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0. Some motivation.

A basic theme in noncommutative ring theory is the attempt to generalize results
of commutative ring theory to noncommutative rings. A good example of this
theme is algebraic geometry for p.i. rings, which currently is quite popular.

This note can be viewed as an attempt to generalize Serre’s result on the cohomol-
ogy of projective space :

Theorem 0. (Serre, Cohomology of PP™)
(1): F[Xo,..., Xn] =~ @ H'(P™, dp~(n))
(2): H{(IP™, 9ppm(n)) = 0 for all n and for 0 < i < m.
(3) : The dimension of the F-vectorspace

H™(P™, dpm(—m—1—n))
is equal to (™)
to quaternionic projective space, or rather spaces. Of course, we have to define
what we mean by this.
Let us start by considering the identities of 2 by 2 matrices, i.e.

A Gp o/l

for some twosided ideal I of Ki,, 2. Here, IG,, o is the ring of m generic 2 by 2
matrices. It is the F-sub-algebra of

MQ(Pm) == MQ(F[.X11(Z),X12(I),.X21(l),ng(l) :1 S l g m])
generated by the so called generic matrices

(X)) Xae0)
X“(lem Xzz(z))

We are interested in 2-dimensional representations of A, i.e. F-algebra morphisms
A — My(F)

This study can be seen as the description of the set of solutions in the matrix-

varigbles X;, ..., X, to the ideal of relations I, i.6. the topic of ifiterest of Wwhat

might be called (some day, hopefully) noncommutative algebraic geometry.

Clearly, we are not interested in all representations but more in a description for
the equivalence classes of the relation

o~ iff Ja€ Autp(My(F)): e =a’0p
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The main difficulty is that there is no scheme parametrizing these equivalence
classes, cfr. [Ar]. This obstruction motivated Artin and Procesi to reformulate the
object of study : characterize all equivalence classes of 2-dimensional semi-simple
representations (and their irreducible components) of the affine A.

This can be done in the following way, see the work of Procesi [P1] and Artin-
Schelter [A3].
Jonsider our algebra A = IG,, 2 /1 then it is easily seen that

M2 (Pm)/MQ (Pm)IMQ (Pm) o M2 (5)

where § = P,,/J where J is the ideal generated by the entries of the matrices in
I. We have the situation :

G2 —* MQ(Pm)

?

! !

T

With T(A) we will denote the sub F-algebra of M(S) generated by the image of
A and ¢(A) where ¢(A) id the sub F-algebra of § generated by all coefficiénts of
characteristic polynomials of elements of 7(A).

It is easy to see that there are F-algebras epimorphisms

r-[rm, 2 —¥ T(A)

! b

B2 — e(A)

where Ty, o is T(IGp,2) the so called trace ring of m generic 2 by 2 matrices.
For any affine F-algebra I' we will denote by Max(T') (resp. Spec(I')) the set of all
twosided maximal (resp. prime) ideals of I'. The main result can now be stated as
follows

Theorem. (Artin - Schelter, Th. 3.20.)

(1) There is a one to one correspondence between Max(c(A)) and equivalence classes
of 2-dimensional semi-simple representations of A.

(2) Max(T(A)) conisists of couples (p, ¢;) When o : A —» Mp(F) i§ a representart of |
a 2-dimensional semi-simple representation of A and ¢; is an irreducible factor of
®.

Therefore, the study of solutions in m 2 by 2 matrix variables to an ideal of
relations I of 13, 2 amants to the study of the maximal (or prime) ideal spectrum
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of T(IGp,2/1). The epimorphism
Mo = T(IGare /1)
induces continuous maps :
SpecT(A) — SpecTly, 2

MaxT'(A) — MaxT,, »

So one can view SpecTl',, 2 as a quaternionic generalization of affine m-space.
But, from the work of Procesi [P2] it follows that

T2 = T [Tr(X1), ..., Tr(Xum)]
where 'II.‘?n is the subalgebra generated by the generic trace zero matrices
X% =X;- ; Tr(X;)
So,

Specp, 2 = Spec'_[]_‘?n X A™

and so, the real noncommutative (and hard) part of the problem is the description
of Spec or Max of T?,, which we will call quaternionic m-space and denote by
A

(2)

Clearly, one can also study the projective version of these questions. In that case
one starts off with a positively graded F-algebra A satisfying the identities of 2
by 2 matrices. which is generated by a finite number of homogeneous elements of
degree one, i.e. we have a gradation preserving epimorphism

0 Bipyrs — A

- if we give every generic matrix X;, 0 < ¢ < m, degree one. Then we want to
study 2-dimensional projective representations, i.e. gradation preserving F-algebra

morphisms
p:A—- A

where A is a graded central simple algebra of dimension 4 over its center. Since
F is algebraically closed, it follows from [NV] that

A = My(Fly, 5™]) (51, 52)
where deg('y) = 1or 2; 07,05 € N and Z-gradation on A is defined by

A= F[y’ y—_l]z F[yJ y-l]‘i‘l‘dl---a‘g
Sl P A s
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We want to study equivalence classes, for the relation that ¢ ~ ¢’ is a gradation
preserving automorphism between the target rings a s.t. ¢’ = alyp, of semisimple
representations, i.e. such that ©(A) is a graded semi-simple ring [NV].
Combining the argument of the affine case given above with ideas of [LVV], it is
possible to show that this study amounts to a description of

Proj(T(4))

where T(A) is of course positively graded and Proj consists of all graded prime
ideals of T(A) not containing T(A)+ = @Dy T(A):

Again, Proj(T p.+1,2) can be considered as a quaternionic generalization of projec-
tive space but since Tpt1,2 = T, 1 [Tr(Xo),-- - Tr(Xm)] we christen the hard,
noncommutative part of this problem, i.e. Proj(M?, 1), quaternionic m- space and
we denote it by ().

An important difference with the commutative case is that the rings '7II.‘9n+1 are
allmost never regular, [Li1]. Moreover, M. Van den Bergh has shown that for m > 3,
'_I].‘?n_i_z cannot be obtained as an epimorphic image of a positively graded F -algebra
of finite global dimension satisfying the identities of 2 by 2 matrices.

If we drop the assumption on having the same p.i.-degree, such an F- algebra does
exist [L2].

For, take the iterated Ore extension

Clpyr = Flag; 10 <1 < 7 < m][ao][a1,01,01]- - Jm Omy 6l

where for each i < 7,8;(a;) = 2a;; and oj(a;) = —a; and trivial action on the
other variables.
Then, sending a; to X7 and a;; to LTr(X9X7) we obtain an epimorphism

: 0
Ym+1 : Clmyr = Ty

Therefore, we can view Proj(Clm+1) as a sort of regular quaternionic m-space,
Pm

reg* .
A pleasant property is that, whereas prime ideals of Clpt1 can split up wildly

over primes of the ceniral subring
Spmi1 = Flag :0 <3 < j < ml

where a;; = (a)?, graded prime ideals lie uniquely i.e. Py, is homeomorphic, as
topological spaces to projective (m;' 1‘) — 1-space.
In this note we aim to construct structure sheafs and to compute the cohomology

of both spaces. The main result will be
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Theorem 8. (cohomology of ()
(1) Wy = @, H P, 2ipy ()
(2) : .Hi(ﬂ”{g),ﬁpg)(n)) =0forallnandall 0 < i< 3m~1
(3) : The dimension of the F-vector space
3m—1 m
H (IP(Q), ﬁpg)(_-{im -3 - n)) ,
is equal to the number of standard Young tableaux of length < 3 having n boxes.

The proof of it relies on three facts :

(1) : We can cover () and Preg with affine open sets such that the sections of
~ the structure sheaves contain units of degree one.

(2) : the ring of generic trace zero 2 by 2 matrices, MY, ,, is a Cohen-Macauley
module, cfr. [L3].

(3) : The Poincaré series of MY, ; satisfies a functional equation, [L1].

We believe that from this point on, it should be possible to develop a ”quaternionic
geometry”. Modesty forces us to leave this topic to people with geometrical exper-
tise. Hopefully, these results will be of some value to them.
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1. The scheme structure.

In this section we will calculate the local structure of the schemes ]l”fg) and
E’i’%g. We will start off with the last one. First, we recall some properties of
the so called generic Clifford algebras. For proofs and more details, the reader
is referred to [L3] or [LA4].

(a) : Generice Clifford Algebras.

Let R be any commutative f-algebra. An m~-ary quadratic form over the ring
R is a polynomial f in m variables over R which is homogeneous of degree two,
i.e.
[ =2043X;X; € R[Xy,...,Tm]
with a;; = a;; € R. So, f determines uniquely a symmetric m by m matrix
with coefficients in B
M; = (aij)is € Mm(R)

Let R™ denote the standard free R-module of rank m with basis ey, .. ., ex the
unit ve¢tors. The quadratic form f givens rise to a quadratic map

Qs :B™ R

defined by sending a column m-tuple £ = (z1,..., &m)" to Q¢(z) = 7. M;.z.
To any m-ary quadratic form f over R one can associate its Clifford algebra
CIU(R, f) which is defined to be the quotient of the tensor algebra of the R-
module B™ modulo the twosided ideal generated by all elements

QT — Qf(z)

where 3 € R™. If we give the tensor algebra the usual Z- gradation, then zQ z
is homogeneous of degree 2 whereas y(z) is of degree zero. This entails that the
Clifford algebra CI(R, f) has an induced Z/27%- gradation, i.e.

CUR, f)=Co P

with C;.C; C Cj, where k =14 7 mod 2.

We will now introduce a noncommutative F-algebra Cl,, which is generic in
the serise that every Clifford algebra of an m-ary quadratic form over F exfi
be obtained as a specialization of Cl,y,.

Let §,, be the homogeneous coordinate ring of the variety of symmetric m by
m matrices with entries in F, i.e. S,, is the commutative polynomial ring

Flag :1<i <5< m]
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in ("";'1) indeterminates. By fm we will denote the following m-ary regular
quadratic form over Sy,

m

frX1y o Xm) = 3 0 X:X;

i’j=1

The mth generic Clifford algebra over F, Cly,, is defined to be the Clifford
“algebra CU(Sy,, fm)-

If f = Yo;;X;X; is any m-ary quadratic form over F, then specializinga,; to
a;; gives an F- algebra epimorphism

xg: Cly — CUF, f)

It is possible to give a more concrete description of C'lp,. Consider the iterated
Ore-extension

Ay = F[a'z'j 1Li<i < m][al][a%amﬂsm]

where one defines for each i < 7 that o;(a;) = —a; and §;{a;) = 2a;; and
trivial actions of o; and 6; on the other indeterminates. |
Using the universal property of Clifford algebras it is easy to check that A,, =~
Clp.

Moreover, giving each of the variables a;; degree 2 and the a; degree one, one
checks that Cl,, is a positively graded F- algebra generated by the m elements
of degree one : ay,...,0m.

Further, Cl,, has finite global dimension equal to (™3 ") and the p.i.-degree of
the generic Clifford algebra Cly, is equal to 2% is the largest natural number
< m

= 9

Also, Cl,, is a maximal order and its center Zn, is equal to

Sm if m is even
S5 Sm.d it mis odd

where -
d = Smla1,...,0m) = L sgn(0)ag(1)- - -Go(m)
oES,,
2

where 8, is the permutation group on m elements. Of course, one has af =
[ PN

We will need a concrete deseription of Spec(Cly); ice. the set of all twosided
prime ideals of A equipped with the usual Zariski topology. Clearly, intersecting

with 8, yields a continuous map
¢ : Spec(Cly,) -+ Spec(Sm)

and since Cl,, is a finite module over Sy, (even free of rank 2™). This map is
surjective.




The prime ideal spectrum of a commutative polynomial ring (such as Sy,)
may be assumed to be relatively well known. Therefore, describing Spec(Cl,,)
essentially amounts to describing the fibers of ¢.

Proposition 1. [13] If p is any prime ideal of 8,,, the fiber ¢ 1(p) contains at
most two elements.

Moreover, it is easy to see whether ¢ ~!(p) has one or two elements. For let

(I (ag)is

be(z-/]);}e symmetric m by m matrix over the domain § = S8, /p. If the rank of
A

II{AYis even, then © ™' (p) has just one element. If the rank of A{A s odd, @
is congruent over the field of fractions of §, K to a matrix of form -

A 0
(& o
where A is a symmetric invertible £ by & matrix over K, k = rank( A)). Let

-—

5 = (._..1)(3).det(A)

then ¢~ 1(n) has one element if § ¢ (K*)? and has two elements if § € (K*) ?
In our situation where F is an algebraically closed field, the set of maximal
ideals of S, corresponds bijectively to the set of symmetric m by m matrices
over F. In this case, the number of maximal ideals of Cl,, lying over a maximal
ideal corresponding to a matrix (ag;);,; is equal to 1 + (rank(a;;)mod2).

There is a main automorphism on C!,, defined by sending a; to —a; or in terms
of Z/2%-graded algebras by sending an element

T — 2 @ L1
zo P (~21)

It is easy to verify, using the classical structure results of Clifford algebras over
a field, see e.g. [Lam], that this automorphism fixes every prime ideal of Cl,,
lying uniquely over S,, and permutes the two primes in the other case.

z€Cly,, ;€ C, to

(b) : Local structure of HFreg.
The generic Clifford algebras being positively graded F- algebras one can define
]Pi?ég = Proj(Clm+1)
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where Cl,, is the generic Clifford algebra generated by ay,..., 4, and Proj
(Clpm+1) is the set of all twosided graded prime ideals of Cly41 not containing
the positive part (Clm+1)+ = @;»(Clm+1): equipped with the induced
Zariski topology.

Our first aim will be to prove that /¢, has the structure of a scheme, i.e. it can
be covered by open sets which are homeomorphic to the prime ideal spectrum
of certain F-algebras. Later we will define structure sheaves on }Pf-’gg. For any
central homogeneous element f of Cl,,11, we denote

X (f)={Pc¢ I:Pi’%g 1 f &P}
The open sets we choose are

I: X (ay) 0<i<m
IrI: X+(2az-j + a,-,-+a.jj) 0<i< 1< m

We will treat every case separately.

Case I : By C; we denote the graded localization of Cl,,41 at the central
multiplicative set of homogeneous elements

{a :n € N}

Then it is clear that C; contains an homogeneous unit of degree one : q;.
Therefore :

C; =~ (C;)olas, a7, 0]

where o is the F-automorphism of (C;)y determined by conjugation with a; in
C;, i.e. for every z € (C;)o :

o(z) = a;z.a7!

- We will now calculate the part of degree zero.
Lemma 2: (C;)g =~ Cly[z1,. . ., Tm]

Proof.
Clearly, (C;)o is generated by the elements

=1, ., .1
it ,~ak.a,i

api:a
forall 0 < k < g m different from 4. Let us compute the relations between
them. .

-

..... 1 -1 — o
{ ak.ail N L —QE GG, 1+ a0y .f.-
ap.0;  .0k.G; " = —QApG;; + Q.05 1.0,
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Therefore, if we denote

Ag = Yap.az!  forall 0 < A < | < m different from 4

Ay = ag.a}? for all 0 < h < m different from ¢
Ay = aki.a;ﬁl for all 0 < i < m different from ¢

we get the following relation for all £ < [
(%) : Ap A1 + A1 Ag = —Agy + Ap; Ap + Ay Ay

Now, change the variables in the following way :

By = L Ap; — As for all 0 < A < m different from <
By = L Ap; A — A for all 0 < h < < m different from 4

then we obtain that

ByBy = [ApiAi; — ARiAL — YA AL + ArA
BBy, = [ Api Ay~ § AR AL — LA AL + AlA

whence
By By + BBy, = %AMAH — A Ay — A Ay + (A4 + ALA)
and using the relation (*) as above, this gives us
BB + BBy, = %Ak;Aw ~ At = By
Therefore,
(Ci)o =2 F[Bri : 0 < k << m, #£4][Bo][B1,01,61]...[Bi].. .[Bm, Om, bm]
where for all £ < [ we have
o1(Bg) = By, and §(By) = By
and trivial actions on the other variables, i.e.
(CiJo =2 ClplAui, .. ., Aii, . . ., Appi]
finishing the proof.

Therefore; C; o~ Clizlzi;. . zi]las;a7";0]. Whereas o acts trivially on each
z; and By, it has a nontrivial action on the By, for,

—1
O"(Bk) G;i.Bk.ai )
3 Ak — a;Ara;

-1 -1 _
LApi+ arai" — apia = A — LAy = —By

IR

10




That is, o is the main automorphism on Cl,,. So, from the discussion above it
follows that
X (ag) o~ Spec, (Cl, [ X1, ..., X))

where Spec, denotes the set of all o-prime ideals. In (a) we have seen that the
main automorphism ¢ on Cl,, permits the elements in a fiber consisting of two
elements, i.e.

Spec,(Clm[z1;- .., Tm]) = Spec(Sw[21, - - - Tm))
=Ap* ™™
So, the open set X (a;;) is homeomorphic to affine space.

Case II : We will write X;; = za;; + a4 + a;; and C;; will be the graded
localization of Cl,,4; at the central homogeneous multiplicative system

{X%:neN}
Again, Cy; contains a homogeneous unit of degree one : a; + a;. Therefore,
Cis = (Ciola + a3, (0 + )

where o is the F-automorphism on T';;)¢ given by conjugation in Cy; with
a; + a;.

Lemma 3 3 (Cyj)o =~ Clyy[ X1,y .. Zm)
Proof.
If we denote Z;; = a; + aj, then (Cy;)o is generated by the elements :

akg.:c;-_jl 0<h<<m
ak.Z;—jl k£ 7

Let us calculate the commutation rules provided neither & nor [ £ 1
~1 -1 -1 —1 1 y—1 7--1
Gszz'j .agZa-j == "*GkatX@'j +agapX i5 Zij “+ ajlakxij Zz‘j
~1 ~1 v—1 =1 71 =1 71
G:{Zij ‘a'kZij = —"(ly[a:kXij + (I:z'ka:lXij sz + ajkathJ Zi]
Therefore, if we denote

Ap=upZ; forsll 0<kzi,7<m
Apr=ap. X35 for (k1) 5 (i, 9)

we obtain the commutation relation
ApAp + AjAy = —Apr + (Aa + Aj)) Ak + (A + Aji) A (%)
11




Change the variables in the following way

By=31Aa+Ajm—A, 0<h#ij<m
By = LA + Ajp)Au + Aj — Ay kF#1i
)

Then we obtain using () above

BBy + BBy, = By,

Now, consider the special case that £ = ¢, then

a; Z agZ = ----‘a,-a;azz;l + aiga,-X;;}Zz- +a;a:X; 1Z 1
alZ a.,Z"l = ‘-----aga,-X';;-l + a,-ia;X;';-l Zw -+ a”a,g.X 1Z~~1
So, if A; = ¢;Z;;' and A;; = a7, the

A A+ AA; = —Ag + (Ag + Aﬂ)A,‘ + (A + Agj JA;
And define

{B = %‘(An -+ A;;) A
By = ‘lz‘(Au + Azg)(Azt ‘I‘Agl) Azl

then
B1B; + BB; = By

- finishing the proof, since
(Cij)o = F[Bw : 0 < k < I < m][Bo][By,01,6]...[Bj]- . .[Bm-Om-6m]
where for all k < {
o1(By) = — By, and §;(By) = B
and trivial actiuons on the other indeterminates.
Now, let us compute the action of . If k 3£ ¢, then
o(Bg) = (a; + aj)Bi(a; +a;)!

1 _— —
= (A + Aje) + a2 X5 — o X5
| 1
= A — §(Aik + Ajk) = —Bz

o(B;) = Zi;Bi 27}
= 1(‘4‘22 + A’J) ZzJA Z__l

(An +AG) +A—iZ5277 — 0 X
— \—-B,-

J' —-azJX

12




And as in case I we obtain that

Xr(2a:5 + ai; + a5) =2 Spec, (Cly, [ X1, ..., Xm])
o AEY;:MJL)+ "

Clearly, the open sets X, (a;;) and Xy (2a;;-+as-+a;;) cover the whole of Preg-
This completes the proof of.

Theorem 4 : As a topological space, ll”f%g is homeomorphic to the projective

space ‘
(1)

We needed the rather lengthly calculations given above in order to define the
structure sheaves later. There is another, easier way of deriving Theorem 4 :
intersecting with §,, gives a morphism

>

m . © . ("5%)-1
Pleg =ProjClmy1  _,  Proj Spme1 = Py

! !

. z
Spec Clpi1 - SpecSm+1

and we need to prove that the fibers ¢™1(p) of any p € Proj(Sm+1) consist of
one element.
Now, ¢~1(p) is homeomorphic to

Spec(Clm+1 Q) K)

S

where K is the field of fractions of Sp,41/p. This algebra is the Clifford algebra
associated to the m-ary quadratic form over X

Z W(agj)X,'Xj

- and is therefore isomorphic (as Z/2Z-graded algebras) to

Cii, ) QA

where g is a regular k-ary quadratic form over K and w is m—k+1 dimensional,
k = rank r(a;;). Dividing out the kernel of the augmentation map on A(W) we
have a one-to-one correspondence between ¢ ~!(p) and SpecCI(K, q). Moreover,
the map

Clpt+1 — CUK, g)
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is Z/z%-graded. If =1 consists of two elements, then
CiK,g) bV

where b and ¥’ are isomorphic central simple algebras but they are not Z/2Z-
graded. So ™(p) does not consist out of Z/2%-graded prime ideals, so cer-
tainly they are not Z-graded, a contradiction. Therefore, o’ is one-to-one. This
argument gives also a simplified proof for Theorem II1.3.1. of [23].

(¢) : Sheaves over Preg

We will noew introduce the structure sheaf of a graded module over Cly,4q
on Il”}"ég. We remind tha reader that F. Van Oystaeyen and A. Verschoren
introduced such structure sheaves in [VV]. However, we prefer here to follow
a different approach, mainly for two reasons. First, we believe that for p.i.-
algebras there is no real need to introduce the machinery of abstract symmetric
or bimodule localization theory, but that central localization usually suffices.
For one thing, these artificial localizations are allmost never computable except
when they agree with central localization, e.g. if the ring is Zariski central or
Azumaya. The second, and more funidamental reason, is that their projectivity
schemes are allmost never schemes (in the definition of [VV]) except in the
trivial cases such as Zariski central rings. A typical example of what might
go wrong is ﬂ”i’."ég. It is possible to find an open cover for it, all opens being
homeomorphic to the affine spectrum of an F-algebra but this algebra is allmost
never the part of degree zero of the corresponding graded localization since only
o-prime ideals extend.

To remedy this, we associate to an affine p.i. algebra A several structure
schemes, one for each subring R of the center over which A is a finite module,

namely
(Spec(R), 24) = Spec,(A)

where ¥, is the usual structure sheaf of the R-module A. Similarly, the R-
structure sheaf on a left A-module M will be

(Spec(R), 2,

It is clear that these concepts work only well for affine F-algebras which are
finite modules over their center, but since we aim to study only quotients of
trace rings of generic matrices this condition is always satisfied. Working with
a subring of the center rather that with the center itself provides this theory
with some extra (and necessary) ﬂex1b111ty This approach was motivated by
ideas of M. Van den Bergh.

If we stick to this framework, one can define a structure sheaf on Py such
that this ringed space is a scheme. For consider an open set X (a;;), then this

14




is homeomorphic to the affine spectrum of

v

R; —Spec F[By : 0 < k <1< m][Au;,..., A, - - A
£ 4

and (C;)p is a finite module over this subring of its center. The structure sheaf
= will be defined by

reg

dpr | Xi(as) = Spec, ((Cido)

reg

and similarly for the open sets X;.(2a;;+a;;-+a;;). Then this open is homeomor-
phic to the affine spectrum of

A

and we define

jzlli)m l X:+.(212z'j -+ ag; -+ (I:pj) == Spec Rig ((Cif)o)

reg

It is trivial to verify that gy~ is a sheaf of F-algebras on PG, .

reg

Similarly, one can define a structure sheaf f, over ]P:,";g for any graded left
Cly+1-module M. For take the graded localization M; of M at the central
homogeneous multiplicative set

{T?:neN}

for T; € {ai;;2a:; + ai; + aj;}. Then M; is generated by its part of degree zero
which is a module over I'(X(Z;), ¢pp= ). Then, we define
reg

P | X4(Z:) = (Spec(Rs), 21, )

In particular we denote for any n € Z that the structure sheaf of Cl,,4.1(n), L.e.
the graded module whose part of degree 7 is equal to (Clp+1)n+i, 18 dppm ; (n).

One verifies easily that

@D I(X+(Z); 2 (n) = (Clpsa)s
ne

as Z-graded modules. Now, it is about time to turn attention to R’f’é‘).
(d) : Rings of generic trace zero matrices

We have seem above that the trace ring of m generic 2 by 2 matrices is the free
polynomial ring
T2 = T [Tr(X1),.. ., Tr{(Xm)]

15




where Y, is the F-subalgebra generated by the generic trace zero-matrices
0 1
X;=X;— 2Tr(Xt)
For any 2 by 2 matrices A and B having trace zero, one knows that
AB+ B.A=Tr(AB)
Therefore, sending a; to X? and a5 to 3Tr(X7X?) we obtain an epimorphism
O : Ol — T
We will now indicate what Ker(pn,) look like. The center of T4,, R%,, turns
out to be the fixed ring of Flu;i,us, s : 1 < ¢ < m] under the canonical
action of SO3(F). It follows from the exact sequence
1+ SO3(F)— O3(f) — Z/2Z -+ 1
that there is an induced Z /2% action on RY whose fixed ring is the fixed ring
of Flu;,us,u;3] under action of the full orthogonal group Os(F).
This ring is by classical invariant theory equal to §%,, the homogeneous coor-

dinate ring of the variety of all symmetric m by m matrices with entries in ¥
of rank smaller than or equal to 3. Therefore, we obtdin the situation

i.e. kernel of p,, is a (graded) prlme 1dea1 of C' ljrmg over the kernel of
: Sm — 8%, ie. the ideal generated by all 4 by 4 minors of the generic
symmetrlc m by m matrix

A = (ij)ij € Mm(Sm)
Since Ker m,, is a graded prime of §,,, there is only one prime of Cl,, lying
over it which is Kerp,,.

Example :

1. If m = 2 or m = 3 then s is an isomorphism

2. f m = 4, then Kerp,, is generated by the normalizing element
S4(ay, ag,as3,a4), i.e. we have an exact sequence

0 — Cly.s4(ay, a2,a3,a4) — Cly — ']Fg -y 0
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(e) Sheaves over B3

By ]Pfg‘) we will denote the projective spectrum of the positively graded F-
algebra MY, ;. The epimorphism @1 gives a closed immersion

(ﬁﬂaz’g) - ]Pzg

To economize all our definitions a little we observe that a graded left f[lf?n+.1-
module M, is a graded Cl,,+1-module, so one has a structure sheaf

m

g prover P

The structure sheaf of M over IP{3) is then, of course, defined to be

Q(Q) — ‘;’*-’}—M

If it is clear that we are working over P(3) we forget the superscript (2). In
particular we denote

— o(2)
bpr = b,

dpn (n) = ﬁﬁ?}mﬁuz(n) forallm € Z
Again, one can cover ]1"‘("’2‘) by affine open sets namely X (Z;) where

Z; € {pm+1(8:); Oma1(20i; + ass + aj;)}

and on each such set, one can verify directly

D rx+(Z); ey (1) = (Clusi)z,
nez

as graded modules. where the right hand side denotes the graded localization
of Clpy1 at {Z7 :n €7}

We refer the reader to [L— V — V] for a description of the scheme- structure
of IP(5) on the Azuinays open sets.

X (XX - XX0)?)

Now, it is about time to calculate some cohomology groups.

17




2. The cohomology.

In this section we will compute the cohomology of () and P/, . Both results
can be viewed as a quaternionic generalization of Serre’s classical result.

m

Theorem 5 : (Cohomology of IP};,
(1) : Olm-l--l ~ ®n€Z H'O(H))zg} ZZHD:;,; (n))
(@) HP T 8ppes (n) = O for all m and all 0 < < (%) ~1

(3) : For all n € N, the dimension of the F-vector space

12

a0 P (—-(m N 2) ~n)

reg

> ()

i+2j=n J

is equal to

Proof.
With 7 I will denote the quasi-coherent sheaf

' @ dpr (n)
nell ;

Since cohomology commutes with arbitrary direct sums on a Noetherian

topological space, the cohomology of 7 will be the direct sum of the cohomol-

ogy of the shaves #ypm (n). Therefore, we aim to compute the cohomology of
reg

7 and keep track of the grading by =, so that we can sort out the gradings at
the end.
We cover P, with

reg

where the y; are the elements from the set
{651 <i<m;la;+as+a;;:0<¢<7<m}
For any set of indices %;,...,%p between 0 and (m;"Q) — 1 the open set

Usg...ip = X+ (ys,) N o N X (9:,) = X4 (Yao- - -¥5,)
18
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and by the results of the foregoing section we know that the sections of 7 on
Us,,...,i, 18 equal to the graded localization of Cl,,; at the central homogeneous
multiplicative set {(y;,...y:,)" : n € N}, and the grading by n on ¥ is the same
as the grading of this localization.

Therefore the Cech complex is

Go(u: ?) 10— Clipyy % H(Olm+1)yio 2 II (dm+1)ya‘oyi1 =

2o £0,...81
oo (Clmt)yo,ga — 0

- where o = (";%) -
with that on 7, so

@ H2(]szg,1_2]p::” (n)) = Ker(8;4+0/Im(b;41)
nek,

-1 and all the modules have a natural gradation compatible

The right hand side of this expression can be computed using local cohomology
with respect to the irrelevant ideal (Spmi1)+ = @~ (Sm+1)i- Let us define
for every graded left Sp,+1-module M B

L(M)={me€ M |3n > 0:(S5n41)7.m = 0}

It is well known that L is a left-exact additive functor so we can take the right
derived functors R*L and one has, cfr. e.g. [St]

R Y M 1) = H (Cly) = KerbiyoImbis

and so it will suffice these local cohomology modules. From [St, p. 43-44|, we
recall that Hi(M) = 0 unless ¢ = depth(M) < ¢ < dim(M) = d, for ¢ > 0,
and that H°(M) £ 0, H4(M) 5 0.

Now, Cly,.11, is a graded free module of rank 2™+ over the polynomial subring
of its center Sy, 41, i.e. Clyy1 is a Cohen-Macauley, i.e.

depth(Clyp+1 = dim(Cly4q) = (m;— 2)

Therefore, if 0 < 1 < (™5 ?)-- 1, then

D H i(“’fég:i?-ﬁ*f;, (1)) & H Y (Clpii) 20
ne

and clearly, |
@ HMPr,, dpr (n)) = H (Clps1) =0
nez
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So, we are left to prove H ("¢ 2)(0lm+1). From [St, Th. 6.4] and Cohen-
Macauleyness of Cl,,..; we retain that

(=) PET TN (Clmss); ) = P(Clmsa; oo
where we denote for every graded left Ci,,;-module M its Poincaré series
P(M;t) Y dimp(M,)."
re==0

and where P(Cly+1;t)eo signifies that the Poincaré series of Clyy1 is to be
expanded as a Laurent series around oo.

The Poincaré series of Cl,,.+1 is easy to calculate, since as a graded F-vector
space, Cl,, 41 is isomorphic to the commutative polynomial ring

Fla;;: 0 <1< 7 < mlag,..., an]
with deg a(;;) = 2 and deg(a;) = 1. Therefore,

1

P(C’lm—l-l;t) =
(1 gm+1(1 — 2)("7)

and its Laurent series expansion oo is equal to
)
(1=t 1ymt1 (1 — g-2)("F")

= (=)) Y P dim e (Clta)n
nG]N

("),

sombining all this information, we get that the dimension of

g(mi?-1 (/e 2pm ("‘(m 21r 2) -

is equal to dimp(Clyn)r = Xipajmn (m'-'")((m;:)'”' ) finishing the proof.

13
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Pictorially, we get

A Hi(ﬁm ,O w ("\)
o'

At
i
|
1
i
b
F
r3
P
gt
'
>

e

_ (mu y,\

Because we have computed the local structure of P, explicitly, it might be
possible to mimic Serre’s proof as in [Ha| to obtain Theorem 5. We have chosen
this approach because it clarifies the two main ingredients necessary for a
computation of the cohomology of 11"{'5) for which the local structure is not
so easy to give.

These two ingredients are :

(A) : a proof that MY, ., is a Cohen-Macauley module.

(B) : a functional equation for the Poincaré series of MY, ., in order to calculate
0
P, t1; t)oo-

In my talk before the séminaire in Paris, november 84, I outlined the proof of
(A). Since details of this proof will appeare elswhere, e.g. [L3] or [L3], I will
sketch here only the main ideas.
First, note that for m = 2 of 3, MY is Cohen-Macauley in view of the
isomorphism with C{,,, mentioned above.
To prove Cohen-Macauleyness for m > 4, we mimic the argument of Kutz [Ku|
to prove Cohen-MacAuleyness of the rings S% | i.e. the homogeneous coordinate
ring of symmetric m by m matrices of rank < k. He constructs ideals If ,,
Wwhere

H={s5<8 <...<s:8 €[0,m]}

and n € IN to be generated by

(0) : the entries of the last sp columns of 4 = (a;y)

(1) : The 2 by 2 minors of the last s; columns of A
21




(1) : The !+ 1 by { + 1 minors matrices of the last s; columns of A
(%) : The entries of the last # columns of the first row of 4

Remark that the ideal generated by all k by & minors (i.e. Ker(Sy, — S%)) is
of the form with

H={0<1<2...<k-2<m}n=0

Kutz shows that in case n = s, for some p, then Iy , is a prime ideal and if
s8p < 1 < 8p41, then
IH,n = IH’,n N IH,n’

where n' = s,41 and H' = {8, < ... < 8p—1 < n < 8p41...} Where both
I and Iy pe are (graded) prime ideals of Sy,.

There is a unique prime ideal Jg , of Cl,, lying over such a prime and we
define for s, < n < 8p41

JH,n = JH',n N JH,n’

Using some structure theory of Clifford algebras one can show that if n = 5,41,
then

T = Jgtn+ T o
and if n = s, then
Jian+1 = Jgn+ Clyp.o1 me-n
Now, using these two relations one can show by an induction argument that
pder, (Cly/Ju,n) = Kdim(Cl,,) —~ Kdim(Cly, /T 5, p)

Whenever n = s, or n = g, + 1 for some p.
In particular

pder,, (T?,) = Kdim(Cl,,) — Kdim(T? )

== (m; 1) —-3m+3

_ (m—2)(m —3)
2

Fmally, using that Cl,, is a free module of finite rank over S, and that Cl,,
is 2 maximal order having trivial normalizing class group one can show that

Exth (Y, Sm) = Exty, (TS, Homg,, (Clm, Sm))
o= Ethl?lm('ng Olm)
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and so pdg, (M) = dimS, ~ dimT?, whence M’ is a Cohen-Macauley
module over S,,. For more details, see [L3].

Now, let us consider objective (B}. The map
T?’("“‘X-m_!_l)']rm’g —p Rm-+1,2

is a linear injection onto the subspace of elements which are homogeneous of
degree one in X,,.1. In terms of multilinear Poincaré series this means that

J
P(’_Il‘m,g; tl, .o ey tm) == ""‘"""‘P(qu--l,g; tl: oey tm_|..1)

atm—l--l tmi1=0
Now, Rm+1,2 = RO ([Tr(X1), ..., Tr(Xm+1)] where RO , is the ring of in-
variants under action of SO3(F) whose multilinear Poincaré series were calcu-
lated by e.g. H. Weyl.
Combining all this, we gave a rational expression for the Poincaré series of
'H.‘m,g in [1] '

Proposition 6 [L1]

The Poincaré series of the trace ring of m generic 2 by 2 matrices has the
following rational expression

_ em1 — (3m + e1em + em——l)A2
e2, TT7 (1 — ) T13% (T — ) TLie (1 — titi)

P(m:m,g;tl, .oy ﬁm)

Here, the e; are the i-th elementary symmetric function in m variables and the
A; are defined by

14 ™ 1+ ¢2mt
8-+ t2, + t2m=3
t3 4+ 47 £3, -+ t2mn

Al = det|:

tm'---—l tz——-l

i tm

[y + 8™ b + 52 ]
2 + 137 {2, 4 o

Ay = detl :

g2y gt gm—2 . gmt2
m-~1 m—1

¢ gm

17 tm

et 4
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and as an immediate consequence of this, one obtains :
Corollary 7 [L1] (Functional equation)

The Poincaré series of the trace ring of m-generic 2 by 2 matrices satisfies the
- functional equation

1
p(ﬂm,g; t‘ = '—-‘t4m.P(r.[].‘m,2; t)

Another, more ringtheoretocal proof of this fact using Cohen-Macauleybess of
T'y,2 and that T'y,2 is a maximal order having trivial normalizing classgroups
can be found in [L3].

We have now all material at our disposal to calculate the cohomology of IPE’Q‘).

Theorem 8 : (Cohomology of IP{5))

(1) : Ty = @,z HOOPE, Bipr (n)

(2) : H”'(ﬂ"g),gjlp(n;)(n)) =(0forallnand 0 < ¢ < 83m — 1

(3) : There is a one-to-one correspondence between a basis of the F-vectorspace
™ (P, Qﬂp& (—-3m — 3 —n))

and standard young tableaux of length < 3 filled with entries from 0 to m
having n boxes.

Proof'.

Of course we take as an affine cover of ]Pf'f)

ri—wo<i<("F)-n

where the y; are the elements from the set
{#ass) : 0 <4 < m; (2055 + a4+ a;7) : 0 < 1 < 7 < m}

where ¢ : Clypyo — T +1 1s the natural epimorphism. As in the proof of
Theorem 5 we consider the quasi-coherent sheaf

P s (n)
ne Tl (2)
and similarly one deduces that
D H(®), by, (n) = B (W7, )
nez
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We know that M9, ., is a Cohen-Macauley module module over Spm+1 of
dimension 3(m + 1) — 3 = 3m, so part (2) of the theorem is proved.
As for part (8), we know that

P(H?™ (M 41);t) = P(Mg 15 )eo-(—1)™

From the functional equation for the Poincaré series of T'yp+1,2 and the fact
that Tpp1 2 = T [Tr(Xo), . . ., Tr(Xm)] ie.

1

P(rﬂ‘m-l-l 2:t) (_1__~¥j;;,;1_1 ( 13 )

we find that
P( m+17 )_‘( ])3mt3m+3p(rlrm+1, )

i.e.
1
P('_[]_‘m+1,t)°° = ( 1)3mt-—3m_3 P(rﬂ-‘m-} 13 —f:

)

and therefore

P(H?™(TY, . );t = Lt dm—3-n Gimp(T, 1)
nG]N

and from the work of C. Procesi, [P2], we retain that there isa a one-to-one
~correspondence between standard Young tableaux of shape o = 32201°¢ for
a,b,e, € IN. i.e. a diagram consisting of a rows of length 3, b rows of length 2
and ¢ rows of length 1

filled with indices from 0 tot m such that the numbers in every row strictly
increase and that the numbers in every column do not decrease; and an F'-
vector space basis of 1 b Moreover, the degree of an element correspondmg
to a standard Young tableau of shape o = 322%1¢ is equal to the number of
boxes in the diagram, i.e. is 3a + 2b +¢.
This finishes the proof of the theorem.
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Pictorially, we have the situation :

Av
v,
Wi, @E"“ (n))
2)
ém:% —— o - D4
]
}
| @O
¢
)
} | .
~3m-3 f o

From this point on, it is easy to derive as in the commufative case a
rothendieck-Serre duality result for coheremnt sheaves over IPf5) or Pf, .
We leave this as an (easy) exercise to the reader, cfr. [A-K] for the commutative
proof.
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