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0. Introduection

That twisted group rings provide 4 link between the theory of Clifford
algebras and the theory of projective representations of finite groups is well-
known , even if perhaps it was more of a gadget to physicists , cfr. [Ra] , than
a tool to mathematicians. In the first section we establish that a projective
representation of B,, , where B,, is the n-fold product of % /2% , is determined
by an n-dimensional quadratic form together with some well described sub-
group of B,. Any twisted groupring of B,, is then a Clifford algebra over iis
center but we pay particular attention to the so called ”Clifford representa-
tions” which yield Clifford algebras over tlie ground ring. In a short second
section we introduce the notion of a Clifford group and provide some examples
of these. We do not obtain a complete description of Clifford groups but we
hope to create some interest in such a complete determination which may be
the topic of some further investigations.

1. Clifford representations

In this section R is a commutative ring such that 2 is a unit in B and B;; ;
where n € IN stands for the abelian group % /2% X ... X #/2% , where # copies
of # /2 appear. A projective representation of a group G over k is a group
morphism

¢ : G — PGLy(k)

where k is a field. Such a projective representation over a field & may also be
determined by a ring homomorphism

qbc :ch . n(‘k)

where ¢ € H?(G, k) and k@G, is the twisted group ring with respect to the
factor system ¢(o, 7) where 0,7 € G. First we generalize these concepts to the
case where k is merely a ring. If P is a finitely generated projective R-module
therr Endg(P) is an Azurisys slgebra over B and its group of wnits Aut B(P)
contains the trivial units U(R) in its center because such a unit defines an
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automorphism of P. A projective representation of (¢ over E defined by
P is a group morphism 7 : G — Autg(P)/ U(R). This may be interpreted as a
map, again written 7, 7 : G — Autp(P), satisfying the relations : x(c).x(r) =
e(o, r).x(o.7) for all 0,7 € G , where ¢(o,7) is a factor set representing ¢ €
H?(G, U(R)) obtained by taking a transversal for 7(G) in Autr(P). The twisted
groupring RG, is the free R-module @, cq Rus with multiplication induced
by the rules
Ug Uy = ¢(0, 7).ty

for all o, 7 € G. The R-bilinear extension of the map G — Autr(P) determines
a ringhomomorphism 7° : RG, — Endp (P). For a given factor system {¢(o, 7) :
0,7 € G} we define G° = {0 € G : Vrc Celo) : ¢(o, 1) = ¢(r,0)} where Cg(z)
is the centralizer of z in G.

Now , consider G = B,,. Since B,, is Abelian it is clear that the subring
(EBY,), coincides with the center of (RB,,), (this follows for example immediatly
from the fact that the center of (RB,), is B,-graded.

Definition 1.1 : A projective representation of B, determined by a
factor system {c(o,7): 0,7 € G} is a Clifford representation if B¢ is minimal,
Le. B}, =0if n is even and BZ, =~ % /2%, if n is odd.

In order to see that this definition makes sense we shotuld justify the
discrepancy of the definition in the "7 is odd” case. Assume that B — k is
a field, then (£B,), is a semi-simple k-algebra, i.e. (kBp)e = A1 D --- P A, for
simple k-algebras A, If ¢ # 1 then the éeiiter of (kB,). i§ strictly larger thah
k. If & = 1, then the dimension of the center is also strictly greater than one
since A is of square dimension over its center.80, in both cases we arrive at
By, 0, what explains that for odd n the minimal possibility for B¢ is to be
a copy of Z/2%.

Let us recall the definition of Clifford algebras. Let § be any commutative
ring, V a free S-module of rank » equipped with a nonsingilar quadratic form
Q = a1 X7+ -+ 0,X2 , where a; € U(S). The Clifford algebra C(V, Q)
is defined to be the quotient of the temsor algebra T(V) with respect to the
twosided ideal generated by the elements v @ v — Q(v) where v € V. More
specifically,

cV,Q) = @656{0,1}}2‘6(151 ey
with multiplication defined by the rules ¢2 = o; € U (8) and e;.e; = —ej.¢; for
i 7% 3. The following theorem explains why a representation with minimal BS,
is called a Clifford representation.

Theorerm 1.2 : If this factor §y§té‘fh {5(5‘, f) o, TE G} Where G = Bn
, determines a Clifford representation , then RG, is isomorphic to a Clifford
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algebra of a nonsingular quadratic form over R.

Proof

Since RG, ~ RG, if the factor systems ¢ and ¢’ are equivalent, i.e.
when ¢ = ¢’ € H?(G,U(R)) we may assume that ¢(c, 7) is normalized so that
¢(0,0) = ¢(0,0) = 1 for all 0 € B,. The first part of the proof consists in
describing the cohomology group H?(B,,, U(R)). We claim that

() H*(Bo, UR)) = [[ 2*(/2%, U(R)) x T[ Mss(2/2, 1/2, U(R)

=] i<j

where each ¢ — j-mixterm M;;(%/2%, % /2%, U(R)) equals H 2(#/2%, U(R))
which is the group of equivalence classes of 2-cocycles satisfying the relations :

1(o103,7) = J(o1,7)1(03,7); 15, 7i) = f(2,7) (0, 7)

The isomorphism (*) may be easily verified by (a) : restricting the 2-cocycles
to the cyclic components % /2% of B, and (b) : associating to basis elements €5
and e; an element f of M;;(Z/2%Z, L /2%, U(R))

fL[2.e; X X[2K.c; — U(R); (0, 1) — ¢(o, 7).e(r, o)1

Furthermore, we have that H?(%/2%, U(R)) =~ U(R)/U(R)? , the isomorphism
being given by the correspondence f -+ f(1, 1), and also H2(ZL/2Z,U(R)) =
po = {+1,~1}. So, we finally obtain :

H*(By, U(R)) = H UR/UE? x ] m
=}

: i<y

The foregoing states that each factor system corresponds (up to equivalence)
in an unambiguous way to a quadratic form , view’ed as an element of
IT;, U(R)/U(R)? , together with some element ¢ in ;. ;m,. There are
Clifford representations such that ¢ is not equal to IT;< ;(~1). For example, con-
sider By as a Z/2%-vectorspace with basis-elements ei; ez, e3. We may deter-
mine a 2-cocycle ¢(o, 7) by the following table

elei,e;) | ei es e
|
1

€q l 1 -1 1

é3 | =1 1 1

63 l ]. 1 ]




It is clear that B§ = Z/2%.e3 and hetice the given cocycle describes 4 Clifford
representation. On the other hand, it is possible to change the Z | 2%-basis
for By, as follows (ey, e2,e3) — (1, ¢s,¢; eges) then the new table for ¢ is the
following

¢ | ei e ejeqes
]
I : : .
€1 l 1 -1 -1
e | -1 1 1
€1es€g | -1 -1 1

The corresponding element in JJ, ;s is (—1,—1,--1). In the next lemma we
will prove that this is possible in general.

Lemma 1.3 : Cotisider f € [];; ji, such that the twisted groupritig
(BRBn); = @R.ef*---¢5» with e = 1, ese; = fijeje; (i.e. the cocycle cor-
responding to the quadratic form (1,- - -, 1) and the element f given above), is a
Clifford representation. Then one can change the basis of B, such that in this
new basis the element in ], . j o corresponding to it is (—1,---,~1).

Proof

The proof is by induction on n, since there is nothing to prove for n = 1,2.
First consider the case Where # i§ odd and # > 3. By otr assiinption, B ~
Z[2X. Let o be a generator of this subgrotip. We have that B,/Bf ~ B,
and let H =~ B, be the complement for < ¢ > in B, and let g be the factor
system induced by f on H. It is clear that H9 = 0 and therefore g determines 3
Clifford representation of H ~ B,,_j. By induction we may assume that a basis
for H,say dy,---,d,—1, has been chosen such that the corresponding element in
HZ:; ity equals (~1,---,—1). Now, we may construct a basis for B, by taking
{d1,-+-,dp—i,d} where d = odj---d,—i. It is easily verified that the element
of []; <, s corresponding to the selected basis is exactly equal to (~1,---,~1)
as claimed. Next, we consider the case where # is even. Let H ~ B,._.i be the
complement of < e,, > in B, and let ¢ be the induced factor system of f on H.
Let us check that ¢ determines a Clifford representation of B,,._i. First, note
that H9 3£ 0 because #—1 is odd. On the other hand, HY caniiot contain some
Z[2%.0c @ XL/2%.7 with 0,7 € H because, in case flo,en) =1or f(r,e,) =1
then BY 3£ 0, a contradiction, while in the other case flosen) = f(r,e,) =
------ 1 and we find that or € BJ, again a contradiction. Applying the induction
hypothesis we may choose a basis ¢, - ‘s tn—i Of H such that the corresponding
element in I]:Z; B2 is (=1,---,~1). Also by induction and the first part of the
proof, we may assume that the central element in (RH), equals ¢1-+ cpey == ¢.
Stuce HY = 0 we have ¢e, = —e,¢ and 86 e, afti-commutes with an odd
number of the ¢; say ¢;,- -+, ¢;,. Take as the new n-th basis vector for B,, the
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element w = e,¢;, - -¢;,. It is easily checked that wej = —cjwforallj < n—1
and this finishes the proof of the lemma.

Now, this also finishes the proof of the theorem because, in the new basis
we clearly see that the relations ¢? = o; € U(R) and e;e; = —eje; for 4 £ 5
do hold indeed.

Remark 1.4  : For an arbitrary projective representation of B, detet-
mined by a factor system {c(o,r) : 0,7 € B,} it is always true that (RB,), is
a Clifford algebra over the ring (RBS), (i.e. over its center which is determined
by the ray classes with respect to ¢).

In the proof of theorem 1.2 we have established that a Clifford represen-
tation of B, , say (RB,,). is isomorphic to the Clifford algebra associated to the
quadratic form < ¢(e1,e1), -, (e, en) > (in diagonal form) where ey, - - -; e, is
a suitable Z/2%-basis for B,,. It is now easy to study the splitting problem for a
Clifford representation. Let § be the free extension of & obtained by adjoining

c(es,e;) for 1 < ¢ < n, then we obtain (SBp)e == C(8", < 1,--,1 >) =~
M3~ (S) Whedi 7i i§ evedl aiid i = § 6F ($Ba). o Mo+(S) @ My:(S) whéi 7 is
odd and ¢ = 5‘%1

It is easy to verify that (.S'Bn)c is an epimorphic image of the groupring
5G, where G,, is 4 finite central extension of B,, . T the cage consideresd here
'we can give a complete description of such a group. Put G, =< ay, -+, ay; b >

with a; = 1 and [a;, a;] = b for all ¢ # 7. An immediate consequence is that
b% = 1 afid that b is cenitfal ifi Gyy. We tisy fiow defifie & Fingepimorphisi

¢ : SGy — (SBy): by sending b to —1 and a; to - Ug;. S0, we may view

é(éi,¢:)

the (projective) Clifford representations of B in a gen‘ericl way as common
representations of @, up to splittiqg the representation by passing to an
extension § of R in the well-described way above.

2. Clifford groups; an introduction

In classical representation theory, projective representations appear in
Clifford’s theorem deseribing a representation of a group in terms of a projective
representation of some subgroup(s). After the foregoing section, the natural
question is to investigate then has to be : which groups G have the property
that the groupring RG splits into Clifford representations over the respective
CefitFa, i.8.

RG = ;'-=1(RiBni)c;
in particular, when RG@ split in Clifford representations over R, i.e.
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RG = ®;=1' (RBn;)ce

Groups with the first property are called general Clifford groups, groups
with the second property are called Clifford groups. Since every abelian groiip
is a general Clifford group the second concept is much more restrictive; for
general Clifford groups G one should be more interested in G/Z(G).

In the sequel we will always assume that | G [~1¢ R.

Proposition 2.1 :1If G is a (general) Clifford group and H is a normal
subgroup of G, then G/H is a (general) Clifford group.

Proof : Let wy be the augmentation ideal of H in RG. Since | G | is 4
unit in R, RG is an Azumaya algebra and hence the canonical epimorphism

7 : RG — R(G/H)

maps the center onto the center. If RG decomposes as Aj € ---A, , where
each A; is a Clifford algebra (over its center) , then a similar result holds for
R(G/H) = A, @--- @ A, (note that each A4; is Azumaya, even if it is possible
that 2 does not divide | @ |.

Proposition 2.2 : Any groiip G sich that the commitator subgrotp
G’ is central and such that G/G’ =~ B, for some # is a general Clifford group.

PROOF : Since RG” is central in BG we may put RG’ = R’ and view RG
as R’(G/G”), where ¢ is some 2-cocycle obtained by a selection of a transversal
of G’ in G. By remark 1.4, R(G/G’), ~ (R’B,), is a Clifford algebra over its
center, hence the result follows.

Example 2.8 : The groups G, constructed at the end of the foregoing
section are Clifford groups.

Clearly, the more difficult and as yet unsolved problem is to describe
the Clifford groups more completely. This problem may not be very easy, for
example the fact that the product of Clifford groups need not be a Clifford
group (verify for Dy X D4 where D is the dihaeder group of order 8) is already
an obstruction.
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