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0. Introduction.

Throughout this paper, F' will be a field of characteristic zero, algebraically
closed if necessary. With 7, ,, we denote the polynomial algebra

Flei;() 1 <45 <n1 <1< mj
The F-subalgebra of M, (Pn ) generated by the matrices
Xy = (z;;(1));; where 1 <!l <m

is called the ring of m generic n by n matrices, G, . The F-subalgebra of
M, (Pn,n) generated by G, ,, and Tr(@&,, ,) is the ring of m generic n by n
matrices and will be denoted by Ty, ,,.

These trace rings appear naturally in the study of finite dimensional represen-
tations of free algebras and in the invariant theory of » by n matrices , [6].
Unlike rings of generic matrices, T, ,, shares some properties with commutative
polynomial rings, e.g. they are maximal orders and even unique factorization rings
in the sense of Chatters and Jordan. However, their homological properties are far
from being understood. The main aim of this paper is to prove the following result

Theorem : If n < 4, then the trace ring of m generic n by n matrices

has finite global d1men51on if a,nd onlyif n=1m=1o0r Tp,n =T, Ms 2 or
'_[1‘2,3.

Pictorially, we have the situation

4 4 o0 o0 o0
3 3 10 o0 o
9 2 5 9 o
1 1 2 3 4

- Of course, the proof of the regularity of the commutative cases (i.e. m = 1 or
n = 1) goes back to Hilbert. We were told that the first proof of the regularity of
’_ll‘g 2 was due to A. Schofield who showed that it can be written as a coproduct
of two commutative polynomial rings, [4].The first published proof is that of L.
Small and T. Stafford [8]. They proved that My is an iterated Ore extension.
In the first section we will give an easy proof of this result based on the fact
that Xj X5 — X5 X is a normalizing element in T's 5. Further, we show that slso
T3 2 has finite global dimension , using some results of C. Procesi {7] , and that
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gldim (T, 2) = co for m > 4. The test we will use throughout for regularity of
positively graded Noetherian F-algebras whose part of degree zero is F, is that its
Poincaré series should be a pure inverse in Z[t]. We give an example to show that
this condition is not sufficient , in spite of an (erroneous) result of Govorov [5].

In the second section we prove the regularity of T 3 and present an explicit
description of it as a free module of rank 18 over a polynomial subring of its center.
Moreover, we will show that gldim(Ty, 3) = co whenever m > 3.

In the final section, we prove that T'yn,4 can never be regular. The proof is
based on a description of the Poincaré series of Ty, due to E. Formanek [3,Th.22]
as a multivalued power series. We have not included the details of our computations
since we believe there must exist an easier and more elegant way to compute the
rational expression directly.

At this point we would like to make the conjecture that gldim (T, ) = oo
whenever m > 1 and n > 5.




1. Generic 2 by 2 matrices.

First, we will give an easy proof of the Formanek-Schofield or Small-Stafford
result :

Proposition 1 : gldim(Ts ) =5
Proof ,
It is easy to verify that A = XX, —XpX; is a normalizing element of Ty 5
and that the quotient is
TPQ,Q/ATFQ,Q o F[m1, Tr(ml), T2, T?‘(mz)]

S0, gldim(T's2/AMe2) = 4 and by a standard argument it follows that
gldim('ﬂ‘g,g) = J.

In order to study the homological properties of T2 for m > 3 it is con-
venient to use the following result due to ¢! Procesi | [7]

rﬂ‘m g == 'H‘o [T?‘(ui) ( m)]

~ where T, is the sub F-algebra of T, generated by the generic trace zero
matrices

. 1 .
X¢=X;~ —'Tr(X,;)
where 1 < ¢ < m. It is well known that 2 by 2 trace zero matrices satisfy the
commutation relation AB + BA = T'r(AB).So, if we define the generic Clifford
algebra Cly, to be the iterated Ore exteusion

Fla;; |11<i<35< m][al][ag,ag,62]...[a.m,0'm,5,,,,]

where 0;(a;) = —a; and 6;(a;) = a;; for all 4 < 7 and trivial actions on the other
variables, then we get an epimorphism

Tt Cly — T2,

by sending a; to X?¢ and a;; to Tr(X2X 2). Using this fact, it is now fairly easy to
prove

Proposition 2 : gldim{; 2) = §

Proof




From its construction we obtain that Kdim(Cl;) = gldim(Cl3) = 8.
Since both Ci3 and MY are catenary algebra of the same Krull dimen-
sion, the epimorphism 3 must be an isomorphism.Hence gldim(T3 0) =

gldim (T3 [Tr(Xy), Tr(X2), Tr(X3)]) = 9.

A similar approach fails for m > 4. For example if m = 4 then the Krull
dimension of C'ly is 10 whereas that of 'Y is 9. Therefore, Ker(ry) must be an
height one prime ideal of Cl, which are all generated by a normalizing element. We
get

Ker(m) = C'l4.S4(X1,.X2,X3,X4)

The Poincaré series of C'ly is readily seen to be (1 --£)=*.(1 — #2)~® and since the
kernel of 74 is generated by a non-zerodivisor of degree 4 we get

1-- ¢4 . 1+t
(I =041 —#2)8 (1 —)4(1--12)5

Tr4 2 being a polynomial extension of T we find that its Poincaré series is not a
pure inverse so its global dimension must be infinite. More generally, we have

P(Mg;¢) =

Proposition 8 :If m > 4 then gldim(T, 3) = oo

Proof
Consider Ty, 2 in the natural way as an IN™-graded F-algebra and suppose
that it has finite global dimension, then its Poincaré series should be 2 pure inverse
in Z(ty,...,tn). The natural epimqrphism Ty 2 -+ Ty 2 obtained by sending X;
to zero for ¢ > 5 amounts on the level of the Poincaré series in a multigradation
to
P('IF4’2; tl, to, t3, t4) = P('_[Fm,g; tl, veey tm) l ts = 0, cey tm =0

entailing that P(T'y 2;%1,%2,23,%) should be a pure inverse but we have seen above
that this is impossible.

We think this is the proper place to show that for a positively graded affine
F-algebra with part of degree zero F finite global dimension does not follow from
the Poincaré series being a pure inverse. This in spite of an (erroneous) result of
Govorov [5]

Example 4  : Since D(X?) is a non-zerodivisor of degree two in Mg and
P(T05;t) = (1 — £)~2(1 — #3)~! we obtain
0 o o 1-— t2 1
P(T3/T3D(X°)) =

-1 —e) (1—¢tp

However this ring cannot have finite global dimension for otherwise it had to be a
domain by a graded version of a result of Walker [10] and clearly {X°)? = 0.
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2. Generic 3 by 3 matrices.

Before stating the main results of this section, we will recall some facts on
skew-polynomial rings [1]. Suppose that R is a positively graded F-algebra with
Ry = F and R is generated by homogeneous elements ri,..., %, (DOt necessarely

of degree one) satisfying the 5(—'{-—1—1' relations
gjgi=¢;; (1 <i<j<r)

where ¢;; is 2 sum of ascending monomials earlier than z;.z; in the lexicographic
order which is induced by putting z; < zj iff ¢ < 7.

If the overlap ambiguities [z;, z;, zz] for k > 5 > i are consistent then one
can apply Bergmann’s diamond lemma [2] in order to get that R has an F-basis
consisting of monomials of the form

a5
¥

1t
for natural numbers ay, ..., a,. Annick’s resolution of F, see [0],then shows that F
has finite projective dimension. Therefore, if R is Noetherian, then R has finite
global dimension.

Lemma 5 (Nakayama’s lemma for graded rings [11])

Let R be a positively graded F-algebra with Ry = F and let M be 2 graded
R-module with left bounded grading but not necessarely finitely generated, then
if R M = M then M = 0.

The proof is obvious. As an immediate consequence of this we get :

Corollary 6  : With same assumptions as above suppose that M /R"'M is
generated by the images of my,...,m, € M, then these elements generate M.

Proof

Let N be the cokernel of the natural map R* — M obtained by sending the
¢-th basisvector to m;. Clearly, N has a left bounded grading and N = R*N by
the assumptions,so N = 0.

We are now in a position to prove the main theorem of this section :

Proposition 7 : The trace ring of 2 generic 3 by 3 matrices has global
dimension 10.




Proof

Since My 3 = MO[Tr(X;), Tr(X,)] where T? is the trace ring of two generic
trace zero 3 by 3 matrices, it is enough to prove that gldim(T°) = 8. If X and
Y denote two generic trace zero 3 by 3 matrices, then the homogeneous pieces
of the (multigraded) Cayley-Hamilton polynomial of X + ¥ give us the following
relations :

G : X34+ CX+F=0

go 1 XY + XYX +YX2+CY +DX +H =0

95 :Y2X +YXY +XY2 4+ DY +EX+CQ =0

ga Y3+ EY + T =0
where

C = —-——;—T(Xz);l) =-T(XY); E = ——%T(Yz)
G =-T(XY?),H = -T(YX?)
N vy _ 1 3
F = 3T(X I = 3T(Y )
We define A to be the F-algebra
F[O':D7E;F) G,H,I] < ij > /(gl; g2, 93, 94)

Since g1 and g4 only express that X° + CX and Y3 + EY are central, and since
this can also be deduced from go and g3 we know that A is also the F-algebra

F[C,D,E,G,H] < X,Y > [(g2, g3)

If we choose the lexicographic ordering ¥ > X then it is easy to check that the
overlap between the leading terms of go and g5 give no extra relations. Therefore,
A has a basis of reduced monomials

C*DPE°GiH X (Y X)oy*

whence A is a skew-polynomial ring . In order to prove that gidim(A) = 8 it suffices
to prove that A is a finite module over a Noetherian commutative subring. With
J we denote the element

2XYXY + X?Y2 4+ YX?Y 4+ YXYX + XY2X +2DXY + DYX + CX + HY

A straightforward but tedious calculation shows that J is a central element in A,
Since the overlaps [V, Y X, Y X],[YX,Y X, X] and [YX,YX,Y X] give no extra
replacements we get that an F-vectorspace basis of

A/(O,D,E,F,G,H,I,J)

is given by .
XY X))y
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where €, €3 € {0,1,2} and e; € {0,1}. So by corollary 6 we get that A is a finite
module over the polynomial ring

R=F[C,D,E,F,G, H,I,J]

Hence we have proved that A is a graded local order of finite global dimension.
From now on we will liberally use graded versions of theorems in [9] the proofs of
which are routine exercises.

In particular we deduce that the center of A is integrally closed and hence
that A is closed under taking traces. Since A is regular it is Cohen-Macaulay by [9]
and hence rkg(A) = 18 the p.i.-degree of A must be equal to 3. There is a natural
map

¢:A— T

by sending X to Xy ~ 1Tr(Xy) and Y to X, — Y Tr(X2).This maps splits since
A is of p.i.-degree 3 and closed under taking traces.So, ¢ is surjective, whence

an isomorphism since both affine F-algebras have the same Krull dimension.So
T° = A which finishes the proof.

Proposition 8 : The trace ring of 2 generic 3 by 3 matrices is a free module
of rank 18 over a polynomial subring of the center.

Proof
Since gldim(M°) = 8 we know that MO is Cohen-Macauley, [9] so
depth(T®) = 8 and hence

{C,D,E,F,G,H,I,J}
is a regular sequence, finishing the proof.

Amnother regular sequence for A can be obtained as follows. Let
I =A/(C,D,E,G, H)

then Z = YX — wXY where w is a primitive 3"¢ root of unity is a normalizing
element in I'. Dividing out Z we end up with the cyclic algebra

(" Fum )

that is X3 =F | ¥3=J and ¥X = wX¥. Hence ¥ and ¥ complete the reguiar
sequence

{C,D,G,E,H, Z}
i.e. T and also T2 3 is even regular in the sense of Walker.
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The above discussion also enables us to compute the rational expression of
the Poincaré series of Ty 3 :

1
(1— 8P (1—)2(1 — 62)(1 — £2)(1 — s1)2(1 — s2t)(1 — s£2)

P(']rg,,g; 8, t) =

Procesi has proved in [6] that the center of the trace ring of m generic n by n
matrices R,, ,, is affine and is generated as an F-algebra by the elements

Tr(X;,..X;) 5 < 2" —1

and the indices 4 range from 1 to m. Since Ty, . is a finite module over Rm,n
this entails that there is a symmetric polynomial J(t1, ..., tm) such that

f(tl, ...,tm)
H(l - t,') H(] — t,'tj)... H(l — tiy e bign 1)

Using this fact it is now fairly easy to prove

P(Mm,rstty ey tm) =

Proposition 9 : For m > 3, gldim (T, 3) = co.

Proof

As in the proof of proposition 3 it suffices to show that P(T3,3; 81,22, t3)
cannot be a pure inverse. So, let us assume that it is a pure inverse, then it has
the form 1

I g:(t1, 82, 3)

where each of the g¢(t1,%2,t3) is an irreducible factor in Zlt1,t,t3] of 1 — bty
with k+I+m < 27—1. Let us look at the subproduct of the factors containing only
two indeterminates ; and t; , then after specializing the remaining indeterminate
to zero this subproduct must be equal to

(1= (1 = £5)2(L — (1~ )1~ £t (1 34,1 — £:82)

since its inverse must be equal to P (T'2,3;¢;,t;). Therefore, since this hold for any
couple ¢ 5£ 3 from {1, 2,3} we obtain a subproduct factor

(1) = 82)2(1 = t3)2(1 — 3)(1 — £2)(1 — £2)

(1~ t182)%(1 — t385)%(1 — tats)?
(1 t7t2)(1 — £2a)(1 — t3a)(1 — t341)(1 — £381)(1 — £2¢5)

Now, change again to a single gradation, then the order of the pole of P(T'z 3;t)
at £ = 1 is at least 21 by the above argument. However, we know that this order
must be equal to the Krull dimension of T's,3 which is 19; a contradiction finishing
the proof.




3. Generic 4 by 4 matrices.

Using the description of Formanek [3] of the Poincaré series of trace rings of
generic matrices, it is an easy but boring job to calculate the first terms in the
power series expansion of P(M'g 4;3,t). We obtain

1+

25 + 2t +
4% + Bst -+ 442 +
753 + 1482t + 145¢2 +73% 4
118* + 275%¢ + 375242 + 276t% + 1184 +
168° + 466t + 775%1% + 775243 + 46st* + 1685 +
235% + 7255 + 141542 + 174833 4 1415%4* + 7285 + 2348 -+
31s” + 1075%¢ + 2335%° + 3385%1% -+ 3385%1* + 2335245 + 107525 + 3117 +

..........

Or, in a single gradation we obtain that P (Mg 4;t) =
1+ 48+ 148% + 42t + 113t* + 27815 + 6465 + 141847 + ...
Using this information we can prove the next
Proposition 10 : For all m > 2, gldim(T,, 4) = oo.

Proof

Of course, it is sufficient to show that the Poincaré series of the trace ring of 2
generic 4 by 4 matrices is not a pure inverse. Now, suppose it is a pure inverse, then
its denominator consists of a product of irreducible factors in Z[s,t] of elements
of the form 1 - 47 where ¢ + 7 < 15.Since

1
(1—2)2(1 - 22)(1 — 2%)

P(Ty,4;2) =

we know that the subfactor F(s, £) of the products of factors of elements containing
Just one of the indeterminates is equal to
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So, we divide the Poincaré series by F(s,8)71. The resulting power series (in single
gradation) is of the form

L+ 282 + 4% + 76 + 1025 + 2315 + 3847 + ...

Next, let us consider the subfactor G(st) which is the product of all factors of
elements of the form 1 — (st)* where k is necessarely < 7.Then G(st) can be
brought into the form

(1+ s)7%(1 - st)*(1 — s2¢2)#(1 s 871 — stth)b(1 - 8°1°)°(1 — s%4%)%4(1 — 87i7)e

where a,b,¢,d, e € IN whereas o, 8,vyeXZ.

One can continue in this way, e.g. the subfactor H (8%, st?) consisting of all
products of factors of elements of the form 1 — (s?t)% or 1 — (st2)% where k is
necessarely < 5 can be brought into the form

[(1 _ 88t4)(1 _ t884)]b[(1 _ 310t5)(1 . t1035)]c

where a,b,c € N and o, 8 € Z%.
Ultimately, one can show in this way that then the rational expression of
P(T2,4;8,t).F(s,t) in a single gradation (i.e. putting s == t) can be written as

(1 . tﬁ)l.__e(l —_ t?)—-w(l _ t8)—-b(1 = tg)—--c(l _ th)—-d
(L= #7112 (1 = £19)70(1 — 1) R (1 — 15

where latin letters are in IN and greek ones in Z%.

Let us first assume that o > 0, then comparing the power series expansion of
this expression with the one obtained above we get that a + o = 2.Therefore, we
‘have to investigate three cases : 1. a = 2 and o — 0 then we get § = 4,y = 6,

== 2,6 = 1 and w = 6. Therefore, the pole of P(Ts 4;t).F(2) is at least 19 in
t = 1 whence that of P (T'z,4;t) at least 27. However, this order must be equal to
the Krull dimension of Ty 4 which is 17,a contradiction. |

2. = 1and @ = 1, then we get § = 4y = 5,6 = 2,¢ = 1 and
w == 6 yielding that the order of the pole of P(Tl3,4;¢) in t = 1 is at least 27,2
contradiction.

3.a=0and o= 2 ; then we get that f =4y =4, 6§ =2¢c=1andw =28
and again the order is at least 27 a contradiction.

Of course, the remaining possibility that & < 0 reduces to case 1.,finishing
the proof.
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