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0.Introduction.

Throughout this note, k£ will denote a field of characteristic zero. The ring of
m generic n X n-matrices,§m,n, is the quotient of the free k-algebra on m variables
modulo the ideal generated by the elements which are polynomial identities for

n X n-matrices in m variables.

Gm,n is an Ore domain with classical division ring of quotients A, , which
is of dimension n? over its center. The sub k-algebra T, of Ap n generated
by Gm,n and the traces of its elements is called the trace ring of m generic
n X n-matrices. Whereas §m, n has rather odd ringtheoretical properties, Tp,rn is
Noetherian,affine and finite as a module over its center Ry n. Further, Artin and
Schofield (unpublished) showed that Tp, » is 2 maximal order and as a consequence
of their proof one gets that T, , is a unique factorization ring (i.e. all height one

primes are cyclic).

So, trace rings of generic matrices have many properties in common with

commutative polynomial rings.This observation motivates the following question

Question : Determine all m,n € IN such that the global dimension of Tp,n

is finite.

The first (noncommutative) result is due to L.Small and J.T.Stafford [SMALL
STAFFORD].They proved that the trace ring of 2 generic 2 X 2-matrices is an

iterated Ore-extension having global dimension 5.

In [LE BRUYN],the author showed that the trace ring of m generic 2 X 2-
matrices has finite global dimension if and only if m < 3. So, our present

knoWledge can be visualised by




4 + ? 2 7 2
3 + 0?2 7 1
2 + + + - -
1| + + + + +.
1 2 3 4 5.

These results led to some fairly optimistic conjectures ranging from gldim(T 3) is
finite to gldim(T,,,») < co if and only if m < n? —1 for all m,n > 2.

However, thinking of trace rings as being fixed ring under an action of GL,(k),
it seems unlikely that for m > 3 any Tp, , will be regular. Intuitively speaking
the singularity in the origin of the central variety becomes so bad that it cannot
be resolved by a central p.i.-algebra of the appropiate p.i.-degree.

In this note we like to present an algorith to test (at least in principle) whether
the trace ring of m generic n X n- matrices is regular. This test is based on the fact
that the Poincaré series of a Noetherian positively graded regular ring whose part
of degree zero is k is a pure inverse. Combining Formanek’s computation of the
Poincaré series of Ry, a0d Tn,n ,[JFORMANEK], with Procesi’s proof that Ry, »

‘is an affine k-algebra one can compute this rational expression. As an illustration

of this general method we prove that 7, 3 has infinite global dimension.




1. A general strategy .

In this section we will outline an algorithm to find (at least in principle) the
rational expression of the Poincaré series for the trace ring of m generic n X n-
matrices, Ty, ., and for its center R, . This method also enables us to test trace

rings of generic matrices for regularity (i.e. having finite global dimension).
1.1. Formanek’s description of the Poincaré series.

It is known that R, . (resp. Tm,») are fixed rings of an action of GL,(k) on
R (resp. on M,(R)), where R = k[t;;();1 < 1,7 < n;1 < I < m]. Using this
fact, Formanek applied the general theory developed by H. Weyl and 1. Schur to

obtain formulas for the Poincaré series

P(Rm,n; Y15 +eey ym) and 'D(Tm,n; Y10y ym)

of the center (resp. trace ring) in a multigradation, i.e. by giving each indeterminate
ti;({) € R the degree (0,...,0,1,0,...,0) with 1 on spot I. To describe the results of
[FORMANEK] we must recall first some basic definitions and results on the ring

of symmetric functions.

A degree sequence of lenght n is a sequence
a=(ay,..., o)
of non-negative integers. The total degree of « is
| l=»oz1 + ...+ oy,
A partition of lenght < n is a degree sequence A = (\y, ..., \,) satisfying

M
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For any partition A = (X\1,...,An) of lenght < n we define the element in
Zz1, ..., zn]

ax = ax(21, - Ta) = Y (s8gn(m)) Tyl Taln)
rES,

where S, is the group of all permutations on n letters.

In the special case that
§=(n-1,n-2,..,1,0)

we get

as = ][ (2:~2;)
i<j
In Z[zy,...,2n] , s+ is divisible by as and the quotient sy = as4x/as is in-
variant under the natural action of S,, on Z[z,, ..., z,,], i.e. by permuting the in-
determinates. 8y = 85(21,---s Zr) is said to be the Schur function associated to the
partition of lenght < n, A.
The set

{s» | a partition of lenght < n}

forms a Z-basis for A,, , the ring of symmetric functions in » variables i.e. the ring
of invariants of Z[zy, ..., z,] under action of §,,.
One can define an inner product <,> on A, such that the sy form an

ortonormal basis and it can be extended to

— -1 —-118
Fn = Z[Z1,$1 10y Tny Ty ] -

Formanek [FORMANEK] defines this inproduct intrinsically in the following way.

Let

(""),t : Z[zh xi_l 2 %) z;I] - Z[zl; x;la sy Ty 2;1]

be the involution defined by (z;)” = z7'. Now, define the linear functional

/ /AL T M T ) R/
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by f 1=1and f .28 = 01if oy, ..., @, are not all zero. For any a,b € T',, the

inproduct is defined to be

1 * *
< a,b >= ;{,/.a(b) .a.g;.(a,;)

Now consider the finite dimensional GL,{k) X G Ly (k)- module My (k) @ U,
where Uy, is the standard G Ly, (k)-module of dimension m and the action of GLy (k)
on M,(k) is given by conjugation. Then it is clear that My(k) @ Uy, is rational as
a G Ly (k)-module and polynomial as a G Ly (k)- module.

This action of GL,(k) X GL.,(k) extends in the natural way to the symmetric

algebra of M, (k) ® U, which is just
R = kt;;(1;1 < 4,5 < ;1 <1< m
By giving each of the generators ¢;;(I) degree one, R is a positively graded k-algebra

R=kDQRIOR D ...

where each homogeneous part R; is a finite dimensional GLn (k) X G Ly (k)-module
, rational in the first factor and polynomial in the second.Therefore the Poincaré

series of R as a GLy,(k) X GLn(k)-module is
P(R;zs, 27t y;) = 1+ x(Ry) + x(Re) + ...

where ¥ is the isomorphism between the Grothendieck ring M od(n, m) of all finite
dimensional GL,,(k) X GLy(k)-modules which are rational in the first factor and

polynomial in the second, and

—1 —1 S, XS
Z[z1,20 ey Ty Ty YLy ooy Ym] 0™

see for example [FORMANEK lemma 11].
Therefore, P(R) is a formal power series over I', @ Ay It is fairly easy to see
that x(R:) is the ¢-th complete symmetric function of
{257 g |1 < 4,5 < m;1 < k < m}
| 5




i.e. the coefficient of ¢ in the power series expansion of

H (1- :c,-.z}'l.yk.t)"l
L5,k

Further, we have
]:[(1 — z;.z}'l.yk)"l = Z sx(z,-.z;-"l).sx(yk)
) N
where the sum is taken over all partitions \ of lenght < min(n,m). Therefore

P(R) = Z ox(z:.27").on(y)
A

x(R:) = Z sx(2:.27").ox(yx)
=1

Here, s)\(z,-.:chl) is the image of sx(z;;;1 < 4,7 < n) under the homomorphism

Z[zij; 1 ._<_ i)j S n] — Z[zl’ -'Cfl, ceey Ly, z;z_l

sending z;; to :c,-.:c;'l.
Now, for any GLn(k) X GLn(k)-module of the form N ® M where N is a
rational GLy,(k)-module and M is a polynomial G Ly,(k)-module we have :

X(N @ M) ®)) = y(NCE®) @ M) =< xu(N),1 > Xm(M)

where X, is the isomorphism between the Grothendieck ring of all finite dimen-

sional rational GL,(k)-modules and I',, and x,, the natural isomorphisms between

the Grothendieck ring of all finite dimensional polynomial G Ly, (k)-modules and.

Am and the inproduct <,> is taken in Z[zy, 27, ..., 2,, 271]5".

Theorem 1 : [FORMANEK,Theorem 12]

P(Rm,n;yly coey ym) = Z < 8)\(2};.36;:1), 1> 'sk(yl)
x B
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where ) varies over all partitions of lenght < min(n,m).

Similarly, Formanek computes the Poincaré series of the trace ring T, as
fixed ring of M,(R) under action of GLy(k).

Theorem 2 : [FORMANEK,Theorem 12]

P(Tmyns 915 s Ym) = Z < a5 (z;.371), s1)(zi-27 1) > -8x(¥x)
N

where ) varies over all partitions of lenght < min(n,m) and (1) = (1,...,1) , i.e.

s(y(zsa;t) = 2 :z:,-.:c;-'1 .

1.2. Towards a rational expression.

It is known [PROCESI] that Ry . and T, .. are both affine algebras over &
and that T, ., is a finite module over Rp, r.

Therefore, it follows from the Hilbert-Serre theorem that the Poincaré series
of Rum,n and Ty, , are rational, i.e. there exist polynozﬁials [0, 0,7 € Zly1, ...y Y]
such that

f(yl) seey ym)

PRy 915 ey ym) = il ¥ms
( 1o m) g(yl;"') ym)
h(yl; seey ym)

P( T Yy ooy Yrm) = T ze0s Y
( mor I ,ym) j(y17‘°°;ym)

The main problem in determining the rational expressions is to find out which
polynomials can occur in the numerator.

In the special case that n = 2 | this is easy because there exists an epimor-
- phism

7rm . I‘m o 4 Tm,2

where I',,, is the iterated Ore-extension

Ty, = kla;;1 < 1,7 < ml[ay][as, 00,8)...[8m, Om, 6m][b1, ey O]
' 7




where o;(a;) = —a; and §;(a;) = a;; for all { < j and on all other variables both

oy and é; act trivially.

The epimorphism #,, is defined by sending a; to X; — Tr(X:), b; to Tr(X3)
and a;; to Tr((X; — Tr(X))(X; — Tr(X;)), cfr. [LE BRUYN] for more details.

The Poincaré series of Ty, is easy to determine
1
i<l = yiy;) ILQ1 — 9:)?

and because Ty, o has a finite resolution as I',,-module one can write

PTrsy1s oy Ym) = T

fys, o Ym)
;<j(1 —yiy5) II(1 — 9:)?

Comparing the power series expanmsion of P(T';yy,...,¥ym) Wwith

P(Tm 2ty s Ym) = i

that of

P(Tm,2; Y1, -, Ym) as can be calculated using (1.1) it is fairly easy to calculate

the functions f(y1,...,¥m).

In the general case, however, one has to find another approach. Our starting

point will be the following theorem of Procesi

Theorem 3 [PROCESI, Theorem 3.4]

Rm,n is generated as a k-algebra by the elements Tr(X;, .. X;;) with 7 <

2" —1.

Therefore, R,, , has a finite resolution over the ring
Sm’n = k[aﬁ..-iﬁj < 2" — 1,2 € {1, ceey m}]

whose Poincaré series is

1
Ht(l - yi)' Hfl,iz(l — ytl 'yiz)"‘ Hili-uiz”—--l(l - yi1~--yi2n.__1)

Therefore, Ry, .. and T . being finite modules over Sm,n We get

P(Rm,n; Yi,.-- ym) = f(yh ey ym)-P(Sm,n; Y150 ym)
8




P(Tm,n; Yiyey ym) = h(yla ) ym).P(sm,n; Yiy ooy ym)

and , again, comparing the power series expansion of P(Rum,u;¥1, s ¥m) (resp.
Tm,n; Y15 Ym)) and that of P(Sm n;¥1,-..; ¥m) gives us an algorithm to compute
the functions f(y1,..., ym) and A(y1, ..., Ym)-

- Of course, this is a very laborous method and usually we will contend ourselves
with computing the rational expression of the Poincaré series in one variable. These

are obtained from the multi-graded ones by setting
N=y=. =Yy =1t
and we have :
Theorem 4
There exist polynomials f(t), 4(t) € Z[t] such that

) — f(t)
PRommit) = 4 gmi = 2)ym? (1~ g2 —Tym=" 1

g(t)
(1 —t)m.(1 —2)m?, (1 — g2r—1)m®

P(Tm,n5 )=

A direct consequence of this result is the determination of all possible rational
expressions of the Poincaré series of Ry, (resp. of Ty, n) providing it has finite
global dimension.

For, in that case, the Poincaré series has to have the form 5(15 and comparing
this with the foregoing theorem we get




Corollary 5

If Ry, or Ty, has finite global dimension, then its Poincaré series has the

form
1

F{ . FgF
where the F; are irreducible factors (in Z[¢]) of 1 —#! for some 1 < I < 2" —1
and 3 ¥ a; is clearly bounded by

m+2.m? + ...+ (2" — 1).m2 !

As an application of this general method we will prove in the next two sections

that gldim(Rz 3) = oo and gldim(T3,3) = co. In fact, we conjecture for m,n > 2

CONJECTURE :
gldim(R ) < 00 & (m,n) = (2,2)
gldim( Ty ) < 00 & (m,n) = (2,2) or (3,2).
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2. Computation of the Poincaré series of R;; and Tp 3.

In this section we will explicitate the foregoing general results in the special
case of 2 generic 3 X 3-matrices. The computation of the first terms in the power
series expansion of the Poincaré series will enable us in the next section to prove

that Ro 3 and T3 3 both have infinite global dimension.

Our first job is to calculate the Schur functions in 9 variables , 2y, ..., 2,

associated to partitions X\ of lenght < 2, i.e. X\ has the form
A =(a,b,0,0,0,0,0,0,0)

where a,b € IN such that a > b.

By definition the Schur function sy is

det(A)

z'<j(z¢' - ZJ)

sx(z1, .y 20) = i

where A is the following 9 X 9-matrix

z§+a z;-{—b ztls ..... n 1
zg+a’ zg +b zg ..... 29 1
Zg+a zg+b Zg ooooo zg 1

by elementary row alterations on A it is easy to schow that the Schur functions

F QG
sxn(z1,...,29) = det ( )
H I

becomes

where

P i1 ig
F= E Z{t...2g

lf|=a+1
G= Y st
17l=2

11




H = S P

kl=a

Z 21 eee Zg

lll—b—
where ¢, 7 are 8-tuples and k,! are 9-tuples of nonnegative integers. If 5 < 1 then

the under right corner becomes 0 by definition.

Next, we calculate the image of sy(2y, ..., 29) under the map

s -1 -1 —118
Zlz1,...,20]7° — Lz, 27", 20,75, 23, T3 1 |°°
defined by
zp — 1 24 — :2722:;1 27 — 2;3:8;1
—1 —
22 > X1%y 25 = 1 28 — T3To 1
-1 -
Z3 = TyT3  zg — Tal, 1 29 — 1

Therefore, sx(x;.z;'l) is the determinant of the following 2 X 2-matrix

()
Hy L
where :

Fy = 1i1+1'5.z;'2+2'3~"4~i7 .$§'4+ie—iz—is .$§7+ ig—iz—is

l{]=a+1

G = § 1f1+js.x{z+js—j4-:i7.x.;k'l'js—jz—.fs'$§7+:fs—.7'a'-.‘l's
|7]=>5
Hl — S 1‘k1+k5+k9.zicz'*‘k:;"kr“k?.ml2t=4+ks-kz‘-—ks.z]gw-i—ks—-ks-—ks
(k|=a
I = E Ill’f'lS"Hs.zi2+53—‘14—17.z%s—l"ls—lz—ls.x?-f-ls—ls—ls
[tj=b—1

Our next job is to compute the inproducts in Z[z,, 27}, 22, 25}, 23, z31]5s

. - 1 - *
< sx(y;.yj l),l >= 6 fsx(y;.yj 1).a5.a5

12




_ - 1 _ - *
< sx(yiy; ) syysy;t) >= 5 fsx(yi-yj N vy tasa;
i

where we have :

as = (y1 — yz)-(yz — ¥3)-(1n — ¥3)
e =y —vz )lz" — 3 )l —vi ")
If we denote y§*.y9%.y5° by (a1, @2, @3), we find that as.a; is equal to

6.(0,0, 0)

'—2'[(1) -1, 0) + (_1: 1 0) + (1’ 0, —'1) + ("'1; 0, 1) + (01 1, —1) + (01 -1, 1)]
+2’[(2: -1, —1) + ('—2; 1, 1) + (_1} 2, "‘1) + (1: "'2; 1) + (_11 -1, 2) + (1)’ 1, '_2)]
—1.[(2,~2,0) + (—2,2,0) + (2,0, —2) + (—2,0,2) + (0,2, —2) + (0, —2, 2)]

Therefore, we have all the necessary ingredients to compute the inproduct
< sx(y,-.y;'l), 1 > for partitions of the form X\ = (q,$,0,0,0,0,0,0,0). In appen-
dix 1, a listing is given of a Pascal program which computes this inproduct as well

as the obtained values for a + b < 10.

The Schur functions in 2 variables are easy to compute

k
s,0)(1,92) = D yi gk~

i=o
801, ¥2) = (W1.92)* s —r0)(v1, ¥2)

Therefore, we have all the necessary information to calculate the first terms of the

Poincaré series of Rz 3.

13




1+
yi +y2 +
2 2
2y1 + 2y1.y2 + 2y5 +
3yt + 4yt + 4y1.y3 + 348 +
4y7 + 6y3.y2 + 9yT.y3 + Byy .93 + 4yl +
5y; + 9y1.yo + 1493 .42 + 1492 43 + 9y, 42 + 543
7yf + 12yf.y2 + 22y‘1‘.yg -+ 25y§.yg + 22y§.y§ -+ 12y1.yg -+ 7yg -+

-----

From this we deduce the Poincaré series in one variable

P(Rz,3;t) = 14 2t + 612 + 14t® + 20¢4 4+ 56¢° + 107¢% + ...

For the trace ring, we have to compute

Z y,-.y?l.ag.a;
'7.7. ’
which is equal to
6.(0,0,0)

—L[(1,—1,0)+ (=1,1,0) + (1,0,—1) + (1,0, 1) + (0, 1, —1) -+ (0, —1, 1)]
—1.[(2,-2,0) + (-2,2,0) + (2,0, -2) + (—2,0,2) + (0,2,—-2) + (0, -—2,’2)]
'—]“[(3: -3, 0) + (_3: 3, 0) + (3a 0, _'3) + ("3x 0, 3) + (01 3, "'3) + (0: -3, 3)]

+1°[(31 —2, "'1) + (~3r 2, 1) + (3-1 -1, ""2) + (—'3: 1, 2) + (_‘1) 3, "'"2) + (11 -3, 2) +

(=2,3,-1) +(2,-3, 1) + (=1, -2,3) + (1,2, ~3) + (=2, ~1,3) + (2,1,~3)]
14




In appendix 2 we give a listing of a Pascal program which computes the inproduct
< a\(yiy; '), sy vy t) >

for partitions X = (,$,0,0,0,0,0,0,0). Also contained in this appendix are the
values for a + b < 10.

They enable us to com;iﬁte the first terms in P(T2,3; ¥1,y2)
1+

2y1 + 2y2 +
47 + byy.yp + 4y +
Bys + 13y2.y2 + 13y;.92 + 6y3 +
9yi + 22y3 .2 + 31yT .42 + 22y, .43 + 9yd +
12y? + 34y‘1‘.y2 -+ 56y§’ .yg + 56y? .yg + 34y, .yg -+ 12yg +
16yS + 48y%.y2 + 91yi.y5 + 109y3 43 + 9192 42 + 48y, .43 + 1645 +

Hence, the Poincaré series in one variable is

P(Tos;t) = 1+ 4t + 1482 + 38£% + 93t + 20425 + 419¢5 + 80647 + 1480£5 ..

15




3. The global dimension of R 3 and T 3.

In this section we will prove that Ry 3 and T3 both have infinite global
dimension.For, if one of them has finite global dimension, then by corollary 5

its Poincaré series should have the form

where the F; are irreducible factors in Z[t] of 1 — ¢ for { < 7, i.e. there are

nonnegative integers a,b,c,d, e, f, ¢ and kh such that
1
(1 —t)2 AL ASASASAL (1 + £2)9(1 + £3)k

P =

Where
Al =1+t
Ay =14t+#*
Ay =1—t+ ¢t
Ay =1+t+t2+8 +¢
Ag =14+t 482 +83 4+t + 5+ 88

We will first consider the trace ring

Theorem 6

The trace ring of two generic 3 X 3-matrices has infinite global dimension.

Proof
Because A;.As = 1+ 13 we will examine two cases :
Then the Poincaré series is of the form :

1
(1—t)a(l —t + t2)v A5 AS AL (1 + 2)9(1 + t3)h
| 16




Again, we will examine two cases :
[C1A]:a > c+e+ f, then P has the form

1
(1—t)2(1 — ¢ +2)°(1 — 3)2(1 — £8)=(1 — t7)7(1 + £2)9(1 + £3)»

and the first two terms in the power series expansion of this rational expression

are

u{u+1) v(v+1)
2 + 2

Comparing this with P(72,3,t) as computed in the foregoing section we get

1+ (u+v)t+( — v+ uv— gt +...

ut+v=4
u—g=2=8
which has no solution in nonnegative integers.

[C1B] :a < ¢+ e+ f, then P is of the form

| (1~
(I—t+ ) (1 —3)2(1 = 5)=(1 — t7)y(1 + 2)9(1 + 3)»

The first two terms in the power series expansion are

—v—uv —g)t? + ...

(u—1) , vo+1)
9 +

1+(v——u)t+(u 5

and we get v —u = 4 and u + ¢ = —8, a contradiction.

[c2):6>d:

In this case the rational expression of the Poincaré series is of the form

1
(1 — 1) AL ASASAL (1 + £2)9(1 + £3)

First we claim that @ > b+ ¢ + ¢ + f.For otherwise

| . (1=t
(=) (1 - &)e (1 — )=(1 — £)o(1 + 2oL + )P

17
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and the power series expansion of this expression has a negative coefficient for

t which is impossible for Poincaré series.Therefore

1
(1—8)2(1 — ) (1 - £3)2(1 — 83)2(1 — ¢7)¥(1 + £2)9(1 + t3)P

Jomparing the coefficient of ¢ in the power series expansion with that of

P(T2,3,t) gives u = 4.Computing the first terms we get

1+ 4t + (10 + v — g)? + (20 4+ 4(v — g) + w — A)t® +

viv+1) glg+1)
s T 2

(85 +10(v — g) + 4(w — &) + —vg)t! + ...

Comniparing this with P(T2,3,t) gives
v—g=4
w—h =2
which gives us v? + v + g% + g — 2vg = 20 giving v = 4, so g = 0.The

coefficient of ¢* then becomes
176 + 14(w — h) + =

and comparing with P(72,3,t) gives z = 0.Now, computing the coefficient of
t® gives
w(w + 1) + h(h + 1)

5 5 wh

344 + 20(w — h) +

and comparing this with P(T23,t) gives us b = 32 and w = 34. Computing
the seventh term gives us 744 + y whence y = 32. Using these values the eight
term of the Poincaré series should be equal to 1816 , a contradiction, finishing

the proof.

Theorem 7
The center of the trace ring of 2 generic 3 X 3-matrices has infinite global

dimension.

18




Proof

The different cases we will consider here are the same ones as in the proof
of Theorem 6.

[C1A] : Here we get #+ v = 2 and 4 — g = 5 which has no nonnegative
solution.

[C2]: As in the proof of Theorem 6 we may assume that the rational

expression of P has the form

1
(1—2)2(1—t2)2(1 = 83)»(1 — 85)2(1 — &7)¥(1 + t2)9(1 + t3)*

comparing the coeficients of ¢ gives ¥ = 2. The first terms in the power series

expansion become

v(v + 1) + glg+1)

4
5 5 vg)t* + ...

(6+3(v—g)+2w—h)+
This gives us v — ¢ = 3 and w — h = 4.Comparing the coefficients of #*

14+2t+B+v—g)t®+ (44 20v—g)+w— h)t® +

we get ¢ = 1 hence v = 4.Using these facts the coefficient of t° becomes

64 + z.Comparing this with P(R2 3,t) we get z = —8,a contradiction.
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APPENDIX 1

program cevntertr(input, output);

{this program computes the coefficient in the Poincare-series)
{of the center of T of 2 generic Ix3-matrices for the Schur~functionl
{associated to the partition (x,y,0,0,0,0,0,0,0)7%

var x,y,z,t,v, result :integer;
functiorn hulp(a,b @ integer):integer;

var i1,12,i3,14,15,16,17,1i8 : integer;
31,32,33,36,35,36,7,38,39 @ integer;
c,d, e,k : integer;

beginthulp}
k=03
for i1:=0 to a do begin
for iZ:=0 to (a-il) do begin
for i3:=0 to (a—~il-iZ) do begin
for i46:=0 to (a-il-iz-iJ) do begin
for iS:=0 to (a-il—-i2-i3~i4) do begin
for i6:=0 to (a-il=-i2~i3~i4~iS) do begin
for i7:=0 to (a~il-iZ~i3~i4~-iS~i6) do
begin
i8s=(a~il-iZ~i3-14-1i5-16~17)
for Ji:=0 to b do begin
for JR:=0 to (b-31) do begin
for J3:=0 to (b-31-32) do begin
fFor g4:=0 to (b-31-32-33) do begin
for 35:=0 to (b-ji-32-33-34) do begin
for 36:=0 to (b-31-32-33-34-35) do begin
fFor 37:=0 to (b-3i-32Z-33~34-35-36) do hegin
for 38:=0 to (b-3l-j2- 33-34-35-36~37) do
begin
39:=(b“J1“J2“J3“J4”J5“J6“J7”JB);
cr=(i2+32+iT+33-14~34-17~37) 3
di=(i4+J4+i6+ 1612~ 2~18-38) 3
er=(i7+37+iB+38-i3-33~i6~6) 3
if (cxotdxdtexe)=0 then ki=k+6
else begin
if (cxd¥*e)=0 then begin
if (c*crdxdie*e)=2 then Ki=k-
else beqgin
if (c#c+dxdtiexe)=8 then kisk-1j
end-;
erd
else begin
if (oxc+d*d+exe) =6 then Ki=k+2;
end;

ha

end}
end
ernd 3
end;
erid;
end;
end
end;
end;
end;
end;
end 3
erd;
end;
evd ;
end
hulp:=trunc(k/6) ;3
end{hulpl;

begini{main programl}

read (x) jread(y)

ziz=hulply, x) 3

if (y=-1){0 then result:=z

else begin
ti=hulp(x+l,y-1);
resnlti=(z-t) 3
end
writeln( coefficient of s¢,x:3,7,%,y:3,7,0,0,0,0,0,0,0) = T,resulti3) g
end.




coefficient of s( 1, 0,0,0,0,0,0,0,0) = 1

coefficient of s( &, 0,0,0,0,0,0,0,0) = =
coefficient of s( 1, 1,0,0,0,0,0,0,0) = 0
coefficient of sC 3, 0,0,0,0,0,0 0,0) = 3
coefficient of s( 2, 1,0,0,0,0,0,0,0) = 1
coaefficient of s 4, 0,0,0,0,0,0,0,0) = 4
coefficient of s( 3, 1,0,0,0,0,0,0,0) = 2
coefficient of s( 2, 2,0,0,0,0,0,0, 0) = 3
coefficient of s( 5, 0,0,0,0,0,0 0,0) = 5
coefficient of s 4, 1,0,0,0,0,0,0 0) = 4
coefficient of s( 3, 2,0,0,0,0,0,0,0) = b
coefficient of s( &, 0,0,0,0,0 ¢ 0) = 7
coefficient of s( 3, 1,0,0,0,0, 0) = 5
coefficient of s 4, 2,0,0,0,0,¢ 0y = 10
coefficient of s( 3, 3,0,0,0,0,¢ Q) = 3
coefficient of s( 7, 0,0,0,0,0,0,0,0) = 8
coefficient of s( &, 1,0,0,0,0,0,0,0) = 8
coefficient of s( 5, 2,0,0,0,0, ¢ 0) = 14
coefficient of s{ 4 S,0,0,0,0,¢ 0y = 9
coefficient of s( 8, 0,0,0,0,0,0,0,0) = 10
coefficient of s( 7, 1,0,0,0,0,0,0,0) = 10
coefficient of s &, 2,0,0,0,0,0,0,0) = 21
coefficient of st 5, 3,0,0,0,0,C 0y = 15
coefficient of s{ 4, &4,0,0,0,0, Oy = 10
coefficient of s 2, 0,0,0,0,0, Gy = 12
coefficient of s( &, 1,0,0,0,0,0,G,0) = 13
coafficient of s¢ 7, Z,0,0,0,0,0,0,0) = 27
coefficient of s &, F,0,0,0,0,0 0,0 = 27
coefficient of s( 5, 4,0,0,06,0,06,0,0) = 18
ceefficient of s 10, D,0,0,0, 0,0, 0, 0) = 14
copfficient of s( 3, 0O,0,0,0,0) = 1&g
coefficient of s( 8, O,0,0,0,0,0) = 3I&
coefficient of ¢ 7, , 0,0,0,0,0) =

coefficient of s( &, 4,0,0,0,0,0,0,0) =

copfficient of s¢ 5, 50,0, 0,0 0 0 0) =




APPENDIX 2

program tracering(input, output);

{this program computes the coefficient in the Poincare~series?
{of the trace ring of 2 generic 3x3-matrices for the Schur-function)
{associated to the partition (%,y,0,0,0,0,0,0,0)%

var x,y,z,t,v, result rinteger;
function hulp(a,b : integer) rinteger;

var i1,1i2,13,14,15, i6,17,i8 : integer:
31,032,313, 4,05, 36, 37,38, 39 : integer;
e,d,e, k@ integer:

begin{hulp?¥
2=
for il1:=0 to a do begin
for i2:=0. to (a-il1) do begin
for i3:=0 to (a~il-i2) do begin
for i4:=0 to (a-il~i2-i3) do begin
for i85:=0 to (a-il~iZ-i3-i4) do begin
for i6:=0 to (a-il=i2-i3—-i4~i%) do begin
for i7:=0 to (a-il-i2-i3-i4~iS5-i€) do
begin
iBr={a~il-iR=i3~i4~i5-i6~i7) g
for J1:=0 to b do begin
for 32:=0 to (b~31) do begin
for 33:=0 to (b~31--32) do begin
for 34:=0 to (b-31-32~33) do begin
for 38:=0 to (b-31-32~33~34) do begin
for 36:=0 to (b-31~32-33~34-35) do begin
for 37:=0 to (b-31-32-33-34-315-36) do begin
for 38:=0 to (b~31-32~33~-34-35-16~37) do
begin
JBr=(b=g1-32- 33~ 4 35~ 36-37~18) 1
=12+ 2+iF+ 3143417~ 37) 3
di=(i4434+i6+ 3612321838 3
2={i7+37+1i8+38~i3~13-i6-36) 3
if (c*xcrd*diexe)=0 then ki=k+6
else begin
if (cx*d¥e)=0 then begin
if (cxc+drdiexe) =2 then ki=k-1
else begin
if (cxctdxd+ex*e)=8 then kizmk-1
else begin
if (c*xc+dxd+exe)=18 then ka=h-13
end;
end;
end
else begin
if (cxc+drd+exe)=14 then Ka=k+13

end ;
end;
end;
end;
end
ernd 3
end;
end;
end;
erd;
end;
end;
end;
end;
end
end;
end;
hulp =t runc(k/6):
end{hulpl;
begiv{main program?
read (x) sread(y);
zi=hulp(y, x) 3
if (y-1)4(0 then result:=z
else begin
ti=hulp(x+1,y~1):
resulti=(z-t) 3
end;
writeln(’coefficient of s, x13,7,7,y:3,7,0,0,0,0,0,0,0) = ’, result:l) g

end.




]

coefficient of s( 1, 0,0,0,0,0,0,0 0) = =
coefficient of s( 2, 3, G 3, 0,0,0,0) = 41
coefficient of s( 1, 3, G 3, 0, 0) = z
coefficient of st 3, , 0 = &
coefficient of s( 2, L) = 7
coefficient of s( 4, ,0) = 3
coefficient of s( 3, L3y = 13
coefficient of s{ 2, 0,0) = 3
coefficient of s( 3, ,0) = 12
coefficient of s 4, , ) = 22
coefficient of «( 3, ,0) = 22
coefficient of s( 6, # 3,0, 0,0, 0 = 16
coefficient of s( 5, : , ) = 32
coefficient of s( 4, L) = 43
coefficient of s( 3, ,0) = 18
coefficient of s( 7, Q0,0 = 20
coefficient of s( &, ) = 43
coefficient of s( 5, 3 = &8
coafficient of s( 4, 0y = 8z
coefficient of s( 8, 0y = 25
coefficient of s{ 7, 0y = 59
coefficient of s( &, Q) =
coefficient of s( 3, Sy o) =
coefficient of s( 4, 0y =
coefficient of s( 3, € Q) =
coefficient of s( 8, : D) =
conefficient of s( 7, e L, 0) =
coefficient of s( &, z, @) =
coefficient of s( 5, 4., 0y =
coefficient of s 10, G, G, Gy, 1, Q) =
coefficient of «{ 9, 1,0,0,0 B, =
coafficient of s 8, JENE E T & 3 0y =
coefficient of s 7, G, 40,0, 0 0) =
coefficiernt of s{ &, 4,0,0,0, ¢ ) = ,
coefficient of s( 5, T, 0, 6,0, S, 0 = 35
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