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0. Introduction.

Recently, E. Formanek extended a result of the author [13] to arbitrary n by n
matrices. :

Theorem 0 (Formanek [5, Th. 21])
The Poincaré series of the trace ring of m generic n by n matrices, T, r, satisfies
the functional equation:

1 1

s =) = (=1)%® P(M ooty tm)

P('H‘m,n; a’; e tm

where m > n?, d = Kdim(Tp, ) = (m — 1).n2 + 1 and ey, is the m-th elemen-
tary symimetric function #y...t,,

Despite its intrincsic beauty, this theorem should only be an 1ntermed1ate result.
For, ultimately one is interested in:

(1): finding a closed expression, i.e. rational form, of the Poincaré series either in
multi- or single gradation.

(2): giving some homological explication for the existence of 2 functional equation,
similar to Stanley’s result in the commutative case.

Both these problems seem to be rather difficult for arbitrary n by n matrices.

However, they have a satisfactory answer for 2 by 2 matrices, [14]. In this paper .

2 would like to scetch three independent proofs for the functional equation of the
- Poincaré series of the trace rings of generic 2 by 2 matrices, each of them will
provide us with an extra bit of information.

The first one, based on some ancient results of H. Weyl and I. Schur on rings of

invariants under special orthogonal groups, will give us a rational expression in a
multigradation.

, .
The second:proof, which was outlined to me by C. Procesf, provides us with a
combinatorial method to calculate these rational forms in a single gradation.
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* The final proof gives us the explication for the existence of the functional equation,

namely that the trace ring is a maximal order having trivial normalizing classgroup
and that it is a Cohen-Macauley module over its center.

For details the interested reader is referred to [14].

1. Notation.

Throughout, F' will be a field of characteristic zero, algebraically closed if neces-
sary. Let P, ,, be the polynomial ring

Pmn = Flzij(8) : 1 < 4,5 < m;1 < £ < m]
and counsider the so called generic matrices

Xe = (2:(8))i,; € Mn(Prm,n)

then@G,y, ., the ring of m generic n by n matrices, is the sub F-algebra of M, (P, »)
generated by the elements {X3,..., X}

H is well known that G,, , is a domain, and if we localize it at the multiplicative

set of all nonzero central elements we obtain a division ring A, ,, of dimension n?

over its center K, . Let

Tr:Apmp = Knyn

be the wusual trace morphism, then the trace ring of m generic n by n matrices,
T n, is the F-subalgebra of An,, . generated by Gy, and Tr(Gn, ). We will
denote the center of My n by Rm,n. Both Ty, and R, r are N(™._graded F-

algebras by giving each generic matrix entry z;;(£)
deg(z;;(8)) = (0,...,1,...,0)
with 1 on spot £. The corresponding multi-graded Poincaré series are then defined

by

P(Mmaitiy-otm) =D  dimp(T )iy, im)) 8- - L

(il""'*-aim)

PRamitis--otm) = 3.  .dimp((Romn)(is, . im))ti - Lo

(‘.1"‘""7’.1%)

Clearly, they are also positively graded by giving each z;;(¢) degree one. The
corresponding Poincaré serles are

m ) t y‘ dzml‘" .m, n)t
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>+
PRumnit) = dimp(Rm,n)it"

=0
Using the fact that both Rp . and T, , are fixed rings under GLn(F), it is
possible to compute these Poincaré series. This was done by Formanek [4], but his
results are not relevant for the rest of this paper.
Finally, since R, n is an affine F-algebra and Ty, . is a finite Ry, - module, it
is clear that all these Poincaré series are rational.
To my knowledge, the only rational form which is known for a T, n, 7 2> 3, is
due to M. Van den Bergh [15]. He proves that

P(Ta3;t) =

(1 -1~ ) (1~ %)

For n = 2, we have a complete information about this rational form.

2. Rational Expression.

Since we will be working only with the case that n = 2, we denote T, = Ty, o
and R, = Ry, 5. By a result of Procesi’s [17], the center Ry, is the ring of the
polynomial maps from m copies of My(F) to F

Mo(F)B ... Mp(F)— F
which are invariant under compornentswise action by conjugation of GLy(F). Of
course, each of the factors decomposes as a GLy(F)-module
My(F)=F & M°

where N° is the 3-dimensional vector space of trace zero matrices over F. The
funny thing about working with 2 by 2 matrices is that the action of GLy(F)
on M?° is equivalent to the action of the special orthogonal 3-dimensional group,
SO3(F), on standard three dimensional vector space F(3) (at least if /—1 € F).
Combining these two remarks we get that

Rm = Ry, [Tr(z1),...,Tr(zm)]
where
Row = Fluis, ugs,uzs 0 1 < 4 < mf
The second remark we make is that there is a linear injection

sTr(—2m+1) : Ty = Rpt1

*
whose image consists precisely of those elements which are homogeneous of degree
one in ty,+1, i.e. the variable corresponding to the generic matrix £p41.
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If we translate this fact to the level of Poincaré series in 2 multi-gradation, we get:

0
P(Mpm;tey..ntm) = 52——:1—P(Rm+1;t1, ..

and since R4y is a polynomial ring over R3, ., we have

o bt 1) |t 1 =0

Iz -t

P(Rm-i-l;tl; ceny tm-i-l) = P(E:m+1; iy tm+1)~

- H. Weyl and I Schur (+ 1925) have calculated the rational expression of the

Poincaré series of rings of invariants under special orhtogonal groups, so in par-
ticular of B}, .. They got that P(R, . ;t1, .., tm+1) is equal to

1+ ¢2m—1
m-1 : 1 o tt + tzm—z
(T (b = £) TITRE(L - taty)) ™! .- £t gt
tm—t

tv.n
Where the numerator is the determinant of an m+1 by m+1 matrix,

1 < ¢ < m+1. So, we have reduced the problem of finding a rational expression
to easy but boring calculations. One gets

Theorem 1. [13]
The Poincaré series of the trace ring of in generxc z by z matrices has the following
rational expression:

emA1 — (Cm + e1€m + em...l)Az
efn.ﬂ;';l(l - tj)?r;nsk(tk — t;).ﬂ‘:'nsk(l -— t,’tk)

where e; is the i-th elementary symmetric function and the A; are determinants
of m by m matrices, having as its 4-th column:

P(’H‘m;tl,.-.,tm) =

1+ g2m—t
2m—3
t:?; +1 ”‘_4
i+t
trl gl
12 ti-'n,——]_‘
t

tm

t; 4 tim—2
i 4 gBin-3
t"‘ I

gm—t
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Since clearly

— 1 1
e,an I.Al(a,..., Z,,—-,,) - —Al(t]_,...,tm)

— 1 1
efn 1 Az(t 5e %-—) = ——Az(tl,...,tm)

. 1
e?n,-[(em + e1em + em—-l)(?l': ) t—')] == €y + €m€1 + Em—1
m

we get as an immediate corollary of Theorem 1 our first proof of the functional
equation.

Corollary 2.

The Poincaré series of the trace ring of m generic 2 by 2 matrices satisfies the
functional equations:

P(Mm; .oy =) = —eby P(Tmiti, - stm)

So, the first proof has the advantage of giving a closed formula for the Poincaré
series but also the disadvantedge that it is allmost impossible to calculate this
rational expression explicitly for a given m.

3. A Combinatorial Computation.

As stated in the introduction, the results in this section were outlined to me by
C. Procesi.
We have seen in 2. that the center R,, is a polynomial extension in the traces of

the generic matrices over a subring RS,. A simular result is also valid for the trace
ring itself. One can show that [17]

M, = T [Tr(zy), . .., Tr(2m)]

where T, is the subalgebra of T, generated by the so called generic trace zero
matrices

1
T = z; — —2-‘Tr(z,-)
For this reason, we call T, the ring of generic trace zero matrices. Procesi has

given in [17] an F-vectorspace basis for this ring:
: , ,
Theorem 3.*([17]):
There is a natural one-to-one correspondence between:
(2): an F-vectorspace basis of Ty,
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standard Young tableaux of shape o = 3%2%1¢, where (a,b,c) € _lN"’, and
filled with numbers from 1 upto m.

Moreover, the degree of an element corresponding to a certain Young diagram is
equal to the number of cells in that diagram, Therefore, the Poincaré series is (in
single gradation)

P('ﬂ‘:n;t) = Z L3a261c.t34+2b'+c
(@,b,¢) :

where L3a951c is the number of standard Young tableaux of shape o = 32901°,
The crucial observation to make at this point is.that

E Lsazblc.t3a+2b+c —_ Z L2: t2¢

(a,b,C) =0

This is a sort of Pieri-formula, see e.g. [0, Cor. IV.2.6.]. Now, luckily we know what
the power series 3 Lo:.t%* look like. It is the Poincaré series of the homogeneous
codrdinate ring of the Grassmann variety G(2,m) of 2-dimensional subspaces of .
m-dimensional space. We will denote this ring by G2, in the sequel. It can be
defined in the following way.
Consider the polynomial ring

T=F[Z1;,Z2i:13i3m]

i.e. with as many indeterminates as there are entries in a generic 2 by m matrix
which we call Z.
The ring G2, is then the subring generated by the 2 by 2 minors of Z, i.e. by the

Plicker coordlnates
o ZyiZo;
Ay == det (le'sz)

Another way of introducing G2, is to note that it is the fixed ring of T' under the
action of G Ly(F) by left multiplication on the generic 2 by m matrix Z.
Therefore, by the Hochster-Roberts theorem we know that G2, is a Cohen-
Macauley domaain, i.e. it is a free module of finite rank over a polynomial subring.
Further, one can explicitly deétermine the generators 8; of this polynomial subring.
To do so; let X;; be the set of the m—(m; ) Pliicker coordinates Xjjfor 1 €4 <
7 < m. One can make ¥, into a pa_rtlally ordered set by defining

i S iffi < kandj <1
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rlc(7) H )\45
rk(6) : Azs
rlc(5) D ¥ A25
rk(4) : A24 A1s
rk(3) : es A4
rk(2) : A3
rk(l) : )\12

For general m, ¥,, is a ranked partially ordered set of rank 2m — 3. Combining
Th.8.1 and Th.11.1 of [3] one can prove that G2, is a free module of finite rank
over the polynomial ring

7m = F[01, Y 02m—-3]
where
O = Z Aij
rk(hi;)=k

Moreover, one can give an homogeneous basis for G2, over 7. To begin, note that
Hpm is graded, i.e. it is finite, bounded (it has a minimal and maximal element) and
it is pure (all maximal chains have the same lenght). Further, ¥,, is lexicographic
shellable, i.e. one can assign to every edge in the Hasse diagram of ¥y, , Aij < Mg,
2 natural number (X5, Axi) such that in every interval [\, Axi] of ¥y, there is a
unique unrefinable chain

Nij = Niggs < Miggy < 00 < Nipjn = Mt

which is rising, i.e. such that

Bhiggor Niys) < By Mag) <o < (N _ysngs Mndn)

One assigns to an edge in the n-th main diagonal corridor the number 2n and to
an edge in the other n-th diagonal corridor the number 2n + 1. For example, for
m = 5 we obtain the following picture

S

97

*
7
*
6 5
% *
5 6 3
* *
4 3 6
" %
3 4
%
2
%

There is a one-to-one correspondence between a basis of G2, over 7, and the set
of maximal chains in ¥y, , cfr. e.g. [2] or [6] for more details.

Take a maximal chain

A2 = Nigjo < >‘ixj1 < '>‘t'zm—4.‘izm-4 = Am—1m
then the element of G2, corresponding to it is

H N

kes

where § is the subset of {0, ..., 2m — 4} consisting of the indices k such that

l"(xik—ljk—l 3 kikjk) > I‘()‘ikjk: )‘ik+1jk +-1)

In the case that m = 5 we get

chains elements
234567 1
234657 Nos
243567 Mg
243657 STRLT
246357 A1is

Combining all this information we get

lhﬁg! Qm 4 .
The Poincaré series of the homogeneous coordinate ring of the Grassmann variety
of 2-planes in m-space is
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Y o - i Im(t?)
PGLit) = Lot = =

f=x0

where g5, (¢?) is a polynomial in IN[¢]. The coefficient, of 27 in g, (£2) is the number
of maximal chains in Xy, having precisely 5 descents.

In our example, we have

Another immediate consequence of the theory expounded above is the following
elegant proof of the functional equation due to C.Procesi.

Since G2, is a Gorenstein,Cohen-Macauley domain , efr. [16], its Poincaré series -
satisfies the functional equation

P(Gh; ) =~ P(Ghs1)

for some & € Z since K dim(G2,) = 2m — 3 is odd, cfr. [16]. Finally, since

1

P(’ﬂ‘m,z; t) = m

P(Gh;t)
the functional equation follows.

Further, it is easy to verify that

o =4m — 6 — deg(g.n) = 2m

since deg(gy,) is equal to twice the maximal number of descents possible for a chain

in Xy,. The unique chain having a maximal number of descents can be visualized
as
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so it has precisely m~—3 descents. This finishes the proof of the fact that P(T s 2; t)
satisfies the functional equation

P(Tm,2; %) = " P(Wm,2; 1)

The two preceeding proofs of the functional equation, as well as Formanek’s proof,
are obtained from rather formal operations on the Poincaré series and they do not
give us any ringtheoretical reason (or insight) for the existence of the functional
equation.

4. Homological Explication.

Let us first recall where functional equations come from in commutative algebra.
There, we have the result of Stanley [16]

Theorem 5.:

[18] Let R be a positively graded Cohen-Macauley domain, then the two statements

are equivalent:

(2): R is Gorenstein, i.e. (R) ~ R or equivalently, R has finite self-injective
dimension. ]

(b): The Poincaré series of R satisfies the functional equation
P(R;L) = (~1)4.t*.P(R;t) where d = K dim(R) and o € ZL.

So, let us first comsider the question whether M, is Coben-Macauley in some
suitable definition. .
Even in the commutative case it is fairly exceptional that one proves Cohen-
Macauleyness of a ring by describing explicitly a polynomial subring and a free set
of generators. Usually, one proves Cohen-Macaulayness of a ring R by choosing a
set of generators, 1.e. an epimorphism

S =Fle1,..., 20 = R

and then showing that pds(R) = K dim(S) — K dim(R). We will follow the same
approach for the trace rings M., or rather for the ring of generic trace zero
matrices TY,. So, we first have to find a positively graded F-algebra having finite
global dimension s.t. T;, can be obtained from it as an epimorphic image.
Consider the polynomial ring

Sm = Flag:1 <1< j < ml

i.e. the homogeneous coordinate ring of the variety of all symmetric m by m
matrices. Over this ring we have a sort of “generic quadratic form”:

m

qm = Z ay; XX
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and we define the generic Clifford algebra Cl,, to be the Clifford algebra associated
to this form, which is the quotient of the tensor-slgebra of a free S,,-module of
rank m by the ideal generated by elements of the form z ® = — ¢, (z) 2s = runs
through the elements of the free module.

For ringtheorists, the next description of the generic Clifford algebra is probably
more convenient: Consider the F-algebra

F[a'i'j 01 S 1 < .7 S m][a'll[a'Z;aZ;aZ]"'[am) Umyam]

where one definis for each ¢ < j that o;(a;) = —ay, 6;(a;) = 2a;; and trivial
actions of o; and 0; on the other indeterminates. Defining a? = @4, it is clear
that this algebra is an S,,-algebra and it can be shown that it is precisely Cl,,.
Immediate consequences of this description are e.g. Cl,, is a maximal order, it
has finite global dimension equal to ﬂ%ﬂl, it is positively graded if we define
deg(a:;) = 2 and deg(a;) = 1. Moreover, it is easy to describe its Poincaré series

1

P(Clm;t) = mlm 1)

-yma-8) 2

because, as a graded F-vectorspace, Cly, is isomorphic to the polynomial ring
Flai;;ai].

Further, localizing at the multiplicative set of non-zero elements of S, one gets
the Clifford algebra of a regular quadratic form over the field of fractions K,,.
Using the classical structure results of Clifford algebras over fields one gets that
the p.i.-degree of Cly, is the 2% where o is the largest natural number < 2. It
is then also easy to prove that the center of Cl,, is equal to S,, whenever m is
even and equal to the quadratic extension Sy, [v/det(a;7)] if m is odd. Finally, we
mention that it is possible to describe the prime ideal stucture of Cl,,. In particular
we find that there is precisely one (graded) prime ideal of Cl,, lying over a graded
prime of Sy,.

In the generic Clifford algebra we have the commutation relations

a;e; + a;a; == 2a,-j

Therefore, sending a, to X2 and ay; to 1Tr(X2X 7) we define an epimorphism:

b : Clyp — T,

Of course; we are ultimately interested in describing a resolution of T'%; considered
as a (say left) module oer the regular algebra Cl,,. To begin, let us see whether one
can describe* the kernel of ¢,,. Aboe we have seen that the center of T}, RS, is
the ring of invariants under SO3(F). Therefore, there is an induced Z/2Z-action
on R, whose fixed ring is the ring of invariants under the full orthogonal group

2 oemew
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coordinate ring of the variety of symmetric m by m matrices of rank < 3, i.e.
S84 the quotient of Sy, by the ideal generated by the 4 by 4 minors of the generic
symmetric matrix A = (@), I4. So, we have the following situation

Clm "5"_; TS,
Rom
L = 8w, 84

The kernel of ¢, is clearly a prime ideal which is graded and lies over the graded
prime ideal I,. We know that there is only one such prime, i.e.
Kerg,, = radClyr.1,

Let us look at the simplest non-trivial example, i.e. when m = 4. Then

Kergy = Cly.S4(ay, a2, a3, a4)

and one verifies that Sy{ay, az, a3, ay4) is 2 normalizing element of Cly.
As mentioned at the beginning of this section, we would like to prove that

m(m +1) (m = 2)(m - 3)

pdcu,, (TY) = K dimCly, — K dimTh, = >

——(3m—3) =

To this end, it is quite instructive to see how Kutz [11] proves Cohen-Macauleyness
of the rings
s ,:n = m/ Iy
where Ij is the ideal generated by all k£ by & minors of 4. To any sequence of
natural numbers
M:0=5<s5<...<8g=m

he associates the ideal Ias of S,, which is generated by

(1):  the 2 by 2 minors of the last 8; columns of A.
(2): the 3 by 3 minors of the last s columns of A.

(k-1): the k by k minors of the last sx=; columns of 4.

(k): the k + 1 by k + 1 wminors of the last s = m columns of A.

Furthermore, for any n € IN he defines Ips,, to be the ideal of S, generated by
Ipnr and the last n entries of the first row of 4, i.e.
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Note‘f;hat, in particular, we recover the ideals I; by setting

M=0<1<2<...<k-1<m

and n=10. If n = s, for some ¢, Kutz proves that Ips . is a prime ideal of §,,
and, in the other case, i.e. when s; < n < 8441 he shows that

IM,n = IM',n n IM,n'

where n' = 841 and

M=0=g<..<§1<n<8<...<8=m

so both Iy, and Ing,n one prime ideals of S, whence I M,n is radical. His main
result is then

Theorem 5. (Kutz [11])

If n = 8, or n = g; + 1, then the quotient

SM,n = Sm/IM,n

is a Cohen-Macauley ring, i.e. pds,,(Sm,n) = KdimSpy — KdimSn,r,

Now, let us return to the homological study of certain quotients of the generic
Clifford algebra Cl,,. Consider a couple (M, n) as before and suppose that n = s,
for some £, then Iy, is a graded prime ideal of Sy,, so there exists precisely one
prime ideal of Cly, lying over it. We will denote this prime ideal by Jps,p. In the
other case, i.e. when 8; < n < 8¢41, then Ips , was the intersection of the graded
prime ideals Ipr ,, and Ips pe. By definition we set

JM,n = JM’,n. N JM,n’

where the ideals on the right one determined as above. Using the ideas of the
proof of Kutz, as well as the structure theory of H. Bass [1] for Clifford algebras of
non-degenerate quadratic modules, more in particular that they are Z/2%-graded
Azumaya algebras whence there is a natural one-to-one corresponcence between
Z[27-graded ideals of the Clifford algebra and ideals of the commutative base
ring, one can prove:

Theorem 7. ([14, 111.4.3.])
If n =8, or n == gy + 1 for some £, then the quotient

? Clry = ClufJM,n

+

is a Cohen-Macauley quotient. By this we mean that

2’ s N e a o . I e
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We note that this result immediately entails that for these couples (M, n), the
quotient Clys,,, is 2 Cohen-Macauley module over §,,, i.e. Clps,,, is a free module

- of finite rank over a polynomial subring of the center.

To see this, first note since Cl,y, is a free Sp,-module of finite rank we have

pds,(Cla,n) < pdor,, (Clat,) = KdimCly, — K dimClag

Further, K dimCly, = KdoiimSy,, and KdimClyy ,, is equal to the dimension of
Clp,n as an Sp-module. By the Auslander-Buchsbaum result this implies that
dephts, (Clar,n) = dim(Clar,) whence Clyy ,, is an Sy, Cohen-Macauley module.
So, in particular we get

E':ctfgm (Claryn; Sm) =0 whenever ¢ 5% dimS,, — dimCly,

and because Cl,, is free over S, this entails

Extyy (Cla,n, Homg,, (Cly, Sp)) = 0

for these values of 4. Finally, since Homg, (Clp,Sn) is a twosided divisorial
ideal of Cl,, and the normalizing classgroup of Cl,, is trivial we get that
Homg,, (Cly, Sp) =~ Cly, and therefore '

Ezxtly (Cla,n; Clm) =0 whenever i 5 KdimCly, — KdimClyy ,

Returning to the study of Tj, which was the quotient Clpr, for
M=0<1<2<3< mandn=0we get

So, if we take a resolution of T}, as a left Cl,,-module

0TIy — ... Iy - Fy=Cly, —»T;, =0

we know that A = ("‘—_2%(1”:—3—1 Further we may take every F; to be a graded free
Clyn-module and all morphisms gradation preserving.
So, on the level of Poincaré series we have

h

PToit) = D (-1)P(Fst) M

t==0

and if F; has a basis of homogeneous elements f;1,. .., Fig, with deg(fi;) = g:; we
have

B
P(Fat) = (Y 99).P(Cl,,: 1) (2)
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h
PQP(MS, ) t) = Y (1" . P(F}_i1) (8)

=0

and

B
P(Fi8)= (D t79).P(Clm;t)

=0

which follows immediately from the rational expression of P(Clpy;t) given
before, we find that

PE™(T5); 7)

1 k . ﬂ:‘
= P(Cly; ;)-(E(—l)""'- >, t99)
=0 j=1
m(m + 1) h Bi
= (_1)”1"2 ™ P(Clu; )Y (125 Y 194)
m{m +1 —h s = =
= (1) 4™ P, t)

and since A = (l-—%)é(ﬂ:—é) this gives us

P(Q"™(Ty,); % )= (=1°m 4™ P(T,51)

Now, look at ("°(Ty,) = Eztly (M5,; Cly,). I TS, is free of finite rank over
the polynomial subring R of RS, we know that

Q™(My,) = Homp(T,; R)

as T7,-modules. Therefore, Q"°(T},) is a graded twosided divisorial ideal of
the maximal order ;,. Since Ty, is a reflexive Azymaya algebra (i.e. all
localizations at height one prime ideals of the center are Azumaya and the ring
is-a reflexive module) over its center R2, which is a unique factorization domain
(follows from R, = RS, [Tr(Xy),... I'+(X,)] being the tixed ring under a
single reductive group) we find that

Q"e(T,) o T°,

as graded T;,-modules, so 5

*
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P(Q"e(TY,); t9) = t#.P.(TWoy; )

for some 8 € Z and ¢ = +1. Finally, using that T, = T, [Tr(X1),..., Tr(Xm)]
we get

Theorem 8. (Functional equation)

The Poincaré series of T, satisfies the functional equation

1
P(Ty; ;) = —t* P(T'y; t)
for some o € Z.

5. Odds and Ends.

In this final section we would like to mention some of the remaining questions
on trace rings of generic matrices. First, consider 2 by 2 matrices. In the third
section we have scetched Procesi’s proof of the functional equation, linking the
study of T, 2 to the rather extensive theory of Grassmannians.

Question 1.
Is there a ringtheoretical connection between 'y, o and G(2,m)?

Looking at their Poincaré series it is possible that T, » is an iterated Ore-
extension of G(2,m). But the author is rather sceptical about this possibility.
We have shown that T, is a Cohen-Macauley quotient of Cl,. Ultimately,
one would like to solve:

Question 2.
Give an explicit resolution of T;, as a (left) module over Clp,.

In commutative algebra it is usually very difficult to find resolutions for Cohen-
Macauley rings. However, in the case of the rings S%,, i.e. symmetric m by m
matrices of rank smaller than k, Jozeficek, Pragacz and Weymann [9] succeeded
in giving such a resolution. In a subsequent paper we hope to extend their
method in order to solve question 2.

Along the same lines it would be very intersting to know the solution to

Question 3.
Give an explicit description of Ty, 2, i.e. find the generators of the polynomial
subring R of R,,2 and a free bais of Ty, 2 over R.
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For m == 4, this problem can be solved quite easily. The general case seems to
be quite hard, however. '

Of course, a solution to question 1 would immediately yield solutions to the
other questions.

Now, let us turn attention to the case of n by n matrices where n > 2. As
mentioned in the introduction, E. Formanek proved the functional equation for

Ty, . where m > n2. This result may be viewed as an indication for a positive
solution to

Question 4.

Is the trace ring of m generic n by n matrices always a Cohen-Macauley module
over its center?

For, one can prove
Proposition 9.

If the trace ring T, n is a Colien-Macauley module over its center, then the
Poincaré series satisfies the functional equation

1
P(Won,m; 3) = (= 1) 4% P (W, m; 1)
where d = Kdim(Tp,n) = (m ~1)n? + 1 and o € Z.

Proof
i Ty,n is a Cohen-Macauley module, one can use a result of Stanley’s [16] to

get:
PO ) §) = (~1)%.P(TT ;)

where Q(T,, ,,) is the canonical module of the Rm,n-module Ty, ,,. Considered
as a Ty, n-module, one can show that it is a twosided divisorial ideal of the
maximal order Ty, ,,. Since Ty, is a reflexive Azumaya algebra over its center
Rm,n which is a unique factorization domain, cfr. e.g. [12], we have

AT ) Tmn

one this isomorphism is clearly graded, therefore

‘ P o, )5 £) = £ P )
for € = £1, finishing the proof.
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Because T, , is the fixed F-algebra under action of the reductive linear
algebraic group GL.(F) on the F-algebra of finite global dimension

M, (Flzi(8):1<4,7 <n 1< < m))

question 4 could be answered affirmatively, provided, one has a noncommuta-
tive version of the famous Hochster-Roberts theorem. At present, it is not clear
how one might prove such a result since the main tool of the commutative proof
(of Hochster-Roberts [7] or Kempf [10]), i.e. reduction to finite characteristic
and investigation of the Frobenius morphism on local cohomology, clearly does
not generalize (directly) to the noncommutative setting.

As was suggested to me by J.L. Colliot-Théléne, it might be possible to general-
ize Boutot’s proof. Apparantly, this proof exists only in preprint and I was not
yet able to obtain a copy. But, from Hochster’s talk in [8], it seems to boil
down to the following. Look at the resolution of singularities

g:X =Y = Spec(Ron,n)

then a special case of Boutot’s result implies that ¢ is a rational resolution, i.e. |

(1): 8y — g.Ox is an isomorphism
(2): R*¢.Ox is zero for all i > 0
(3): R*g.Q% is zero for alls > 0

where (3) is always satisfied by the Grauert-Riemenschneider generalization of
the Kodeira vanishing-result. Probably, one can show Cohen-Macauleyness of
Ty, provided one has an answer to the rather vague.

Question 5.

‘What hap]:)ens to Ty, . under resolution of the central singularities? More
precisely, what is the structure of g*.@r_[rm , Where G'II'".,.. is the structure

sheaf of the Rm,n-module Ty, », over y = Sl’ec(km,n)"

If we denote Z = ¢*@qp,_ , one can prove Cohen-Macauleyness provided one
can show

(1): R'g.Z=0foralli>0
(2 Rig(ZYQQ¥)=0foralli>0

I hope to come back to these questions in a future publication.
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An Explicit Description of T3 5.

Lieven le Bruyn and Michel Van den Bergh
Research assistants of the NFWO at UIA

Let F be a field of characteristic different from 2. Consider the polynomial ring

Pm,,.=F[Xq(l)IS",.’ISn;"SlSm]

“and the so called generic n by n matrices :

The ring of m generic n by n matrices, G, ,, is the F-subalgebra of M,(Pp, )
generated by {Xj,...,X,»}. The trace ring of m generic n by n matrices, T, , is
the P-subalgebra of Mu(Pm,n) generated by Gp, ., and the elements T'r(Y) where
YeEGnn.

Herstein [1] and Formanek, Halpin and Lie [2] have given an explicit description
of the trace ring of 2 generic 2 by 2-matrices. It turned out that R 2, the center

of Ty o, is the polynomial ring
Ro 2 = F[Tr(Xy), Tr(X3), D(X1), D(X2), Tr(X1X3))

and s 5 is the free Rp o-module of rank four with generators {1, X1, X5, X1.X5}.
In {5] Small and Stafford proved that Ty has finite global dimension. We give

here a shorter proof of this result :
PROPOSITION : gldim(TMs 2) =5

PROOF : It is sufficient to prove that for any maximal ideal m in Rpp,
gldim((T2,2)m) < 5. . Consider first the case that m contains (X1 X2 — X2X1)2.
It is easy to verify that X1.X, — XoX) is a normalizing element of T2 2 and the

quotient

'11‘2,2/'11-‘2,2(X1X2 —XoX1) = F[X1, X, Tr(X4), Tr(X2)]




