ~im,2(q) 3 (i"”;(q))
i1 (9) (imy1(g) = 1) — (im’;(’n) ~ im,1(q)

Let us compute the easiest example

. 5
igq = 7+ ¢+ gt + 2418 + 12 + 341 + §q1o+4q9

t1p? ¥30 + 30+ 30 -0~ 5

Finally, the number of absolutely indecomposable orbits can be computed using the formula

. \ 1. 1. 1 . 1.
azm,4(4) = 7wn,4(<1) - é‘azm,z(qz) + Eazm,z(Q) - Zazm,l(‘14) + Zazm,l(qz) ‘

and for the easiest example we get
ain,a(g) = g7 + ¢*° + g'% + 3¢'% + ¢'2 + 8¢ + 2410 + 4¢°

+2¢% +3¢" +¢® + ¢°

consistent with the Kac conjecture.
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13. The zéta function for 5 by 5 matrices

In this case §(u) can take the values 25,17,13, 11,9,7 and 5. Of course, a25(g) = ¢ — 1. There are
two types of functions with d{y) = 17
(N: 1 - (2,1,1,1)
(II):

(L,1,1,1)

I — ,1
1 — 1)

which enables us to compute that
a17(q) — qlo _ q9 - 2q5 +q4 + 1

Likewise, there are two types of functions s with d(x) = 13
n: 1 - (2,21)

(IT) : (1,1,1)

(1,1

1 —
1 -
and one can compute that

a13(g) = ¢ — ¢+ ¢ % —2¢M — g0 —2¢° + ® — ¢" +3¢° + ¢® + ¢* — ¢

There are five types of functions with d(u) = 11,namely

(H: 1 - (311

(In: 1 - (1,1,1)
- (2)
(Irry: 1 — (1,1,1)
1 - (3
St
{Ivy: 1 - (1,1,1)
2 - (1
Vy: 1 - (2,1,1)
1 - (1)

which allows us, at the cost of a headache, to compute

a1(q) = ¢*8 - 7 — g4 — g1 — 18 1 312 4 g1t 43410 1 24° — 247 — & — 245 — ¢*
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Finally, there are five types of functions with d(u) = 9

N: 1 — (32

(m: 1 - (1,1)
1 — (1,1)
1 = (1)
(Irny: 1 — (2,1)
1 (1,1)
Iv)y: 1 — (2,2
1 — (1)
Vv)y: 2 — (1,1
1 - (1)

which gives us that ag(g) is equal to
g — 18 — 3¢ 4 g15 _ 2g14 4 618 4 2912 4+ Tq'! — 210 4 ¢° — 6¢5 — 247 — 4¢° + ¢° + ¢

Again, the remaining polynomials a7(g) and as(g) can be obtained as the solutions to the standard
set of two equations where we have to use the fact that oy 5(g) = ¢° + ¢* + 2¢® + 2¢% + ¢g. These

calculations lead to the result that
ar(q) = g2 — ¢* - 3q19+ q'® + g + g5 4+ 2414 — 7g1% — 7412

~10g'* —2¢*° + ¢° + 6¢° + 69" + 4¢° + ¢°

and

a5(q) = q25 _ q24 _ q23 _ q22 + q21 +q20 + 3q19+ q18 - 2q17 - 4q16 - 3q15
+3q13 + 6q12 + 3q11 + 2q10 _ 2q9 _ 3q8 _ 3q7 _ q6

Combining these computations with the fact that

1 mi
o = L) g
m,5() -0 - (- 1){¢*-1(¢®~1) Z‘: (9)q
we are able to calculate the number of orbits.For example

02,5(Q) =q26+q24+q23+2q22+2q21+3q20+4q19+5q18+6q17+8q16+10q15
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+11¢™ + 14¢* + 15¢"% + 17" +15¢*° + 13¢° + 8¢° + 4¢" + ¢°

The different representation-types and their degenerations are given in the following diagram

)
- \\
~—
(2,1;3, 1)4‘_\‘\ o (4, 1; 1,1)
~~~~~ >< ~
(3,1;1,1;1,1) — — (2,1;2,1;1,1
. . \
— .
(1, 2{ 3,1) (2,1;1, 1;‘1, 1;1,1)
(11 2;1,1;2, 1) (1, 1;1,1;1,151,1;1, 1)
~ .‘\\\. //
(1,3;2,1) (1,2;1,1;1,1;1, 1) (2,2;1,1)
< P ~_ -
(1,3;1,1;1,1) - — (1,2;1,2;1,1)
P e |
(1,2;1,3) — T—— (1,4;1,1)
~_ - ////_,_/
’

which enables us to deduce the formula for ,, 5(¢) as in the foregoing sections. In the special case

under consideration we get that

i2,5(a) = 42° + g2 + ¢ + 2972 + 242 + 3¢2° + 3¢%° + 5g'® + 5gl7 + 7¢1¢ + 7415

41 1
+9¢** + 9¢*2 4 1042 + 9¢' + —5—q1° +6¢°+ 49% +2¢" +¢° — ng
Finally, the number of absolutely indecomposable orbits is
, . i, s o 1 .
a%m,5(9) = im,s(q) - gazm,1(q )+ gmm,1(4)

In our special case we get therefore

aiz5(q) = ¢%° + g% + ¢2° + 2922 + 2?1 + 3920 + 3¢ + 5418 + 517 + 7¢1® + 7¢S

+9¢™ +9¢'® + 10¢'% + 9¢* + 8¢ % + 6¢° + 4¢° + 24" + ¢°

consistent with the Kac-conjecture. These calculations can therefore be viewed as an extra indication

for the rationality of Ky, s.
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14, The missing cell mystery and other problems

It can be seen from the calculations made in the foregoing sections that the coefficient of
g(m=Un*+1 in g4, (q) is always zero for m > 2. If the Kac- conjecture is true (ie. if there is a
cellular decomposition by affine spaces) this means that there is no cell in codimension one.

It is almost trivial to prove that this coefficient is zero for all n > 2. One uses

01,(9). | GLa(Fy) |= D aila)d’
to get a bound on the degrees of the polynomials c;(g) and the fact that a,2(g) = ¢—1 to obtain that
for m > 2 the degree of (¢— l)q"“"2 is greater than the degrees of the remaining termsin 3, o;(g)q™".
Then we divide first by ¢ — 1 and then by the remaining terms in | GL,(IF,) | and obtain that the
coefficient of g(m~1"’+1 s always zero in om,,(g) (With the exception n = m = 2).

Unlike its proof, it is fairly difficult to understand this fact. So, we ask
Problem 2 : What is the reason for the non-existence of a cell in codimension one ?

Of course, one could check the Kac conjecture for other quivers than the bouquet quiver $,,. Of
particular interest to us may be the rank two quivers P, , i.e. the quiver with two vertices a.nd m
edges between them (e.g. all with the same orientation). The orbit-space of the representation space
with dimension vector (n,n) is birational to the center of the trace ring of m generic n by n matrices.
The main advantedge of this other approach is that we are in the setting of projective varieties and
hence we can for example use the Deligne theorems (former Weil conjectures) to compute the Betti

numbers of the projective variety
I(Ppm; (n, n))(€)**/(GLa(C) X GLw(€))

where the superscript ss denotes the set of semi-stable points in the sense of Mumfords G.I.T. This
calculation will be carried out by the author in a future publication.

The special case when m = 3 is of interest to vector bundle adicts.For the orbitspace of in-
decompasable representations of Ps of dimension vector (n,n) is birational to the moduli space of
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stable vectorbundles over the projective plane IP? with Chern numbers (0,n). So, problem 1 on the
rationality of K,, , is equivalent to the rationality problem for these moduli spaces.
It would be interesting to make all these connections between trace rings of generic matrices,

representations of P, and vector bundles over IP? as explicit as possible.
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