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0. Introduction

One of the main achievemiernts in the theory of tepresentations of guivers is V.
Kac’s description of the dimension types of the indecomposables as a positive root
system,{K1]. In the subsequent papers [K2| and [K3] Kac improved and completed his
results. In section 1 we recall the main result and introduce the necessary definitions
in order to make this paper selfcontained. For proofs and more information the reader
is referred to the paper by Kraft and Riedtmann [KR] or to the original papers by
Kac. Our notation is compatible with that of [KR].

This paper deals with some problems posed in [K2,4-6] aiid repeated in [K3,1.18-
 1.21]. They are concerned with describing for an arbitrary dimension type o the so
called generic decomposition @ = f; + ... + fs. That is, the unique decomposition of
« such that the open sheet for the space of representations of type « under action
of GL{a) contains an open set of representations V = @;-, Vi where the V; are
indecomposable of type 8;, see [KR,Prop.2.7]. Then, each V; has endomorphism ring
¢ and, following Roiter, such representations are called Schur representations; the
corresponding dimensions are called Schur roots.

As soon as the generic decomposition of « is known one can describe the endo-
morphism ring of a generic representation and show that the minimal codimension
of an orbit of GL(a) in R(Q, ) is equal to —i=i(1 = T(8, 8:), where T is the Tits
bilinear form of Q. This, in particular, gives the classification of linear algebraic
groups, among those for which the restriction to any irreducible component is of the
form GLy, (@) x GL,(@)*, which admit a dense orbit. Further, one can describe thie
semi-invariants and rational invariants of the action of GL{a) on R(Q,a) in terms
of those for the Schur roots 8;.

In [K2,p155-p157] Kac conjectured a purely combinatorial description of the set
of Schur roots and of the generic decomposition and verified it for quivers of finite
or tame type and quivers of rank two. We will show, however, that in general there
are counterexamples to the conjectures. ‘

As is often the case with counterexamples, the first approach is not always
the most direct or elegant one. In this case, I tried to find counterexamples by
- studying a similar concept to Schur representations in the theory of vector bundles
over projective n-space IP,, ; namely those bundles for which the only endomorphisms
are the homotheties : the simple bundles [0SS,4.1]. Most known examples of such

bundles {e.g. many stable ones) turn out to be the cohomology bundles of monads
|0SS,I1.3] of the form

(+): K Q) Op, (—u) — L3 — M op, (v)

lwhere K,L, M are finite dimensional vectorspaces of dimensions say &,1,m and B is
a manageable simple bundle (for example Op (w), @jp (w) ete.). To a monad of the




form (+) one can associate a representation of the quiver @(z,y) :

$1,1 3,1
=3 -2y

O O O
$re 92,

of dimension type (k,I,m) where 2 = h°(B(u)) and y = h°(B*{v)). If a monad
defines the bundle £ and the representation V¢ of Q(z, y) then there exists a natural

morphism End(Vy) — End(€). The next result can be proved easily from [BH,Prop

4] and may be of some interest, either for constructing moduli spaces for simple

bundles determined by the same monad-type of constructing new simple bundles
using knowledge of the Schur roots for the quivers :

Lemma : Let (x) be a monad as before such that ho(B*(-—u)) = 0 = h%(B(-v)) ;
h'(B(i)) = 0 for all i > —v and A"~ 1(B(s)) = O for § < u + n. (If n = 2 we assume
moreover that —4 — v > —2). Then, End(£) = End(Vy).

Using the monads given in [OSS,p249-p268] it is then easy to determine a large
set of Schur roots for quivers Q(z, y) and after reflecting them one obtains counterex-
amples to the Kac conjectures.

Afterwards , it became clear that there is a more elegant and general approach
using only results from representation theory. This approach is given in section 2.
It will turn out that the main reason for the failure of the Kac-conjectures is that,
‘unlike Schur roots, indecomposable roots are not preserved under reflections.
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1. The Kac conjectures on Schur roots.

{1.1) : Throughout, our basefield will be ¢ , but any algebraically closed field
~ will do. A quiver Q consists of a finite set Qo = {1,...,n} of vertices, a set @, of
arrows and two maps £,k : Q) — Qo assigning to an arrow ¢ its tail t¢ and its head
ho , respectively. We do not exclude loops nor multiple arrows.

A representation V of Q is a family {V (i) : i € @} of finite-dimensional ¢-
vectorspaces together with a family of linear maps {V (¢} : V(t¢) — V(ho) |9 € Q1 }.
The vector dim(V) = (dim(V (1}), ...,dim(V (n)) is called the dimension type of V.
A morphism f:V — W is a family of linear maps {f; : V(i) — W () | i € Qo} such
that W (o) o f{t9) = f(ho) o V() for all arrows ¢ € Q.

The representation space R(Q,a) of Q of dimension type a = (a(1),...,a(n)) €
IN" is the set of representations

R(Q,0)={V:V(i)=¢*D;1<i<n}

Since V € R(Q, a) is determined by the maps V' (¢)

R(Q,a)= P Hom(p((pa(tqs),q;a(hqs)) = @ My(Q)
PEQ PEQ

- where Ms(€) is the set of all a(h¢) by a(t¢) matrices with entries in ¢. We consider
R(Q, a) as an affine variety with coordinate ring ¢[Q, a] and functionfield ¢(Q, a).
, The linear reductive group GL{a) = [I}=; GLa(;)(€) acts linearly (and regu-
larly) on R{Q, a) by ‘ '
(0.V)(9) = gro oV (9) 0 g;3!

for g = (g1,..., gn) € GL(a). By definition, the GL{a}- orbits in R(Q, «) are just the
isomorphism classes of representations.

(1.2) :  Any representation of @ can be decomposed uniquely in a direct sum
of indecomposable ones. The dimension types of indecomposable representations
were described by Kac [K1,Th 1’,p89], [K3,Th.1.10,p85] in the following way. Let
&; = (614y+.10ni) , 1 < i < n be the standard basis of Z" and let ri; = §{¢ € @y :
t¢ = §,hé = j}. Define the Tits bilinear form T(—, —) on Z" by

1 ,
T(eis a5) = dig = 5(#35 + 756)

let & = {o; : r; = O} be the set of fundamental roots. For a € ® define the

- . fundamental reflexion f, € Aut(Z) by

ro(A) = A - 2.T(A,a)a




for A € Z". The group W(Q) C Aut{Z") generated by all fundamental reflexions is
called the Weyl group of the quiver Q. The fundamental set 7 c Z" is defined by

F={aelN”-0:T(e,0;) <0;1 <§ < nand supp(a) is connected }

where the support of « is the full subquiver of @ on the i’s such that a{¢) # 0 and
- connected means as a graph forgetting the orientation. The real roots are defined by
A™(Q) = Uyew(o) w(®), the imaginary roots by A = ),y oy w(F U ~F) and
the root system of @ is the set A(Q) = A™(Q) A*"(Q).The dimension types of
~ indecomposable representations turns out to be tlie set of all positive toots AL (Q) =

A(Q)NIN™.

(1.8) : The description of the dimension types of the indecomposable represen-
tations is only the first step in the classification of all representations. However,
the later problem seems to be hopeless in general. According to general principles
of invariant theory, it is natural to try to solve a simple problem : classifying the
" generic” representations of a given dimension type a. By [KR,Prop.2.7] there exists
a unique decomposition a = f; + ... + B, such that the set

&
{V € R(Q,a):V = @ Vi;dim(V;) = 8;; V; indecomposable }

=1

contains an open and dense subset of R(Q, ). This is called the generic decomposi-
~tion of a. If this decomposition is known, one can describe the endomorphism ring
of a generic representation [K2 Prop. 4] and show that the minimal codimension of
an orbit of GL(a) in R(Q,a) is equal to Y7 (1~ T(8;, 8;)) = trdeg@(Q, a) ()
[K3,p99]. Further, trdegQ(Q, a)(FL)G L)) = Yo (L =T(8;, 8:) + fsupp(a) — s — 7
where s and r are the number of distinct real roots and the dimension of the Q-span
‘of all imaginary roots in the generic decomposition of a, respectively. Firtlhier, oiie
can describe the semi-invariants and rational invariants of the action of GL(«a) on
R(Q, a) in terms of those of GL(8;) on R(Q, 8:).

(1.4) : In view of the foregoing it would be important to find a purely combinatorial
- description of the generic decomposition. Each of the R(Q, ;) has an open set
of indecomposable representations entailing that their endomorphismring must be
-reduced to ¢, [K2,Prop.1],[KR,Th.2.6]. Following Roiter one calls the dimension type . -
* of such representations Schur roots. In [K3,1.20] Kac calls an element & € IN® — 0 an
indecomposable root (quasi-indecomposable in [K2,p154]) if « cannot be decomposed
into a sum o = 8 + 4 where 8,7 € IN" — 0 and R(8,7) > 0, R(y,8) > 0. Here
R(—,~) is the Ringel bilinear form om Z" defined by R(e;,a;) = 6;5 — ri;. He then
conjectured




Kac conjecture 1 : ([K2,Conjecture 1],[K3,Conjecture 9]}
If « is a Schur root, then « is an indecomposable root.

The converse implication is true [K3,Prop.p98]. For an arbitrary dimension |

vector o € IN?, Kac calls the decomposition o = v, + ... + +; where v; € IN* -0
natural if it satisfies the following properties

(1) : R(yivy) 20 i # 4

(2) : 4; is an indecomposable root for every ¢

(3) : the number 3°'_;(1 — R(8;, #:)) is maximal among the decompositions

satisfying properties (1} and (2).

Kac conjecture 2 : ([K2,Conjecture 2],[K3,Conjecture 10])
A natural decomposition of a € IN® — 0 coincides with the generic decomposition.

Actually, conjecture 10 in [K3] is slightly different in the sense that one assumes

that @ has no oriented cycles but one removes condition (3) in the definition of a
natural decomposition.




2. The counterexamples

(2.1) : Kac verified his conjecture when @ is a quiver of finite type [K2,Ex(a),p158],
~ tame type [K2,Ex(b),p158] or of rank two [K2,Ex(c),p159] or [Ri]. Let us concentrate
on the special case of quivers Q(n) for n >3

It is shown in [K1,2.6] that every pdsitive root is a Schur root (and,of course,also
conversely) and

AH(Q) = (k1) €N : Ln— VP~ D <k < 5(n+ V2~ 4)1}

So, we get the following picture :

where € = (\/éz_-;_:_—g + 1)(\/%_—'_%— — 1)~ and all Schur roots (or positive roots) lie
in the region between the two blades of the hyperbola (H) : k% + I — nkl = 1. The
‘real roots are the integer points on {H).

 (2.2) ¢ Let us now consider the easiest rank three quivers Q(a,b) fora,b> 3

d1,1 P2,1

O O O
—_— —
$1,a $3,5




Whereas the determination of all Sehur roots may turn out to be difficult, there
is at least a large subclass which is easy to describe. For, take a dimension-type
(k,1,m) where (k,1) is a Schir root of Q(a) and (I, m) is a Schiir root of Q{b), then

clearly (k,1,m) is a Schur root of @(a, b). Combining this observation with Kac’s result

‘mentioned above we get

Proposition 1: Ifa = (k,I,m) € IN® satisfies k2 +1% —akl < 1 and I? +m? —blm <
1, then o is a Schur root of Q{a,b).

We will see later that there may be other Schur roots of @(a,b) than the ones
described by proposition 1.

(2.8) : Again, let us consider the easiest situation. We take ¢ = b = n and we want
to investigate Schur roots of @(n,n) of the form (k,1, k).

Proposition 2 : If (k,I) € IN] satisfies 2k < [ < nk, then o = (k,1,k) is an
indecomposable root for @(n,n). In particular, « is a Schur root.

Proof : ‘
The Tits bilinear form of the quiver @{n,n) is given by the matrix

-1

o 02 [t

"1

|
O DD bl
S
DO ek O [t
|

Therefore, (k,I,k) lies in the fundamental domain of Q(n,n) iff ¥ — Inl < 0 and

1 -k < 0. Since the support of (k,I,k) is not a tame quiver and (k,I, k) lies by

assumption in the fundamental domain, it is an indecomposable root by [K1,lemma,
2.5,p72| or [KR,Th.3.3].

The fact that there are more Schur roots than those given by proposition 1 is
now clear from the following picture




(2.4) : Let us recall the concept of reflexion functors {or castling trans-

forms),[BGP],[SK],[K1,2.3]or [KR,4].Let @ be any quiver on n vertices and o €
N* — 0. Fix a source i of Q , that is a vertex such that there is no ¢ € @ with
h¢ = i and suppose Y g4—; ka’(hqb) > a(i). Consider R'(Q, «) which is the set
vV eR(@0)| DV$): V(i) ~ D V(he) is injective }

to=i to=¢

Now, look at the quiver Q* which is obtained from Q by reversing all arrows with

' tail i and the new dimension type o* which is given by o*(k) = afk) for all k 3£ i
and o*(i) = ¥, 4; a(h¢) — ali).Consider the set RI(Q*.a*)

{V € R(Q*,a") | 63 V($): EB V(tp) — V(i) is surjective }

' ho=i =i ;
then there is an homeomorphism R'(Q, a) 2 R'(Q*, a*), called the reflexion functor,
such that corresponding representations have isomorphic endomorphism rings, see
for example [KR,Prop.4.1]. Of course, the same process can be started from a sink

~ (that is a vertex such that there is no ¢ with t¢ = i) instead of from a source. In
- particular we get that if « is a Schur root for the quiver @, then a* is a Schur root
_for the quiver Q*.

(2.5) : Proposition 8 : If (k1) € N} satisfies 78k <1< 2k, then o = (k,1,F)
is a Schur root for the quiver Q(n, n}.




Proof :
Start with of = (&',1,k') where (#',1) € IN% satisfying 2&' <! < nk/, then o

is a Schur root for @(n,n) by proposition 2. Now, apply the reflexion fiinctor with

respect to the source 1. Then o” = (nl — &',I,k') is a Schur root for the quiver

Q("'n’ n)

1,1 2,1
2 ==
Oi Oz Os
— —
Pi,n D3,n

- Next, we can apply the reflexion functor to Q(—n,n) with respect to the sink 3.
Then, « = (nl ~ &',1,nl — k') is a Schur root for the quiver Q(—n,—n)

$1,1 $2,1
e piat ol
On O Os
- ——
¢1,ﬂ ¢n,1

which is just the arabic way of writing Q(n, n). Finally, since 2k’ <1 < nk’ we get
for k = nl — k' that -k <1< 2.

(2.6) : Now, we are in a position to give a class of counterexamples to the Kac
conjectures :

Proposition 4 : Al Schur roots a = (k,1, k) of Q(n, n) satistying { < 2k — 2 are
“not indecomposable roots.

Proof :
The Ringel bilinear form associated to Q(n, n) is determined by the matrix

1 -n O
0 1 —-n
0 O 1

It is now trivial to compute that R{(1,0,1),(k — LI,k — 1)) = R((k — L Lk —
1),(1,0,1)) = 2(k — 1) — nl > 0 by assumption.

Therefore, we obtain the following picture




By proposition 2 and 3 all {k,1) € ]N such that —2~k < I < nk give rise to
Schur roots a = (k,1,k) for Q(n,n). The lme I=2p d1v1des this region in two and
our reflexion process interchanges the two parts ﬁxmg' the line. All Schur roots in the
‘upper part a.re indecomposable roots,whereas most in the lower part {except those for
which 2k < < 2k which seem to be mdecomposable) are not indecomposable

roots. Therefore, we see that the main reason for the failure of the Kac conjecture is

.~ Theorem : In contrast to Schur roots, indecomposable roots need not be preserved

under reflexion functors.

It would be interesting to know whether there exist counterexamples to Kac 1 where
‘the components § and « are both roots (resp. Schur roots).
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