Proj of Generic Matrices and Trace Rings.

by

L. Le Bruyn *), M. Van den Bergh (*), F. Van Oystaeyen
September 1984 84 - 24

(*) Research assistent of the NFWO

Department of Mathematies
University of Antwerp, U.LA.
Universiteitsplein 1

2610 Wilrijk

Belgium




Proj of Generic Matrices and Trace Rings.

L. Le Bruyn, M. Van den Bergh, F. Van Oystaeyen.
University of Antwerp, UIA, Belgium.
The two first authors are supported by an NFWO-grant.

The trace ring of generic matrices appears as the ring of global sections of the
central graded structure sheaf on the projective space of the generic matrices. In
this paper we aim to derive some consequences of this interpretation as well as
some related results. If G, is the ring of m generic n X n-matrices then we show
that the localization of Gy, n at & localizable prime of Proj(Gm,») is a strongly
graded ring and use this in the caleulation of certain class groups of the part of
degree zero of the graded structured sheaf of the graded Z,, ,-module §,, ,,, where
Z ., is the centre of G, . At this point it becomes clear that the case n = 2
allows, or better, demands a separate treatment. Indeed if » > 2 then there are
m € N such that for suitable p € Proj(Zy, ) the stalk @4(Gm,n) at p does not
contain a unit of degree one. We then show that the sheaf in degree zero, O, ,,
is never a sheaf of Azumaya algebras but over a field of characteristic zero it iS
always a sheaf of reflexive Azumaya algebras. In the final part of the paper we
present a method to describe the sheaves O,, , and the graded sheaves 0%, , over
the typical open set assicated to the ideal (X, X; — X;X,)%, 4,7 =1,...,m.

The results and observations in this paper evolved in a prematiure form in some
discussions between the authors during the meeting ” Algébre non-commutative”
at C.ILR.M. Luminy (France). We thank the organizers, Prof. G. Renault, Prof. A
Goursand as well as Prof. A. Page for their work in the organization of the meeting

and we gladly acknowledge the kind hospitality of C.I.LR.M.

Let Gm, n be the ring of m generic n X n-matrices over a field of characteristic
zero k and let Z,, , denote the center of G, .. If we give every generic matrix
degree one then G, , and Z,, , are both positively graded k-algebras. For any
positively gradéd graded ring R we let Prog(R) be the set of all graded prime ideals
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of R not containing the positive part By = @,,»¢R, equipped with the topology
induced by the Zariski topology of Spec(R). In this way we define Proj{(Gm,.) and
Proj(Zm, ).

Liet Prog?(Zm, n) be the (commutative) stuctiire sheaf of graded k-algebras defied
in the usual way, i.e. if ¢ is a homogeneous elemernit of Z,, ,, then the ring of sections
of the graded sheaf Q%m . over the open set X (¢) is precisely the graded ring

Q9(Zm,n)- There is a canonical continuots map
¢ : Um,n = Proj(Zm,n)

where Uy, p, is the open set of prime ideals P of Proj(Gm,.) such that (Z,, ).+ £
P. Let _Qf’gmm be the usual structure sheaf of the graded Z, ,-modile G, ,. In
the sequel the following observation is fundamental : the Formanek center of Gy,
is equal to (2, r)+. Consequently for every graded prime ideal p of Proj(Zm,n)
it follows that (Gm,n)p is aii Aztimaya algebra over (Zym,,n)p- Let s $um up some

consequences of this in the followinig lemima,
Lemma 1. :

(1) : For every P € Um,n, Gm,n satisfies the left and right Ore conditions with
respect to the multiplicative set C(P) associated to P.

(2) For every P € Um,n, @P{Gm,n) may be obtained as a central localization of
Gm,n at p = PN Zp, n. Moreover, the kernel functor kp associated to P is central

and it coincides with &, where p = PN Z,, ,, on Gy n-mod.
(8) The map ¢ : Uz, is — Proj(Zi u) is a homeomorphism.

Proof. (1) Localize at p = P N Zm n. Since (Gm, n)p is an Azumaya algebra over
(Zm,n)p it follows that P, = (Gm,n)p.p. Therefore, P, is the Jacobson radical
of (Gm,n)p- From this one may derive that §,, , satisfies the left and right Ore
conditions with respect to C(P) in a straightforward way.
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(2) The first part is obvious from the foregoing. Since (Gm,n)P = ((Gm,n)p)(p), it
follows from the fact that (Gm, r)p is an Azumaya algebra that localization at P is
obtained by localizing at (P), and both localizations correspond to central kernel

functors. Hence kp is central too.

(3) Easy from the foregoing.

Theorem 1.

(1) 0%, . is a sheaf of regular k-algebras.

(2) The ring of global sections I'(Proj(Zm,n), 0% ) is the trace ring of m generic
n X n-matrices, denoted by Tp,n, except if (m,n) = (2,2} then the ring of global

sections is a localization of T3 2.

Proof. (1). Proj?(Zm ) is a scheme and it can be covered by affine open sets of

the form X, (f), f homogeneous in Z,, ,. Now clearly :
P(Xi(f):ag m,n) = Q?‘(gm,n)
is a graded Azumaya algebra with center
F(X-P(f)} —Q-gzm,n) = Q?(stn)
On X4 (f), Q%(Gm,n) is an Azumaya algebra whence it follows that 1t is equal to
its trace ring which is also equal to @%(7m,n). Therefore @%(Zm,n) = @%(Ru,n)
is the center of Ty i; which is smooth on the open set of Azumaya stalks of Tis »,
by a result of M. Artin [i] and Procesi [8]: This establishes regularity of the sheaf
0% .
0%

(2) Because all stalks are Azumaya algebras the global sections are equal to

NePisi(Z ) (Giiis)p = Npeprij(Zn,.)(Tiii)p

Evidently, T, is contained in the right hand side. Furthermore, Proj(Zm,y) is

homeomorphic to the open set of Proj(Rm, ) determined by the Formanek center
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of T n, say X4 (I). So

nPGPro.f(zm,n)Qg(Tm,n) C nle+(;)Qg(Tm,n)

If (m,n) £ (2,2), then Tp, n is a graded reflexive Azumaya aIge‘Bra (this is a
theorem due to Artin and Schofield [5]). In this case

ot s 094 T) € Nz ) o) = T

whence Tp  is equal to all of the intersections mentioned in the process, finishing

the proof.

The foregoing result implies that G, . is a projéctivé Azumayé, algebra in the sense
of [10]. In order to establish that G, represents an element in the Brauer group
of Proj(Z,m,,,) we have to verify that §,, ,, is also a k.-Azumaya algebra where %,
is the localization assicated to the Gabriel filter {(Zm,n)*, » € N}. By Theorem
1, (2), the localization of G, at £y is exactly Ty, ,, except if (m,n) = (2,2) and
therefore the verification mentioned above comes down to verifying whether Tinn
is a ky-Azumaya algebra where kg is the localization associated to the open'set
U, n(T) in Prof(Z(Tm,w)) determined b‘y the Formanek ceni;‘eyr of T if (m; n) 3£

Tpe,r is finitely presented as a Z(T,, )-module the relative Azumaya properties
follow at, once from the fact that the localizations at the primes of the open sets
involved are known to be Azumaya algebras. Since some of the relative finiteness
properties of G, , may have an independent interest we include a more detailed

proof here,

Proposition 1. Let x4 be the central kernel functor defined on §i; n=mod as

above; then :

(1). k+ has finite type i.e. for every u € IN there is a J(g) such that {(Zp, .)% O
J(p), where J(u) is a finitely generated ideal such that J(u) is #4-dense in

(Zm,n)-+--




(2). Gm,n is k-finitely generated as a Z,, ,-module, i.e. there is a finitely generated

Zm,n- submodule § of G, such that G, ,,/S is a & .-torsion module.

Proof. If (m,n) 5 (2,2) or not, in any case we have that @, (Gm,») is a finite
module over its Noetherian centre Z(Ty,,,). The ideal Z(Ty )(Zn,m)+ may be
written a8 Z(Tm,n)21 + ... + Z(Tm,n)2, with z1,...,2, € (Zm,n)+. Consider the |
Zp,p-module M = Zp n21 + ...+ ZmnZr C (Zmyn)+- From T n C Qu, (Gm,n)
it follows that M is ky-dense in Z(Tim,n)(Zm,n)+ and also in (Zm,n)+. Obviously,
in (1) one may take J{u) equal to M# for every p € IN. Furthermore let 41,. .., ¥m
generate Ty, ,, as a Z(Ty, n)-module and fix N € N such that MVNy; C Gmn
for i = 1,...,m. Let § be the Z,, ,-module generated by the set {m(z)y;, s =
1,...,m,m(z) a monomial in z1,...,z, of degree N}. It is clear that T, /S is
ky-torsion as a Zp ,-module, hence Gpm /8 is k4-torsion or § is &.i-dense in

Gm,n. Consequently Gm,n is of ki -finite type as a Z,, ,- module. [

The relation between graded structure sheaves and the more common strue-
ture sheaves in degree zero will be particularly nice in case the stalks contain
homogeneous units of degree one. We are about to prove that this situation arises
when (m,n) = (m, 2) but we also give a counterexample showing how this fails
for n > 2. First we prove a general results which yields as a particular case the
property that the stalks of O%  are strongly graded rings even if they need not

contain units of degree one. We need :

Lemma. 2. Let A be a positively graded ring and let P be a localizable prime ideal
not containing A, such that A/P is a gr-Goldie ring (in the sense of [7]). Then
A satisfies the Ore conditions with respect to the set A(G(P)) of homogeneous

elements in A which are regular modulo P.

Proof. If Ais Noetherian then the result is known, cf. Theorem 1.1.14 in [7]. In this
more general situation the proof has to be modified somewhat. By Corollary 1.1.7.
of [7], a prime positively graded gr-Goldie ring admits a gr-simple gr-Artinian
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graded ring of fractions (in particular it is also a Goldie ring in the ungraded
sense), so we are in a situation where the graded version of Goldie’s theorem
does hold. Consequently, the graded essential left (or right) ideals of A/P contain
homogeneous regular elements of A/P. If a € A and as = 0 for some s €
h(G(P)) then a;s = 0 for every homogeneous part a; of a. By the localizability
of P &;a; =0 for some 8’; € G(P) and also (8’;)xa; = 0 for every homogeneous
component (s’;)s of 8’;. Since Y, A(s’;)x is left essential modulo P and graded
too there must be an s € A((P)) such that s”a; = 0. Now let 41 be the highest
degree appearing in the decomposition of a then &/, still satisfies s a = 0 but the
decomposition of s a is shorter than the decomposition of a. Repetition of the
argument leads to sf,,..., 67, € hG(P) such that 7...s7,a = 0, hence & a=0
for some ¢’ € A((P)). Let us now check the least obvious part of the left Ore
conditions. Pick & € A((P)),r € A and look at (As : r). Write r = + ...+ 1,
with deg(r1) < ... < deg(ry), and consider L = N%_,(A4s : r;) in (As : r). The
assumptions on of P entails that L is in the Gabriel filter of the localization at P
and therefore L £ anna(Z) for every T € A/P if & £ 0. Take ¥ € A/P, ¥ 3£ 0.
From the foregoing remark it follows that we can find some \ € (L : y) in A such
that \ ¢ ann (7).

Hence Ay € L and Ay 5% 0, but {this means that the image 7 of L in A/P is an
essential left ideal because L intersects every (A/P)7 nontrivially if 7 54 0. Since
L is also graded it follows that L contains a regular homogeneous element of A/P,
i.e. LNA(G(P)) £ 0. If s' € LN h(G(P)), then &'r = as for some a € A. The right

Ore conditions may be verified in exactly the same way.

Corollary 1. If we form the graded ring of fractions of A with respect to A(G(P)),
say @p(A) then Q% (A)P is an ideal of Q%(A4) and actually, Q9(A) is a gr-local ring
with gr- maximal ideal @%({P): This follows in a straightforward way from the Ore

conditions with respect to A(G(P)) just as in the ungraded case.

Proposition 2. Let A be a positively graded ring generated by its part of degree
1. Let P be a localizable graded prime ideal not containing A, and such that AlP
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is a gr-Goldie ring then Q% (A) is strongly graded (recall that R is strongly graded
by Z iff RyR, = R,, for all 0,7 € Z).

Proof. Write B for Q%(A). By the lemma B is a gr-local ring with BP as gr-
maximal ideal. Since B/BP = Q9(A/P) is gr- simple gr-Artinian and since it
contains elements of degree 1 (4; £ P becatse A, ¢ P and A is generated over
Ap by A;) the structure theorem for these rings (cf. Theorem 1.5.8., Corollary
1.4.3. of [7]), entails that B/BP is strongly graded.

Put I = B_; By. From (B/BP)_1(B/BP); = (B/BP) it follows that 1 +(BP)y =
By. It is clear that By is "local” with maximal ideal (BP), since B is gr-local with
gr-maximal ideal P. Note that By(BP)y is semisimple Artinian because B/BP is
gr-simple gr-Artinian. Therefore, if L’ is a maximal left ideal containing I then

L’ D I+ (BP)y or I’ = By. Consequently { = By and B is strongly graded.

Corollary 2. For every P € Proj(Gm,n) with P D (Zup,n)+ the stalk at P of
5ggmm is a strongly graded ring.

Proof. By Lemma 1 (2) P is a localizable prime ideal and it is clear that G n/P
is a gr-Goldie ring because for a P.I ring this is obvious. [1

Let us write 0F, |, for 0% = and O,, , for its part of degree zero and let Upm,»(T)
be the open set of Proj(Z(Tm,s)) determined by the Formanek center of Ty, .
The results in the first part of this paper may then be reinterpretéd as :

Qm,n =~ Q'Tm,h ] I]m,n(T)

an,n o= Qg’m,n | U-'rﬁ,n(T)

(isomorphisms of ringed spaces). Furthermore, each graded prime in Proj(Z o, n)
lies under a unique localisable prime graded ideal of §y,,.. Hence OF, , is a

strongly graded sheaf over Oy, , and we can write 0%, , =~ 37 7 Q"X™ for

some invertible O,, ,-bimodule. One can show that @ is the structure sheaf of
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the invertible graded bimodule G, ,, (1). One can ask whether @ is necessarily
locally trivial or equivalently, is every stalk of Qﬁnn of the form B[X,X 1 ¢]
with deg X =1 and ¢ an automorphism of B. This will be the case if (m,n) =
(m,2) but not in general. On the other hand we may derive that O, ,, is a sheaf
of reflexive Azumaya algebras (but not one of Azumaya algebras) for every m,n.
In the study of the properties of @ the class group of O, appears in a very
natural way, actually the class of ¢ generates the class group of O - Let us
recall here the definition of the central class group and the normal class group
of an order; the sheaf theoretic equivalents of these are easily written down. If
A is a maximal R-order in a central dsimple algebra ¥, such that R is a Krull
domain, then a divisorial A-ideal is a divisorial R-lattice (in the classical sense)
which is also a A-bimodule. On the set D(A) of divisorial A-ideals there exists a
multiplication given by (A.B) = (AB)** where ()* denotes the R-dual, actually
(AB)*™* = ((AB : A) : A) where (X : A) stands for {z € £,2X C A}. The set D(A)
equipped with this multiplication is isomo‘rphié to the free abelian group generated
by the set of height one prime ideals of A.

Define the central class group C'CI{A) of A to be the abelian group D(A)/P,(A)
where Po(A) = {Au,u € K*} where K = Z(%); the normalizing class group
is D(A)/P,(A) where P,(A) = {Az,z € £,Az = zA} . We do not need to
develop much theory about these class groups here because the facts we use are
either straightforward generalizations of the commutative case or else imediate

consequences of (the sheaf version of) the definition.

Proposition 3. a. If (m,n) % (2,2) then NCI(Q,, ,,) and CCIHQ,, ) are both
equal to Z.

b. If (m,n) = (2,2) then CCUQy;, ;;) = Z/AZ.

The generator of CCl{Qy; ;) is the class of Q.

Proof. If (m,n) £ (2,2) then Ty is a reflexive Azumaya algebra by a result
usually attributed to M. Artin and A. Schofield cf. [5], and CCUTy, ) = 1. A

straightforward modification (cf. Hartshorne [4], p. 147 exercise 6.3.) of a com-
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mutative argument yields the exactness of :
0 Z — ClUO,, ) = COUTrm ) = 0

where Cl may be taken to the NClor CCI. Hence, NCI(0Q,, ) = CCHO,. ) the
exactness of the sequence leads to the statement in a.
If (m,n) = (2,2) then, exactly as in the commutative case, we obtain an exact

diagram :
0
!
/A
!
¢
Z — COOr,,) ™ CCli0yy — 0
!

CCHTyz)

!
0
where ¢ maps 1 to the structure sheaf of the ideal (X1 Xz — X2X;) over Or, , f.

Proposition 6.5. p. 133 in [4]). Furthermore, CCI(T5 o) = %/2% where (X, X5 —
X3 X)) represents a transversal of the unit element 1. Because (X; X2 — XoX1)?
is central in 7% 2; we obtain CCUOry, ;) =~ (% + Za)/(2a — 4); where ¢(1) = a.

It follows that COUOT,,)/$(%) = (% + Za)/(2a — 4,a) hence it is isomor-
phic to Z/4%. From the cyclicity of the class group involved and from 0f, , ~
> ne® O X", it follows that the class of @ generates the class group CCI(O
£

m,n)'

As pointed out earlier; we may complete these results in the case (m;2) by es-
tablishing that € is locally trivial then.

Theorem 2. Let P be a graded prime ideal of Gm,2 not containing (Z,0)+;

then the homogeneous ring of fractions @%(§,, 2) contains a homogeneous unit of
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degree one, i.e. Q5(Gm,2) = Blz1, 27" for some z; with deg z; = 1 which need
not commute with B = (Q@%(Gm,2)),-

Proof. By Theorem 1 we know that Q%(Gm,2) = Q%:/(Tm,2) for some graded
prime ideal P' of Ty, ;2 mot containing (Z(Ty,.2)) +v. We have to establish the exis-
tence of a homogeneous regular element of degree one in Ty 2/P'. Clearly, we
may assume that the traces T(X3),...,T(X,,) of the generating 2 X 2 matrices
are contained in P’ because otherwise there is nothing to prove. Moreover, we may
also assume all D(X?); ¢ = 1;,...,m; to be in P because otherwise X9 mod P! is a
regular element in T}, o/ P, again proving the claim. Here X¢ = X; ~ 1Ty (X5).
Look at a linear combination ¥ == X% ;2;X?¢. Then Y is an element of T},  with
trace zero, whence D(Y) = Y2 = Dicy o (X X4+ X2X7) +E:’f_=1 (X2 =
3 o0 T(XIXS) + Tty DX,

Therefore, in Ty,,2/P' we get : DY) = 3. _ j ooy T(X3X 7). Whenever some
T(X?X$) ¢ P', X2+ X9 is the required element. On the other hand, the assump-
tion that {T(X;), D(X¢), T(X3X9),i=1,...,m,j = 1,...,m} is contained in P*

leads to (Z(Tw,2))

+ C P, a contradiction. [

The above situation is exceptional for # = 2 in general it fails as the following

lemma learns.

Lemma 3. If n > 2 and m is large enough then there are P € Proj(Zm, ) such
that @%(Gm,n) is not of the form R[z,z~'] with deg z = 1 and R the part of

degree zero.
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Proof. Take m > 2n — 2. Let A,, be the following graded n X n-matrix ring :

BX?X7?] Xk[X?, XY e Xk[X2,X?
X—1E[X2, X~2]
kX2, X%

X-ig[x2, x-2]

Define ¢ : Gpp,n — Ay, by X; — Xejipr for 1 <4 < n—1, and X; —
Xejr1,1 for n < 7 < 2n — 2, with ¥(X,)) arbitrary for v > 2n — 2. It is
readily verified that ¥(§,, n)Z(A,) = A,, hence ¥ is a central extension of
rings. Since ¥ is obviously graded too; we find that P = KerW is a graded
prime ideal of Gy 5; P € Proj(§m;») and P lies over a p € Proj(Zin,»)- From
QUG m,n) [pQU Gmin) = Hyn and the fact that A; cannot contain a regular
element of degree one, it follows that Q%(Grm,n) = @b (Gm,x) is not of the form

Rlz,z7 | withdeg z = 1. [J

In general we know that 09, ,, is a sheaf of graded Azumaya algebras and one
may wonder whether O,, ,, has similar nice properties. Even in the case n = 2
we see that the parts of degree zero of the Azumaya algebras Q%(§m, ) With
P € Up,n need not be Azumaya because the invertible element of degree one
constructed before need not be central, in fact it never is! Since Q%(Gum, r)
is strongly graded it determines an automorphism of the centre of its parts of
degree zero (cf. [6]), the fact whether the Azumaya property descends to degree
zero is related to properties of this automorphism e.g. to it being trivial. The
latter kind of property would contradict the generic nature of Gy, hence the

following result cannot come as a big surprise :
Lemma 4: Oy 5 is never a sheaf of Azumaya algebras (of course : n > 1)

Proof. In the philosophy of the remarks preceeding this lemma we look for a

?bad” specialization of G . The role of this villain is played by the following




kX", X XEX™ X" ... Xmlpxn Xn
kX", X"

X—'"""'lk[Xn,X""'] X—n+-2k[Xn’X—n] k[X"‘,X_n]

Extending on the proof of a similar fact in [8] we may actually show that S, is
generated by two elements of degree one as an algebra over its centre. Suppose
that g, A € (S,); are the algebra generators for S,,. Define ¥ : Gmn — S by
¥(X,) = g, ¥(X2) = h and ¥(X;) is arbitrary for ¢ > 2. It is fairly obvious
that ¥ is a central extension which is a graded map of degree zero. Therefore
P = KerV¥ is in Uy, ,, because the centre of S, is not. trivially graded. Put
B = Q%(Gm,n) = Q% Gm,n, where p = P Z,, .. We have : B/BP ~ §,,
and B,/(BP), = (Sp)o = kl,. Knowing that an epimorphic image of an
Azumaya algebra is again an Azumaya algebra of the same p.i. degree, we have

to conclude that B, cannot be an Azumaya algebra. []

Remark. We believe that a gr-central simple algebra A which is generated
by A; over A, may in fact be generated by two elements of degree one as an
algebra over its centre. If this claim holds then we can take m = 2 in Lemma
3, but as yet we have no proof available.

The specific properties of 0%, , and G, ,, invite an explicit description of the
local structure of these. Before we deal with this description, we derive an
important general property. We have seen that O, is certainly not a sheaf
of Azumaya algebras. On the other hand Q,, ,, is not too bad because it is the
part of degree zero of a strongly graded Azumaya Algebra and it follows from
[6] that O,, , is a tame order, in particular it is divisorial. From this we want

to arrive at the fact that O,, ,, is a reflexive Azumaya Algebra, we need the

following general lemma :

Lemma 5: Consider a scheme § and a quasicoherent sheaf of commutative
Z-graded algebras Oy such that (O4); = Og:

a. Let ¢ : M - N be a map of graded quasicoherent O A- modules and
suppose that N is coherent over O4. The set U = {z € 8§, M,/m, M, —
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Nz [mqo Ny 1 surjective } is open.

b. Let p : T — § be a morphism of schemes. Then p* M — p* N is surjective if
and only if p(T) C U.

Proof. a. If # € U then ¢,(M;) +m, N, = N,. Now m,Q, is contained in the
graded Jacobson radical of (Q4), and since N, is finitely generated over (CA)z
we may apply Nakayama’s lemma and conclude that ¢,(M,) = M (conversely,
the surjectivity of ¢, would entail # € U). The coherence condition on N
entails that W /V is generated by a finite number of (graded) global sections
£y -+ .sdn. Choose sy,...,8, € h(M,) such that ¢,(s;) = t;,4 =1,...,n. These
sections live on an open subset V! C V and ¢y+(s;/V’) coincides with #; on
some open set U; C V. Put U, = N}_; U;. Clearly ¢y, (s:/U,) = ¢;/U, and
consequently ¢y, : MfU, — N/U, is surjective. For every x we have found
an open neighbourhood U, of z such that for every y € U, ¢4 : My — N, is

surjective, hence U is open.
b. Consider z' € T and p(z'} = z. We then have :

(p* -M)a;" == Mz@(gs)mﬁ@*”)m* = Nz ®(—Q3)x (QT)m’

If k, resp. k', is the residue field of z, resp. «', then (p* M), Qi k' =~ M, R(04)s
E@x k', and (p° Mo @ ¥ = N, Q0. b Qx ¥

If we assume that (p* M), — (p* N), is surjective then (p* M), @& — (p* N). ®
k' is surjective. Since &'/k is faithfully flat the map M, ®0,). & = M= ®(0,).
k is surjective i.e. # € U and also we obtain that M, — N, is surjective.
Jonversely, it is clear that the surjectivity of M, — N, yields surjectivity of

(p* M)z = (p*N),. O
Theorem 3: Suppose that char(k) = 0: Then Oy ; is a refexive Azumaya
algebra.

Proof. A simple descent argument allows us to assume that & is algebraically
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closed. Let W C Proj(Z,,m) be the set of closed points where Oyn,n does not
have an Azumaya stalk. A closed point P in Pro 7(Zm,n corresponds to a graded
map ¢ : Gm,n — A, where A is a graded matrix algebra over kXY, X7
and Q9(4(Gm,n)) = A,v € N. Clearly, W is the disjoint union of sets W;;
corresponding to the different graded isomorphism classes A(? of graded matrix
algebras. Let Sch/k be the category of k-schemes and consider the functor
F : Schik — sets defined by sending a k-scheme p : § — k to the set
{ graded ring maps ¢ : p*(Gm,n) = 5°(A) such that (p" (G ~ 0.}

Step 1. F is representable by the k-scheme W' = (4;)™ — {(0,...,0)}. We
have to establish that for each § -» k we have : (¥)Homy (S, W') o~ F(S). It is
clear that the presheaf defined by associating F(U)toU C §is in fact a sheaf,
therefore we only have to verify (+) for affine S, (see E.G.A. [], p. 106), say
§ = Spec(B). The B-points of W' correspond to (a4, ..., 6m) € A, @B not all
equal to zero and such an m-tuple corresponds to a B-map ¢ : B Qs Gmyn —
B @4, A, such that ¢(B Q4 Gm,n) 7 0. This proves the claim.

We now define the subfunctor G C F,5ch/k — Sets which associate to a
k-scheme p : S — k the set { graded ring mapsé : P*(Gm,n) -+ p*(4), such
that (0" (Gim,n)) Z(0* (4) = p* (4)}.

Step 2. The functor & is representable by an open subscheme V' of W',

Let g : W’ —» k be the structure map and let ¢, ¢, : *(Gm,n) = q*(4) be
the canomnical morphism corresponding to the identity map W — W'. If ¢ :
§ — W' is a map of k-schemes then the element of G(S) corresponding to ¢ is :
t*(9e) : (98)* (G, ) — (gt)* (A). Liet us now counsider M = Gel(q" (Gm,n)) Z(q* (4))
and N = g*(A). Then it is clear that the M and N are graded modules
over ¢*(Z(A)) whilst N is of finite type. Let V' be the open set such that
Mz = N, (see Lemma 5.2.). We have to verify that #(8) ¢ V' if and only
if £*(c)((98)* (Gm,n) Z((gt)* (A)) = (gt)* (4). The functoriality of #* reduces the
problem to proving that £*(M) = t*(N) if and only if #(S) C V. The latter is
just Lemma 5.b., so the claim follows.
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Next we define a natural transformation n: G — H om(—, Proj(Z,, ). As in
Step 1. we may define 55 for affine § first and extend it to arbitrary k-schemes
in the obvious way. So let p : Spec(B) — Spec(k) be any affine k-scheme and
let ¢ € G(B). Associated to this is a graded central extension ¢:B Rt Gm,n —
B @ A, hence also a graded map B Q. Zm,n = B Qr Z(A). By the definition
of A we have that B ®; Z(A) ~ B[X*,X""].

Now a prime ideal of B corresponds to a graded prime ideal of B[X¥, XV,
in the obvious way, and the latter extends to a graded prime ideal of B @ A
because this is an Azumaya algebra over B ®r Z(A). The obtained graded
prime ideal of B ®j, A has an inverse image under 5& which is again a graded
prime ideal of B ®j gm,n because ¢ is a graded central extension. Finally
we ook at the restriction of this graded prime ideal to B Qr Zm,n and we
see that localization at this prime yields an Azumaya algebra, hence it has
to be of maximal p.i. degree in B ®;, Zm,n- This explains how we arrive at a
map Spec(B) -+ Proj(B ®k Zm,) Which represents a certain Spec(B)-point
of Proj(Zm,.), say nz(q). All of this means that there /is a map of k-schemes
9.V Proy’(Zm,n) which is of finite type since V! = k is of finite type and V!
is N*oetherian, ef. [3] p. 305. The image of the closed poinﬁs of Vin Prog(Zmn)
is some VV,

Let W" be the image of V' in Proj(Zp, ). Then W" is a constructible set, cf.
[4]. We aim to show that the closure W7 has codimension larger than two ! This
would entail that the height one primes of Proj(Zm,y) yield Azumaya stalks for
Q 1, n; Dote that it will then also follow that height one primes of Z(O

m,n Yield

) O Will be

Azumaya stalks for Q,, ,, (by localization of course) and hence O
a reflexive Azumaya algebra because we already know that it is divisorial. By
definition, W” is a disjoint union of locally closed sets W;, 4 = 1,...,n. Since
W'—’ C U;W; it suffices to establish that each of the W; has eodimension bigger
than two. Let V; be the inverse image of W; in V. We then obtain a surjective
map 0; : V; — W;. That this is indeed an algebraic map is a consequence of the
Y,z

results in step 1 and step 2. Two maps G, AU} where AU) is in some
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graded isomorphism class of the possible gradations on M, (k[X?, X~ 1) (note
that there is a finite number of such isomorphism classes (aiso the possible »
are bounded by n, cf. [7]), represent the same point of Proj(Zp ) if there is an
element 4 of Auff(A) such that ¥, = 4,. This states thai the closed fibres of
8; are all isomorphic to Autf{A). The dimension of the latier algebraic group

may be calé¢ulated.

Step 3. Calculation of the dimension of Autf(A) and codim W;. First one
verifies that every 4 € Auta,—4,(A;) extends to a graded automorphism of
A over k. Indeed, A; represents an invertible A,- bimodule since A is strongly
graded, hence Aut A,—A, (A1) = Z(A,)*. Let 7’ be left multiplication by some
xez (Ao)* , then we extend 7 to a Ik-al'gebra aufomorphism of A By pui;’ﬁing
Ya—1) = a_y 2~ for all a1 € A.; and 4 is defined on A1® ™ in the obvious
way, i.e. 7(aj.....a,) = hayaz...\a,, for ay,. .18y € Ay, while on AD" it is
given by (b1, ..., bp) = b, N7 ... b, N1 forby, ..., b, € A_;. Then one easily

verifies the exactness of the following sequence :
1 — Auta,--4,(A1) = Autl(A) — Auty(4,) = F — 1

where F' is a finite group. Indeed, if A, = M, (k) D ... ® M, (k) then the
subgroup of Auty(A,) consisting of those k-algebra automorphisms of A, which
fix the blocks globally has finite index. Sitice sich a 7 i§ infer iii A, it i§
certainly in the inisge of Aut](A4), herice the eokeriel F is fifiite 58 clainied. The
dimension of Autr(4,) is equal to the dimension of the deseribed subgroup of
finite index and the latter obviously has dimension Zf=] (t2 — 1). On the other
hand dim Z (Ao)* = s because Z(A)* = k* D ... D k*, s-times.Consequently,
the dimension formula yields :
dim(Autf(A)) = D (12 — 1)+ s = Z £2.
=1 i=1

A map Gun b4 s completely determined by the images

—

6(X1),...,6(Xm) € A;. of the generic matrices Xi,..;Xm- Since we have
16




Vi C V and by Step 1, V is an open k-subscheme of Agm) , we obtain
dimV; <m dim A =m)_, tito(s), Where o is some cyclic permutation
of {1,...,8}, of [7]. Since 0; : V; — W; has fibres isomorphic to Autf(A), we

derive from the foregoing relations that :

dim VV; <m i tii,,(,-) — Zs: t?

g=1 g==1

On the other hand dim  Proj(Zm,») = mn? — n?, so we are looking to arrive

at the relation :
& & )
mn® —n? —m Z tito(s) + Z t2 > 2. (%%)
f=1 i=1

Since

3 bty > (Zt"‘)“g(‘}jﬁ g)E = fjt?

t=1 i=1 i=1 t=1

we see that the left hand side of (++) is at least (m — 1)(n? — i1 t2). However

n —ZtQM(Zt,) -—L 3ty

g=] t=1 15y

we also have :

and the latier is larger than 2 if s is at least two. Since m > 2, this proves the
relation (++) if s is at least two. Now s muist be at least two if we are considering

non-Azumaya stalks in degree zero, so the theorem is proved.

Now we present here a method to describe the sheaves 0%, . and O,, 5 over the
typical open set associated to A;; = (X;X 7 — X;X;)?. The sections over this
open set are the localization of Gm,o at the central homogeneous polynomnial
A;; resp. its part of degree zero in case we consider O,,.2; this coincides
with the localization of the trace ring T2 at A; ;. From Procesi [9] we recall
that Tm,2 = T?n [Tr(Xl), .. ,Tr(Xm)] where T?;b is the kwsubaigehra of T;n,n
generated by the elements X7 = X; —~ }7T¥(X;), 4 = 1,...,m. Clearly, we
have A;j = (X?X? - X9X?)? s0 we write X = X0,V = X7 for notational
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simplicity, also we put A = A; j- First we write the generic division algebra

Dy2 = Q(Gm,2) as a quaternion algebra over its centre K.

(A
Dm,2 =

Lemma 6.
DX ))

1,2

Proof. We calculate :

X(XY -YX)= (XY - Y X)X

X? = D(X)

(XY -YX)? =T(XY)? - 4D(X)D(Y) = A.
We claim that ¥ belongs to

Kn2 1@ KnoX DKpno(XY Y X)@ Km 2 X(XY — Y X)

Il

This is clear from X(XY ~ YX) = 2D(X)Y — T(XY)X and ¥
55y (T(XY)X + X (XY - YX)). O

We put By 2 = Z(Tp,2), then :

Proposition 4. The ring of sections of ang over X (A) is Qg(Rm,g)l (25
QgA(Rm,2)X GB Qi(Rmﬂ)Y @ ng (Rm2)XY

Proof. Obviously {1,X,¥,XY} is Q%(Rm,2)-independent. The module
generated by {I,X,Y,XY} over Q4 (R,, 2 is an algebra A because YX =
T(XY)--XY,X? = D(X),Y? = D(Y). Since T(X;) € Ry, 2 for every 7 it
suffices to show that every matrix of trace zero X9 is in A. Now by a result of [9],
§53(X,Y,X9) € Rm2 and 153(X,7,XV) = (XY — YX)X? + T(XXO)Y —
TYXNX,ie X? = L(L(XY -YX)S$:(X,7, X+ T(XXY -TYXNX),
and this finishes the proof. Furthermore, we denote by A?¢, the graded localiza-

tion of G, just as well at the nonzero central homogeneous elements. []

It is clear that DY, is an Azumaya algebra over K?¢, which is the graded
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localization of Z,, 5 (or Ry, 2 at the set of homogeneous elements different from

Zero).
Lemma. A%, Qg, K%, [VA] ~ My(K,[vA])0,1).

Proof. The isomorphism is determined by :

(1 0)
1— ,
01

X (D((;() ;)

XY -YX - (‘/OZ *—-\O/Z)
X(XY -YX)— (D (XO) VA ":)_/5)

The morphism preserves degrees in the (0, 1)-gradation on M, (K8,[VA]). O

This presents a method to visualize I‘(X;‘_(A,anﬂ) as a graded subring of
M2(K %, [VA](0,1). The image of Y is easy to compute :

p 0 2V i v P — 7 AN\
2DX)Y =TXY)X+X(XY-YX) = (D (X)(T(XY) + VA T(XY; \/Z)

wherice it follows that Y miaps to :

1’(’ 0 (T(XY) - \/’K)/D(X‘))

\T(XY) + VA 0
and therefore :
| 1{T(XY)+ VA 0 )
XY - i
- 2( 0 T(XY) - VA

Now let Q% (RBm,2)[V'A] be the {graded) integral closure of the ring Q7,.2(Rm,2)
in K¢,(v/A), then :

(+44)QA (T2 Q1 (Rrn.2) QA( B, 2[VA])
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is a graded Azumaya Algebra in Mp(K 9,[v/A])(0, 1). Since Q4 (R, 2) and hence
Q4 (B 2)[VA], is a regular domain we know that (#%%) is the graded endomor-

phism ring of a graded projective module. Actually, more is true :

Theorem 4. The ring (*#+) is the graded endomorphism ring of a graded free
QA (R 2)[VA]-module.

Proof. A general element of () is if the form :

(X + XQ\/E)(;' (D + (X3 + X4'\/£)(D(.X) D 1

(Y 4 VSR 0 5hTEY)-vA)
+(X5+X6\/A)(T(Xy) T+ VE D(X) . )

ey e 0
+HXr + Xs\/A)(T(XY()) va T(XY) + \/K) |

F @
B (I—I I) ’
all X; € Q4 (R 2), where
F = (X1 + X7T(XY) - XsA) + (X2 — X7 + X T(XY)VA
= (X1 + X7 T(XY )+ X A) + (X2 + X7 + X T(XY)VA
G = (X3 + plgg(XsT(XY) - XpA)) + (X4 + By X T(XY) — Xs)WA
H = DXN(Xs + 5y (X5 T(XY )+ X A))+ (X + 55 (X6 T(XY )~ X5))V/A}

In order to prove the theorem it will be sufficient to find two idempotents in

the tensorproduct (+#+). We claim that ((1, 9) and (3 %) are in (xxx).

For the first, we have to solve the set of equations :

X; + X7 T(XY) — XsA = 1
X1 + X7T(XY) +XgA =20

Xy — X7 + X T(XY) = 0
X 4+ X7 +X8T(X‘Y) ={
20




This yields Xz = —--z—, X7=0,Xy=-1land X, = ﬂ‘%ﬂ , and these belong
to Q‘gﬁ(ﬂm’z.

A similar argument (by symmetry} yields that the second idempotent is also in
(##+). Therefore

(#%4) ~ END ) (P Q)
Qfs(Rmﬂ)[\/E\]

with P and @ graded projective fractional ideals. Since Q% (B 2)[VA] is fac-
torial both P and @ are isomorphic to Q% (Rum,2)[V'A], hence (#+) is isomorphic
as a graded ring to M>(Q% (Rm,2)[VA])(0, 1).
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