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0. Introduction

Throughout, k& will be an algebraically closed field of characteristic zero.Consider the
polynomial ring
R =klzij(1);1 <4,/ <n;1 <1 < m
and define the so called n by n generic matrices to be
X1 = (z:;(1))i,; € Mn(R)

The ring of m generic n by n matrices, §,, , is the subalgebra of M, (R) generated by the
set

{X;; 1< S m}
With R.,» we will denote the k-subalgebra of R generated by the traces of elements from
Gm,n- The composite of G, , and Ry p in R is called the trace ring of m generic n by n
matrices and will be denoted by Ty, p.

If m > 2 it is fairly easy to verify that R,, , is the center of Tm,n-One of the main
motivations for studying the rings Ry, n and Ty, , is that they are respectively the ring of
matrixinvariants and matrixconcomitants and of basic importance in the study of the classical
problem of classifying m tuples of n by n matrices under simultaneous conjugation.

Of course, if m =1 or n =1 then R, » = Tp» » and are commutative polynomial rings,
so in particular they hé.ve finite global dimension‘ ( or equivalently, théy are regular rings ).

Therefore it is natural to ask the following question :
Determine all couples (m,n) for which T, n (resp. Rm,n) has finite global dimension

This is the regularity problem for trace rings of generic matrices. Small and Stafford
~proved that Ty, and R,z have global dimension 5. Afterwards, I settled the regularity
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problem for 2 by 2 matrices in [LEBRUYN 1] using some important results of C.Procesi
using the invariant theory of the (special) orthogonal group of dimension 3. Later, jointly
with M. Van den Bergh we have shown in [LEBR-VDBERGH] that T3 3 has global dimension
10 and that for n < 4 there are no other trace rings which have finite global dimension.

| However, the general case remained open and seemed to be extremely difficult. The
reason for this is that the usual test for regularity of Noetherian rings depends on the ra-
tional form of its Poincaré series. In [FORMANEK] E. Formanek has described a method
to compute the power series expansion of the Poincaré series but this method is very time-
consuming. For n = 3 or n = 4 and m = 2 we were able to compute the first terms of this
series with the aid of a compgter, but already for n = 5 this is a virtually impossible task.

Finally, the general case was solved jointly with C. Procesi in [LEBR-PROCESI] using
some powerfull invariant-theoretic results due to D. Luna ( the so called étale slice results )
and the description of invariants of tori mainly due to R. Stanley. The complete solution to

the regularity problem is :

THEOREM : The trace ring of m generic n by n matrices has finite global dimension
if and only if m or n is equal to one or (m,n) = (2,2),(2,3) or (3,2).
Its center R,, , has finite global dimension if and only if m or n is equal to one or

(m,n) = (2,2).

The proof of the solution to the regularity problem of 2 by 2 matrices is well documented
in [LEBRUYN1] and [LEBRUYN2], whereas the general case is proved in [LEBR-PROCESI].

To illustrate the basic methods as well as the computational difficulties, we restrict ourselves

in this paper to the special case of 3 by 3 matrices.




1. A general sfrategy .

In this section we will outline an algorithm to find (at least in principle) the
rational expression of the Poincaré series for the trace ring of m generic n X n-
matrices, Ty, ., and for its center R n. This method also enables us to test trace

rings of generic matrices for regularity (i.e. having finite global dimension).
1.1. Formanek's description of the Poincaré series.

It is known that R, n (resp. Tm,n) are fixed rings of an action of GLy,(k) on
R (resp. on M,{(R)), where R = kft;(1);1 < 4,7 < n;1 < | € m]. Using this
fact, Formanek applied the general theory developed by H. Weyl and 1. Schur to

obtain formulas for the Poincaré series
P(Em,n; Y1500y ym) and P(Tm,n; Y1,4 ym)

of the center (resp. trace ring) in a multigradation, i.e. by giving each indeterminate
tij(l) € R the degree (0,...,0,1,0,...,0) with 1 on spot /. To describe the results of
[FORMANEK] we must recall first some basic definitions and results on the ring

of symmetric functions.

A degree sequence of lenght n is a sequence
| a=(0y,..,0,)
of non-negative integers. The total degree of a is
|a|l=ai+..+a,
A partition of lenght < n is a degree sequence A = (Ay, ..., \,) satisfying

M LS
3




For any partition A = ()\1; s An) of lenght < n we define the element in
Zlzy, ..., z,]

gy = ax(zy, ..., Zp) = Z (3ign(1r))xi€1)...z:{n)
nES, .

where S, is the group of all permutations on n letters.

In the special case that
§=n-1,n-2,..,1,0)

we get

as = ][] (2:—2;)

i<y
In Z[z1,...,2n] , @5+ is divisible by as and the quotient sy = as4x/as is in-
variant under the natural action of S, on Zz,, ..., z,}, i.e. by permuting the in-
determinates. sy = 8y(zy,..., 2,,) is said to be the Schur function associated to the
partition of lenght < n, \.
The set |
{&x | a partition of lenght < n}

forms a Z-basis for Ay, , the ring of symmetric functions in n variables i.e. the ring
of invariants of Z[zy, ..., z,] under action of S,.
One can define an inner product <,> on A, such that the sy form an

ortonormal basis and it can be extended to

-1 ~118
I'p = Zlz1,27, ..., Tp, 25,17

Formanek [FORMANEK] defines this inproduct intrinsically in the following way.

Let

(")‘ : Z[zl;xl—li -":zmzzl] - Z[zl)zrl)m: zmzzl}

be the involution defined by (z;)” = z7'. Now, define the linear functional

X —1 -1
/.Z[zl,zl vy Ty T | = X
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by f1=1and [z{*...2% = 0if @, ..., @, are not all zero. For any a,b € T, the

inproduct is defined to be

1 - *
<ag,b>= ;;’/a(b) .a5.{as)

Now consider the finite dimensional GL,,(k) X GLn(k)- module M,.(k) ® U,
where U,, is the standard GL,(k)-module of dimension m and the action of GL,(k)
on M, (k) is given by conjugation. Then it is clear that M, (k) ® Uy, is rational as
a G L,(k)-module and polynomial as a GL,,{k)- module.

This action of GLy(k) X GL,, (k) extends in the natural way to the symmetric
algebra of M, (k) ® Uy, which is just

Rzk{t;j(l);l L<4,7<n1 <1< m)
By giving each of the generators ;;(1) degree one, R is a positively graded k-algebra

R=EDR, DR @ ...

where each homogeneous part R; is a finite dimensional GL,(k) X G Ly (k)-module
, rational in the first factor and polynomial in the second.Therefore tkhe Poincaré
series of R as a GL,(k) X GLn(k)-module is

P(R;zizity;) =1+ x(R1)+ x{Rs) + ...

where x is the isomorphism between the Grothendieck ring Mod(n, m) of all finite
dimensional GL,(k) X GL,,(k)-modules which are rational in the first factor and

polynomial in the second, and
—1 ~1 SaXS
Z{xhzl 12Ty Ty )yl:~":ym] nXSm

see for example [FORMANEK lemma 11].
Therefore, P(R) is a formal power series over I',, @ A,,. It is fairly easy to see
that x(R;) is the :-th complete symmetric function of
{ziz;] ' |1 <47 <n1<k<m}
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1.e. the coefficient of t* in the power series expansion of

H (1- z;.z;l Yid)!
5.7,k

Further, we have
H(l - z,-.z;-'l.yk)_l = Z 8)‘(2:;.1:;-1).8).(1]];)
A
where the sum is taken over all partitions X of lenght < min(n, m). Therefore

P(R) = z sx(z;(.z?l).s)\ (vx)
DN

X(R)= D an(zia7!).on(u)

I\[=1

Here, sx(z;.z;'l) is the image of 83(z;;;1 < 4,7 < n) under the homomorphism

Z[Zij;l _<_ 7:).7. _<.. n] - Z{zl)zrlx"-; znyz;:ll )

-1
j -
Now, for any GL.(k) X GLyn(k)-module of the form N ® M where N is a

rational GL,(k)-module and M is a polynomial G Lm(k)-module we have :

sending z;; to z;.z

X((N @ M)Fik)) = y(NCLlk) @ M) =< Xa(N),1 > Xm(M)

where x,, is the isomorphism between the Grothendieck ring of all finite dimen-
sional rational GL,(k)}-modules and I',, and Xm the natural isomorphisms between

the Grothendieck ring of all finite dimensional polynomial GL,,(k)-modules and

A and the inproduct <,> is taken in Z[z,, :c'i‘l, . z,,,z;l]s".

Theorem 1 : [FORMANEK, Theorem 12]

PRusu; 91,1 Ym) = Y < 8x(2:.271),1 > .85 (1)
5N
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where X varies over all partitions of lenght < min(n,m).

Similarly, Formanek computes the Poincaré series of the trace ring T, as
fixed ring of M, (R) under action of GL,(k).

Theorem 2 : [FORMANEK,Theorem 12]

P(Tm,n;ylv ooy ym) = Z < 8)\(2};.2:;1), 8»(1)(2,'.22;-_1) > -8)\(!{1;)
A

where X varies over all partitions of lenght < min(n,m) and (1} = (1,..,,1) , i.e.

8(1)(22;.:2:;'1) = Ei,j z,-.:c;.'l.

1.2. Towards a rational expression.

It is known [PROCESI] that R, » and Ty, are both affine algebras over &
and that T,, ,, is a finite module over R, ,,.

Therefore, it follows from the Hilbert-Serre theorem that the Poincaré series
of R, and Ty, , are rational, i.e. there exist polynomials 1,9, k,57 € Zlyy, ..., ¥m)
such that |

P(Rom i Y15 oY) = L1010 ¥m)
(Rem,ni 1, -y ym) g(Y1, or ¥m)

h(yly'")ym)
P(Ton i Y1y ooy Yom) = 11222 Ym)
(T3 913+ Ym) TW1s s Yom)

The main problem in determining the rational expressions is to find out which
polynomials can occur in the numerator.

In the special case that n = 2, this is easy because there exists an epimor-
phism

Tl = T2
where I',, is the iterated Ore-extension

P = k[az'j; 1 _<__ 7:1 .7' g m][al}[a%am 62]...[0,,,,0’,,,, 6m][bh°": bm]
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where 0;(a;) = —a; and 6;{a;) = a;j for all ¢ < 5 and on all other variables both

a;,- and 65 act trivially.

The epimorphism =, is defined by sending a; to X; — Tr(X;) , b; to Tr(X;)
and a5 to Tr((X; — Tr(X))(X; — Tr(X;)), cfr. [LE BRUYN] for more details.

The Poincaré series of T, is easy to determine
1
£<j(1 = yey;) IL (1 = 9:)?

and because Ty, o has a finite resolution as I'm-module one can write

P(Fm;ylt seey ym) = H

f(yl 3 esey ym)
.'<j(1 ~ Yi-y5)- H.‘(l — i)

P(Tm,2;y1:"°x ym) = H

Comparing the power series expansion of P(T;y1,-39ym) with

that of

P(Tm,2;91, -, ¥m) 8s can be caleulated using (1.1) it is fairly easy to calculate

the functions f(yy, ..., ¥m).

In the general case, however, one has to find dnother approach. Our starting

point will be the following theorem of Procesi

Theorem 3 [PROCESI, Theorem 3.4]

Rm,n is generated as a k-algebra by the elements Tr(X;lly...X.-j) with 7 <

2" — 1.

Therefore, R,y has a finite resolution over the ring
Sm,n = k{ail..-ij;j ..<_. 2" — 1, ik € {1, . m}]

whose Poincaré series is

1

H,“(l - ¥i)- Hih;'z(l = YiyYiz)--r Hil’,,,izn_l (1' - yt'x"‘ly"zn-—l)

Therefore, R,,,, and Ty, , being finite modules over Sm,n We get

P(Rm,n; Yi, ... ym) = f(yly acey ym)‘P(Sm,n; yl? ey ym)
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P(Tm,n; Yiy--y ym) = h(ylx srey ym)0p(sm,n; Yiseeey ym)

and , again, comparing the power series expansion of P(Rum,n;¥1, e ¥m) (resp.

Tm,ni Y1, -y Yon)) 30d that of P(Sm n; 41, ..., ¥m) gives us an algorithm to compute

the functions f(yy, ..., ym) and Ay, ..., ¥m).

Of course, this is a very laborous method and ususally we will contend ourselves

with computing the rational expression of the Poincaré series in one variable. These

are obtained from the multi-graded ones by setting

y1=Yy=..=y, =t

and we have :

Theorem 4
There exist polynomials f(t), A(t) € Z[t] such that
/()
mun;t) = 2h 1
P(Rmnit) (1—=t)m (1 —2)m® (1 -2 —1)m

T A= m (1= ) (1w

A direct consequence of this result is the determination of all possible rational

expressions of the Poincaré series of Ry n (resp. of T, n) providing it has finite

global dimension.

For, in that case, the Poincaré series has to have the form b—(l?)- and comparing

this with the foregoing theorem we get




Corollary 5

If Rn,n or T, has finite global dimension, then its Poincaré series has the

form
1

FS& P
where the F; are irreducible factors (in Zt]) of 1 — ¢ for some 1 < [ <2"-1
and Ef o; is clearly bounded by

m+ 2.m? + ... + (2" — 1).m?2"1
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2. Computation of the Poincaré series of Ro3 and Tp 3.

In this section we will explicitate the foregoing general results in the special
case of 2 generic 3 X 3-matrices. The computation of the first terms in the power
series expansion of the Poincaré series will enable us in the next section to prove

that Rg 3 and T3 3 both have infinite global dimension.

Our first job is to calculate the Schur functions in 9 variables , 21y .0y 29,

associated to partitions X\ of lenght < 2, i.e. A\ has the form
X = (2,5,0,0,0,0,0,0,0)

where a,b € IN such that ¢ > b.
By definition the Schur fanction s is

det(A
8)‘(2'1, ee) 29) = H (z(, }_ Z')
) ) < y\<t 7

where A is the following 9 X 9-matrix

Z§+a z;""b 2? ..... zl 1
zg+a z;-*-b zg ..... 22 1
Z§+a z7+b zg 201

by elementary row alterations on A it is easy to schow that the Schur functions

F
a{z1, .., 29) = det ( G)
H I

becomes

where

I ip 18
F= E 2728

lij=a+1

G= ) ..z

l7]=b
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9
H S zl welg

kj=a

§ 21 ...29°

l‘i‘*b—
where 1, 7 are 8-tuples and k, ! are 9-tuples of nonnegative integers. If & < 1 then

the under right corner becomes 0 by definition.

Next, we calculate the image of 8y(zy, ..., 2y) under the map

Z[zlx ';" ZQISQ — Z[zh z-l_lx Z2, z;l» 3, 3;1133

defined by
z7 =1 24 = 2027 27 o z3z]
~ -
22 = 313y z5 —1 28 — 32y 1
-1 -
23 = T1T3 2 — Toz; 1 2p — 1

Therefore, sx(zi.z; 1) is the determinant of the following 2 X 2-matrix

(Fl Gl)
H, I
where :
Fl — 2 131+2s.2124"3"*4—'!7.z;ﬂ‘*‘to—tz—'is.z?'f'ts—"s"'o
|l =art1

Gy = Z 191 +ds x{:’*‘fa".ﬁ-—ﬁ z.%l'*'fu—jz—fs zg7+ja—ia—.7's
7]=b
H, = § 1k1+k5+k9.zfz-*l-ks—h—-kv.z§4+ka--kz-—ks.z§7+ks-—ka-—ks
|k|=a
I = Z 111+ls+lq.ziz+la—-l4-—17 mgﬂ-lsﬁl.‘.__z8 zg,.;.[s_[,._[,
jlj=b—1

Our next job is to compute the inproducts in Zlzy, 272, 20,25, 23, z31]5s

- 1 - .
<oy )1>=1 [o@res
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- - 1 - - »
< ax(yiyy ') sqylviy;t) >= g/sx(vi-y,- ") viyTas.a;

1 5)
where we have :

as = (y1 — y2).{y2 — ¥3)-(y1 — ¥3)
a5 = (y7' v )z = y3 )T — 3 Y)
If we denote y7*.y52.y5° by (a1, @z, @3), we find that ag.a; is equal to

6.(0,0,0)

—2.[(1,=1,0) + (—1,1,0) + (1,0,—1) + (=1,0,1) + (0, 1, —1) + (0, -1, 1]
+2.[(2,-1,-1) + (=2,1,1) + (-1, 2, -1)+(1,-2,1) + (-1,~-1,2) + (1,1, —2))
-—1[(2’ ""2: O) + (""2» 2, 0) + (2’ 0, —2) + ("-27 0! 2) + (Ox 2; ""2) + (O) _2: 2)]

Therefore, we have all the necessary ingredients {o compute the inproduct
< ex(y;.y;I), 1 > for partitions of the form \ = (q,$,0,0,0,0,0,0,0). In appen-
dix 1, 2 listing is given of a Pascal program which computes this inproduct as well

as the obtained values for a + b < 10.

The Schur functions in 2 variables are easy to compute

k
8(k,0)(!/1:y2) = Z ¥ .yé""

i=p
8k, (Y1, ¥2) = (y1-92)* " 851,0)(v1, 12)

Therefore, we have all the necessary information to calculate the first terms of the

Poincaré series of Rg 3.
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1+
1 +ye+
297 + 2y1.y0 + 292 +
3yi + 4k + dy1.93 + 3y3 +
4y + Bylye + 99793 + 6ys 93 + dyd +
5y1 + 9y1.y2 + 14y}.0% + 149243 + 9y 8 + 548
7y} + 12472 + 229193 + 2593 43 + 2292 pd 4 129045 + 798 +

-----

From this we deduce the Poincaré series in one variable

P(R2,3;t) = 1+ 2t + 68 + 14£3 + 29¢* + 565 + 10748 + ...

For the trace ring, we have to compute
S ava]
Yi.y; .05.05
i5
which is equal to
6.(0,0,0)
—'1'[(1: -1, 0) + ("'1: 1, 0) + ax 0, "'1) + ("‘1: 0, 1) + (0: 1, "'1) + (O: -1, 1)]
_1{(2) -2, 0) + ('—21 2, 0) + {27 0, _2) + ('—21 03 2) + (O: 2) _2) + (0: -2, 2)]

~1.[(3,-3,0) + (-3,3,0) +(3,0,—3) + (—3,0,3) +(0,3,—3) + (0,-3,3)]

+1'[(3) -2, "'1) + (_3) 2, 1) + ‘(3: -1, '_2) + (’—37 .11 2) + ("'1: 3, ""'2) + (17 ~3, 2) +

(=2,3,-1) -+ (2,-3,1) + (=1,-2,3) + (1,2, ~3) + (2, ~1,3) + (2, 1, ~3)]
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In appendix 2 we give a listing of a Pascal program which computes the inproduct
< s\{yiv;h), 8(1)(y.'.y,71)‘ >

for partitions A = (a,5,0,0,8,0,0,0,0). Also contained in this appendix are the
values for a + 6 < 10.

They enable us to comp"ute the first terms in P(T2.3; 41, y2)
1+

2y1 + 2y +
47 + byr.ye + 492 +
By? + 13y% .42 + 13y,.42 + 643 +
9y + 229390 + 31yl .2 + 2295 .43 + Oyl +
12y7 + 34y} .yo + 56y%.y3 + 56y% .43 + 34y, .yd + 1245 +
18y7 + 48y} .y + Slyi.u2 + 1093 y3 -+ 9152 vl + 48y, .45 + 1648 +

.....

Hence, the Poincaré series in one variable is

P(To,35) = 1+ 42 + 1487 -+ 38t% + 93t* + 204¢> + 419¢° -+ 806¢ + 1480¢5...
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3. The regularity problem for 3 by 3 matrices.

The calculations carried out in the foregoing section enable us to prove the following

result

Theorem 6 : The center R3 3 of the trace ring of 2 generic 3 by 3 matrices has infinite

global dimension

Proof : It follows from section 1 that if gldim(Rz3) < co then its Poincaré series

should have the following rational form

1
(1 —t)2(1—12)%(1 — #3)°(1 — t4)4(1 — t5)¢(1 — t8) F(1 — ¢7)9

witha+b+c+d+e+ f+g=10. A comparison of the coefficient of ¢ in the power series
expansion of this form with the actual Poincaré series learns us that a = 2. The coefficient
of ¢2 then becomes 3 + b whence b = 3. The coefficient of ¢* finally, becomes 4 + ¢ whence

¢ =10 but 243 + 10 > 10 and we obtain a contradiction.

From the calculation of the first terms of the Poincaré series of the trace ring of 2 generic

3 by 3 matrices one deduces

Theorem 7 : If the trace ring of 2 generic 3 by 3 matrices has finite global dimension,

its Poincaré series must have the following rational form

1
(-1 -2)4(1 %)

Proof : If the trace ring Rz 3 has finite global dimension, its Poincaré series must have
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the rational form

1

where F; is an irreducible factor in the factorial domain Z[t] of terms 1 — t' where I < 7.

Consequently, we must find natural numbers a, b, ¢,d, ¢, f, g,k such that

: 1
P(T255t) = (1—t)e AL ASAZAZ AL (1 + £2)3(1 + £3)2
where
Ay =1+t
Ay =1+t+1?
Az =1—t+1

Ag=1+t+2+3+ ¢4
As=1+t+82+3+ ¢4 +15+ 148
Because A;.A3 = 1 + t2 we will separate two cases :

casei: b< d,then the numerator has the form
(1—1)°(1 — t + 83 454541 (1 + 2)7(1 + £3)»
we will investigate the two possibilities : (i.a) @ > ¢+ e+ f , then the numerator becomes
1-8*Q -t +3)" Q- )1 - 5)* (1 -1+ 2)(1 + 8)»

and calculating the first terms in the powe series expansion of this formula we get

u(u 4+ 1) + v(v + 1)

5 3 —v+uv—g)t? +...

14 (v +v)t+(

and therefore the set of equations

vtv=4u—g=2=8

17




which has no solutions in IN.

(i.b) : a < c+e+ f, then the rational form becomes

(1—1t)™
(1—-t+e2)2(1 —e3)w(1 - 5)=(1 — t7)¥(1 + £2)9(1 + £3)»

and its power series expansion begins with

u(u — 1) +v(v+1) B

5 5 v—uv — g)t? + ...

1+ (v—u)t+(

Therefore, we obtain the equations
u—v=4u+g=-8

which has no solutions in IN.

This reduces our study to case ii : b > d , i.e. the numerator becomes
(1—t)2AbASAs AL (1 +12)9(1 + ¢3)P

It is easy to check that @ > b+ ¢+ e + f for else the coefficient of ¢ in the power series

expansion would be negative.Hence we have the rational form

1
(1—=t)2(1 —22)v(1 —3)» (1 — 5)2(1 — tT)¥(1 + t)9(1 + 3)%

Comparing the coefficient of ¢ in its power series expansion with the actual coefficient in the

Poincaré series we get u = 4. But then, the first terms become

1448+ (10 — v — g)t2 + (20 + 4(v — g) + w — R)E3+

v(v+1) + g(g+1)

_ 4
3 5 vg)t* + ...

(35 +10(v — g) + 4(w — h) +

which gives us the equations
v-g=4w—h=2

18




Substituting this information in the coefficient of t* we get

v2+v+g®+g—2v9=20

whence v = 4 and g = 0. The coefficient of t® then becomes
176 + 14(w — k) + =

and comparing this with the Poincaré series we get z = 0. Finally, comparing the coefficients

of ° gives us the equation

witw+h +h—2wh=6

 whence w = 2 and h = 0. Since u + v + w = 10 = Kdim we must have y = 0, finishing the

proof of the theorem.

In a similar manner it is possible to compute the rational form in a multi-gradation. One

obtains

1
(1 —22)2(1 = 22)3(1 — 1) (1 — 83) (1 — ta22) (1 — £]82) (1 — 1183)

In [LEBR-VDBERGH] it is shown that T, 3 does indeed have finite global dimension and has

the prescribed rational form for its Poincaré series.

Of course, one can try to apply the method outlined above to calculate the Poincaré series
of the trace ring of 3 generic 3 by 3 matrices and show that its rational form cannot be a pure
inverse. It should be clear however that the computations become extremely complicated.
Nevertheless, we can follow a more elegant approach to solve the regularity problem for 3 by

3 matrices

Theorem 8 : The trace ring of m géneric 3 by 3 matrices Ty, 3 has finite global

dimension if and onIy ifm<2.
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Proof :

As we mentioned before, regularity of 733 was proved in [LEBR-VDBERGH]. Now,
let us consider the special case of 3 generic 3 by 3 matrices. In order to prove that the
global dimension is infinite it suffices to show that P(Ts,s;t1,%2,%3) is not a pure inverse in

Z(t1,t2,t3).Suppose that the Poincare series has the rational expression

1
T, g:(t1,t2,t3)

where each of the components g;(t1,t2,¢3) is an irreducible factor in the factorial domain
Zty,ta,t3) of a term 1 — t'ft’zt{{‘ and we may assume by the Procesi-results that k +1+m <
22 -1=T1.

Lert us consider the subproduct consisting of those terms involving only two variables ¢;

and ¢; : G(t;,t;).We obtain

1
m = P(Ts,35t1,t2,3) |ti=0

Therefore, from our knowledge of the rational form in a multigradation of the Poincaré series

of the trace ring of 2 generic 3 by 3 matrices we obtain that
Gltats) = (1 - 1)2(1 — )21 — ) (1 — ) (1 — tit;)2(1 - tit;)(1 - t:t5)
Since this holds for each couple (7, ) from {1, 2,3} we obtain a subproduct equal to
(1= t2)?(1— #2)(1 — ta)*(1 — ¢]) (1 — £3)(1 — &3)
(1 — t1t2)?(1 — tat3)?(1 — tats)?

(1 — B2ta)(1 - 38:)(1 — £325) (1 — £302) (1 — £385) (1 — £31)

If we set t; = t; = t3 = t we obtain that the residue of the pole in ¢ = 1 of the Poincaré
series of the trace ring of 3 generic 3 by 3 matrices is at least 21. This is in contradiction
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with the fact that this residue must be equal to its Krull dimension which is 19, so we obtain
a contradiction.

Finally, let us consider the general case. Suppose that Tim,3 has finite global dimension,
then the rational form of its Poincaré series in a multigradation must be a pure inverse.
However, if we set 4 = ... = t,, = 0 we obtain the rational form of the Poincaré series of the

trace ring of 3 generic 3 by 3 which cannot be a pure inverse, fininshing the proof.
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APPENDIX 1

program centert r{input, output);

{this program computes the coefficient in the Poincare-series?

{of the center of T of 2 generic 3x3-matrices for the Schur—-functionl}
{associated to the partition (x,y,9,0,0,0,0,0,00%

var x,y,z,t,v,result cinteger;

function hulp(a,b : integer):integer;

var i1,i2,13,1i4,15,16,17,i8 : integer;

31,32, 33, 34,35, 36,37,38,39 : integer;
c,d,e,k : integer;

begin{hulp}
k:=0;
for il:=0 to a do begin

for i2:=0 to ta—-il) do begin
for i3:=0 to (a-ii-i2) do begin
for i4:=0 to (a~i1-i2-i3) do begin
for iS:=0 to (a—i1-i2-i3—-i4) do begin
for i6:=0 to (a-i1-i2-i3~i4—i5) do begin
for i7:=0 to (a-il-i2-i3-i4-i5-i&) do
begin
iBi=(a~i1—i2-i3-i4~i5-16—17};
for 31:=0 to b do begin
for 32:=0 to (b—31) do begin
for )3:=0 to (b-31-33%) do begin
for 34:=0 to (b-31-32-33) do begin
for 35:=0 to (b-31-32-33—)4) do begin
for 36:=0 to (b-)1-32-33~34—35) do begin
for 37:=0 to (b-)1-32-33—)4~35-J€) do begin
for 3B:=0 to (b=31~32-33-34-35-36-37) do
begin
39:=(b—g1—32~33—3Aw35—J6—J7—JB);
Cr=(i2+J2+i3+)3~i4—34~17~37) 3
di=(i4+3a+i€+)6~iZ~32~i18-38) 3
e:=(i7+)7+iB+38-i3-33-16-36) 3
if (cxctded+exe)=0 then ki=k+E
else begin
if (cxd*e)=0 then begin
if (c*c+d*xd+e¥e)=2 then ki=k-2
else begin
if (cxc+dxd+exe)=8 then ki=k-1;
end;
end
else begin
if (c*c+dxd+exe)=6 then ki=k+is
end;
erd;
ends
ends;
end;
end;
» ends
evd;
end;
end;
end;
end;
end;s
end;
end;
ends
ends
hulp:r=trunc(k/6) 3
end{hulpl};

begin{main programl
read(x)jread(y);
zi=hulply, x);
if (y—1){0 then resulti=2
else begin
tezhulp(x+l,y=1)3
resulti=(z-t);
end;
writeln(’coefficient of s{",x:3,7,',¥:3,7,0,0,0,0,0,0,0) = v, result:3)
end.




[
-

coefficient of s( 1, 0,0,0,0,0,0,0,0)
coefficient of s( 2, 0,0,0,0,0, 0, 0,0)

coefficient of s( 1, 1,0,0,0,0,0,0,0) = O
coefficient of s( .3, 0,0,0,0,0,0,0,0) = 3
coefficient of s( 2, 1,0,0,0,0,0,0,0) = 1
coefficient of s({ 4, 0,0,0,0,0,0,0,0) = 4
coefficient of s( 3, 1,0,0,0,0,0,0,0) = 2
coefficient of s 2, 2,0,0,0,0,0,0,0) = 3
coefficient of s( 5, 0,0,0,0,0,0,0,0) = 5
ceefficient of sC 4, 1,0,0,0,0,0,0,0) = 4
coefficient of s{ 3, 2,C 0,0,0,0,0) = ]
coefficient of s( €&, 0,0,0,0,0,0,0,0) = 7
coefficient of s( &, 1,0,0,0,0,0,0,0) = ]
coefficient of s( 4, 2,0,0,0,0,0,0,0) = 10
coefficient of s( 3, 3,0,0,0,0,0,0,0) = 3
coefficient of s( 7, 0, Q = 8
coefficient of s( &, = 8
coefficient of s( 5, = 14
coefficient of s( 4, = 9
coefficient of s( 8, = 19
coefficient of s( 7, = 10
coefficient of s( §, = 21
coefficient of s( 5, = 15
coefficient of s{ 4, = 10
coefficient of s( 9, = 1X
coefficient of s( &, = 3
coesfficient of s¢ 7, = 27
coefficient of s( &, = 2

coefficient of s( 53, = 18
ceefficient of 0 10, = 14
coefficient of s( 3, = 15
coefficient of s¢ 8, = 36
coefficient of s 7, = 35
coeffiocient of s &, = 37
coafficient of =( &, = 10




APPENDIX 2

program twacering(input,output):

{this program computes the coefficient in the Poincare~series)
{of the trace ring of 2 gereric 3x3-matrices for the Schur~function}
{associated to the partition (x,y,0,0,0,0,0,0,0)3

vVar x,y,z,t,v, result :integer:
function hulp(a,b : integer):integer;

var i1,i2,i3,i4,15,i6,i7,i8 : integer;
J1, 32,33, 34,35, 36,17, 38, )9 : integer;
c,d,e,k : integer;

begin{hulpy
k=03
for i1:=0 to a do begin
for i2:=0 to (a-il) do begin
for i3:=0 to (a-i1~i2) do begin
for i4:=0 to (a-i1-i2-i3) do begin
for i5:=0 to (a~i1=iZ2-i3-~i4) do begin
for i6:=0 to (a-i1-i2-i3-i4-iS) do beqgin
for i7:=0 to (a-i1-i2-~i3-i4~i5-i6) do
begin
i8:=(a=i1=i2~i3-i4=-i5-i6~i7) ;
for 31:=0 to b do begin
for J2:=0 to (b-31) do begin
for 33:=0 to (b-31-32) do begin
for 34:=0 to (b~31-32-33) do begin
for 35:=0 to (b~31-32~33~34) do begin
for 3)6:=0 to {b-31=32-33~34~35) do begin
for 37:=0 to (b=31-32~33~34~35~3€) do begin
for 38:=0 to (b=31~32~-33-34~35-)6-37) do
begin
J9:=(b‘J1‘J2“J3‘J4“JS“JG"J7—JB);
e:={i2+32+13+33-14~ 341737} 3
F= i+ 34416+ 36~i2-32~18~38) 1
e:=(i7+37+i8+38_i3_33~i6—36);
if (cxc+drdtexe)=0 then Kk:=k+§
else begin
if (c*d*e)=0 then begin
if (cxc+drd+ere)=2 then ki=mk-1
else begin
if (crc+de#d+exe)=8 then ki=k-1
else begin
if (c*xc+dxd+exe)=18 then ki=k=13
end ;
end;
end
else begin
if (cxc+dxd+exe)=14 then ke=k+1y

end;
end;
ends;
end;
end;
end;
end;
end;
end;
end;
end;
end;
end 3
end;
end;
end;
end;

hulp:=t runc (k/6) ;
end{hulpl;

begin{main program}
read (x) ;read(y);
z:=hulp(y, x) 3
if (y~1)¢(0 then result:=z
else begin
ti=hulpix+1,y-1);
resulti=(z-t);
end; .

writeln(’coefficient of s, x:3,%,7,y:3,7,0,0,0,0,0,0,0) = ', result:3);
end.
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