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0. Introduction.

The purpose of this note is threefold :

First we aim to survey two of the main results on trace rings of generic
matrices. Both of them have their roots in the influencial M. Artin - paper [ARTIN]
of 1969. The first is concerned with classifying finite dimensional semi-simple
representations of the free algebras up to equivalence. It turns out that the affine
varieties associated to the centers of the trace rings are the wanted classifying
spaces. The second result deals with the invariant theory of n X n-matrices.
The center of the trace ring of m generic » X n-matrices turns out to be the
ring of invariant polynomial mappings from m copies of My(k) to £ under com-
ponentswise conjugation of GL,(k) whereas the trace ring itself is the ring of

matrixconcomitants.

Secondly we aim to describe the proof of a recent result due to M. Artin
and A. Schofield (unpublished) stating that trace rings of generic matrices are
maximal orders. Their proof is a beautiful application of both the representation-

and invariant theoretic description of trace rings.

Finally we aim to give some noteworthy applications of their result : the
centers of the trace rings of generic matrices are Gorenstein unique factorization
- domains, height one prime ideals of the trace rings are cyclic and the Montgomery
result on centrally fixed automorphisms of generic matrices follows immediatly

from it.

Acknowledgement : I am grateful to M. Artin for providing me with an .

outline of the proof and to A. Schofield for some enlightening conversations.




1. Some definitions.

Throughout this paper, k will be a {commutative) field of characteristic zero.
Fo = k < %1,..., T > will be the free k-algebra in m variables, i.e. 7, is the
tensor algebra of a vector space of dimension m over k.

If I, . is the ideal of 7 consisting of all identities satisfied by n X n - matrices
in m variables, then

Gmpn=Fk < 21,..,2m > [Imn

is the ring of m generic n X n-matrices.
A more convenient description of this ring is obtained as follows. Let R be

the commutative polynomial ring :
R = kft;(1);1 < 4,7 <m;1 <1< m]
and consider the matrices :
Xi = (t;(1))s,5 in Mn(R)

Gm,n is then the subring of My(R) generated as a k-algebra by the elements {X;:
1 <1 < m}, the so called generic # X n - matrices.

With Ry, ,, we will denote the subring of R generated as a k-algebra by the
elements :

{Tr(og..a;) : FE€EN;; € Gm,n}

The subring Gum,n-Rm,n of Mp(R) will be denoted by T, and is called the trace
ring of m generic n X n-matrices.
It is fairly easy to verify that Ry, is the center of Tp,n Whenever m > 2.
From [PROCESLII.1.3] we retain that Gm, is a domain and its classical
ring of quotients ,A,, . , which exists by Posner’s theorem is a division ring of
dimension n? over its center, Km,n. Clearly, Ky, is the field of fractions of Rm,n.
Tn the next two sections we will briefly recall the two main motivations for

studying trace rings of generic matrices : finite dimensional representations of the

free algebra 7, and the invariant theory of n X n - matrices.
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2. Representation theory, [ARTIN],[PROCESI 2]

For simplicities’ sake we will assume in this section that & is algebrai-
cally closed. For arbitrary fields similar results hold, see for example [ARTIN
SCHELTER)].

An n-dimensional representation of 7, is an algebra morphism :
¢ Fm — M,(k)

Note that this is equivalent to giving m n X n - matrices ¢(X), ..., $(X,,). Therefore
REP, (%) , the set of all n-dimensional representations of 7, can be identified

 to the affine variety associated to R , i.e. to A;’c'mz.

Two n-dimensional representations ¢; and ¢s are said to be equivalent if they

differ only up to a k-automorphism of M, (k) :

F — M, (k)
1

¢2
o — M, (k)

Therefore, Auty(Mp(£)) = PGL.{k) = GL,(k}/E" acts on REP,(F,) = A"
and the orbits under this action are the equivalence classes of representatidns. To
classify representations up to equivalence is therefore essentially the study of the
~‘orb1t space of Am” under the action of PGL,(k).

If ¢ : 7 — My(k) is a representation, then £ = k@ .. Pk (n tlmes)
becomes an 7,,-module via ¢. If £ is completely reducible as a 7,- module , then

¢ is said to be semi-simple. In general we can find a2 decomposition series :
0=V, C..CVi CVy=k"

for k" as F,,-module.

Then W = @(V;/Vit1) is a completely reducible 7,,-module and démg (W) =




Choose a k-basis for W as follows : the first démy(V;—y)- vectors form a basis
for Vi1, the next dim(Vi—2/V;—-1)- vectors form a basis for Vi..o/V;; ete. . With

respect to this basis, ¢ will in matrixnotation have the form :

N

(¢1 ‘(~—~———\

\

where ¢; : 7, — My, (k) (nj = dimg(V;—1/V;)) are the irreducible quotients of ¢

, s0 that ¢; is epimorphic, # = ny + ... + n, and where N is the nilradical of ¢.

With ¢ we can therefore associate a semi-simple representation :

¢ =61 D .. D¢

Artin [ARTIN] has proved that ¢°° lies in the closure of the orbit of ¢ under
PGLy(k), i.e. we will not be able, in any type of quotient variety of A};’”‘z by
PGL,(k), to distinguish between ¢ and ¢*®.

This motivates us to construct an affine variety whose &-points correspond to
the equivalence classes of semi-simple representations of 7, in M, (k).

Let V' be the variety associated to the affine k-algebra R,, ,, (see [PROCESI

3]) , then the natural inclusion R, ., C R induces a map between the varieties :
P :A,"c””2 -V

which satisfies :
{(a) : p is onto
~(b) = p(@) = p() iff ¢°° = po*
These facts together yield :

Theorem 1 [ARTIN],[PROCESI 2]
The points of ¥V = AFF(Rm,) are in one-to-one correspondence with the

equivalence classes of semi-simple n-dimensional representations of 7,.
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To the affine k-algebra T, (see [PROCESI 3]) we can associate its affine
variety ¥ = AFF(T,,, ) consisting of all maximal twosided ideals equipped with
the induced Zariski topology.

Because T, ,, is integral over R, ,, the natural map :
§:Y = AFF(Tpn) =V = AFF(Rum,n)

is onto. It is easy to describe the fibers of this map. Let ¢ be a k-point in V , i.e.

¢ corresponds to an equivalence class of a semi-simple representation :

$=0¢:1D..D¢

then 6~1(¢) consists of precisely ¢ elements each corresponding to an irreducible

component of ¢.

Theorem 2 [ARTIN SCHELTER]
The k-points of ¥ = AFF(T;,») correspond to couples (¢, $;) where ¢ is a
representant of an equivalence class of semi-simple n-dimensional representations

of 7, and ¢; is an irreducible component of ¢. The natural map § : ¥ — V sends

(¢) ¢_1) to ¢'

We will now show that the equivalence classes of irreducible n-dimensional
representations form an open subvariety of V = AFF(R oy n)-

Let us consider the set of all elements of T, n obtained by evaluation of
n-central polynomials subject to the restriction of being linear in at least one
variable. Call Fy,( Ty, ) this set, the "Formanek center” because it is an ideal of
the center. If § is a multiplicative set of central elements of Tm,n, then (T n)s is
an Azumaya algebra over (R, »)s iff S N Fo(Tp ) 5% 0. With V,, we denote the
open subscheme X (Fa(Tm,n)) , on which F,,(T,, ,.) does not vanish identically, of
V = AFF(R,,,,).

5




Theorem 3 [PROCES]]
(1) : The k-points of V;,, are in one-to-one correspondence with the equivalence
classes of irreducible n-dimensional representations of 7,,.

(2) : The variety Vi, is smooth of dimension (m -- 1).n? + 1.




3. Invariant theory , [PROCESI 3].

In the foregoing section we noticed that there exists a group action of GL,,(k)
actually of PGL,(k), on R. This action is defined as follows : if P € GL,(k) and
if Xy = (t;7(1)); 7 is the I-th generic matrix, let

PX1. P = (945(D):

where the 1;;({) are k-linear combinations of the ¢;;(I). Then, sending ¢:(I) to 94 (l)
induces a k-automorphism on R and on its field of fractions K = k(t;;(I);1 <
1,7 < m;1 <1 < m) which we denote by ap.

A polynomial f(t;5(1)) € R is said to be an invariant of m copies of n X n-
matrices iff ap(f) = f for all P € GL,(k). A rational function g(¢;;({)) € K is
called a rational invariant of m copies of n X n-matrices iff ap(g) = ¢ for all
P € GL,(k).

The set of all invariants (resp. rational invariants) is called the ring (resp.
field) of invariants of m copies of n X n-matrices. They are denoted, respectively,
RGLa(®) yndq KCLa(k).

It is not hard to show that the field of invariants is the field of fractions of
the ring of invariants of m copies of n X n- matrices. Artin [ARTIN] conjectured

that any invariant is a polynomial in the elements :
{Tr(X;,..X; );r € N}

For n = 2, this fact was proved as far back as 1903 by J.H. Grace and A. Young
[GRACE YOUNG].

For arbitrary m, Artins conjecture was proved independently by Gurevich
[GUREVICH,Th.16.2], Siberskii [SIBERSKII,Th.1] and Procesi [PROCESI
3,Th.1.3]. The proof of this result relies heavily on the so called ”first fundamental
theorem” on vector invariants [GUREVICH,Th.16.2] which gives a generating set
for the invariants of m vectors and m covectors ; i.e. invariants of GLj (k) acting

on the symmetric algebra of
(Ve @ (v )em
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where V is an n-dimensional k-vector space and V" is its dual. This theorem is
quite old but the fist complete proof seems to be that of Gurevich. The solution
of Artins conjecture is a translation of the first fundamental theorem, originally

due to Siberskii and later rediscovered by Procesi, using the dictionary :
VRV ~ M,k

vector invariant = trace

for details see [PROCESI 3,pp 310-313].

Theorem 4 [GUREVICH],[SIBERSKII],[PROCESI 3]

The ring of invariants of m copies of n X n-matrices , RGLa(k) is equal to
Rom,n-

The field of invariants of m copies of n X n-matrices , KGLn(®) ig equal to

Ko,

We will now define an action of GLy (k) on My (R) and My(K).Let P € G Ly (k)

and (a:;)i,; € Mn(R), then there is an action by conjugation :
(aig)i — P(ai)ig P
and an action extending ap: R — R :
(aij)ig = (ap(ai))i;

If we regard M,(R) as M, (k)@ R then the first action is on the first factor, fixing
the second, whereas the second action is vice-versa, thus the two actions commute.

Note that the two actions agree on generic matrices.Define :

sending a matrix (as):,; to P~ .(ap(ai))s, . P. This defines an action of GLy(k)
on M,(R) since the two actions used to define Bp commute. Clearly, this action
extends to M,(K).




The ring of matrix concomitants (resp. of rational matrix concomitants) is
the fixed ring of M,(R) (resp. of M,(K)) under this action. It will be denoted by
M, (R)SEn(®) (resp. by Mn(K)En(9)).

Theorem 5 [PROCESI 3],[FORMANEK]
The ring of matrix concomitants, Mn(R)GLﬂ(k), is equal to Ty n-

The ring of rational matrix concomitants, M,(K)FL»%), is equal to A p-




4. Factoriality of R, ..

- In this section we aim to prove that the ring of invariants of m copies of
n X n-matrices is always a unique factorization domain. Further, we will show

that the natural inclusion :

Rmn C R

satisfies no blowing up.

Proposition 6

Let B be a unique factorization domain and G a group of automorphisms
of B such that H(G,U(B)) = 1, where U(B) is the group of units of B. Let
A be the fixed ring of B under G, then :

(1) : A C B satisfies no blowing up

(2) : A is a unique factorization domain.

Proof :(1):Let P = B.p be an height one prime ideal of B such that
PN A3 0. Then P has a finite orbit under @, say {B.p, B.py, ..., B.pz }. For,
take an element a € P N A and write it as a product of irreducible elements in
B | say

a == p‘“.pil...pi;;‘

then for every ¢ € G we have that o(B.p) belongs to {B.p, B.p1,..., B.pm}.
This shows that for every 0 € G there exists a unit f, € U(B) such that
o(p.p1..pi) = fo0.P1....06. Now, {f, : 0 € G} is clearly a 1-cocycle so by

our assumption there exists a unit & € U(B) such that :

fo = o(a).a™!
for every 6 € G. Réplace p by p” = a~1p | then p’.p;.....pr € A. Theféfois,
any nonzero element @ € PN A can be written as :

my

a=(p’p1....pk) .g"™..... q;




Le. a € (p’.p1.....px)A, because clearly o(g™....q[™) = ¢{™...q™ for all o €
- G. 80, PNA=(p’.....px)A, whence AN B satisfies no blowing up.
(2) : By part (1) we know that the natural map between the classgroups :

Cl(A) - CI(B)

is a groupmorphism. Suppose @ is an height ome prime ideal of A, then
(B.Q)" = Bplt.. plm for irreducible elements p; € B. Clearly, Q = Bp;nA
which is a principal ideal by the proof of part (1).

Theorem 7
The natural inclusion Ry, C R satisfies no blowing up and Ry, p, is a

unique factorization domain.

Proof
In the foregoing section we have seen that PGL,(k) acts as a group of
automorphisms on R such that Rn . is its fixed ring. Further, PGL,(k) acts

trivially on & whence :
HY(PGLy(k), U(R)) = H(PGLy(k), U(k)) = Hom(PGLa(k), U(k))

~which is trivial because PG L, (k) is a simple algebraic group.

As a first consequence of this result we obtain that R, , is normal. For,
the foregoing result entails that R, , is a Krull domain and Rm,» being an

affifie k-algebra it is clearly Noetherian.

Because Ry, is an affine k-algebra there exists a polynomial ring Pr,n

and a gradation-preserving epimorphic map :

w: Pm,n — Rm,n
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where the gradation on Ry, is given by deg(t:; (1)) = 1.

Rm,r is said to be Cohen-Macauley if :
Ext) (Rmn Pmn) =0

for all ¢ 5 0, Kdim(Pp,n) — K dim(Rm n).

Rm,n is said to be Gorenstein if it is Cohen-Macauley and if
Efvt{?mm (Rm,n; ?m,n) = Rm,n

where 5 = Kdim(Pp,n) — Kdim(Rm,r)

Theorem 8

Rm,n is 2 Gorenstein domain.

Proof

Because Ry, is the fixed ring under the reductive group G Ly (k) of the
regular domain R, it follows from the Hochster-Roberts theorem [HOCHSTER
ROBERTS] that R, is Cohen-Macauley.

Further, R, ,, being factorial and an epimorphic image of the regular
domain P, ,, id follows from Murthy’s theorem, see for example [FOSSUM],

that R, » is Gorenstein.
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5. The Artin - Schofield theorem .

M.Auslander and O.Goldman defined in [AUSLANDER GOLDMAN] an
order over a normal domain B to be a subring A of a central simple algebra &
over the field of fractions K of R such that A is a finitely generated R-module
which spans ¥ over K. An order A in the central simple algebra ¥ is said to
be maximal if A is not properly contained in any order of X. From the results
stated above it is clear that Ty, , is an order over Rm,n in Ap . M.Artin and

A.Schofield (unpublished) proved that Twm,n is actually a maximal order.

One of the many equivalent characterizations of maximal orders is the

following :
An R order A in ¥ is maximal iff :
(1) : A, is a maximal Rp-order for every height one prime ideal pof R.

(2) : Ais a reflexive R-module ,i.e. A = A** where (—)"" denotes the bidual

module Homg(Hompg(—, R)).

We will first proof (2). Recall that a finitely generated torsion free R-
module is reflexive if and only if T(U, Op) = M for any Zariski open subset
of Spec(R) containing all height one prime ideals. As usual, Opsy denotes the
structure sheaf of the R-module M.

Theorem 9 (Artin Schofield)

Tm,n is a reflexive R v, n-module.

Proof
Let U be an open subset of Spec(Rm,n) containing all height one prime

ideals, then it follows from :
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Tma = My(R)

that there is an inclusion :

MU, 01,.,.) = T(v7'(U), Oaro(z))

where 4 is the induced morphism on the spectra. It follows from Theorem 7
that v~1(U7) is an open subset of Spec(R) containing all height one prime ideals
of R. Now, M,(R) being R-free it is clearly R-reflexive and therefore :

P('Y_“I(U): OMn(R)) = M,(R)

On the other hand, (U, O, .} C Apm,n consists of GL,(k)-invariant elements
of M,(K).So, '
[(U,0r,,) C Mu(R)*W =T, ,

The other inclusion being trivial finishes the proof.

Theorem 10  (Artin - Schofield)

Tm,n 18 2 maximal order over Rm,n-

Proof : In view of the foregoing result we are left to prove that (T, n)p
is 2 maximal order over (Rm,n)p for every height one prime ideal p of Ry .

Because Rm,n is a normal domain, this is true for every p such that ( T, n)p
is an Azumaya algebra, or equivalently such that p.i.deg(Trm,n/p.Tm.n) = n.

Let us assume that p is an height one prime of R, such that
pideg(Tpn/p.Tmp) = r < n. View p as a closed codimension one sub-
‘variety of V == AFF(Rp,). The points on p have to correspond to reducible
n-dimensional semi-simple representations of %,.

An open subset of p corresponds to n-dimensional semi-simple representa-

tions of 7, of the form :

¢=¢1 P ¢
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where dim(¢1) = r and dim(¢2) = n — r and both are irreducible representa-
tions.

Therefore, the dimension of p is smaller or equal to the sum of the dimen-
sions of the varieties classifying equivalence classes of irreducible r (resp. n-—r)-

dimensional representations of %,. These dimensions were computed in section
2
dim(p) < (m~1)r2 +1 4 (m - Dn—1r)2+1

On the other hand, p has to be of codimension one in ¥ which is of dimension
(m —1).n? + 1, i.e. we have to investigate :
(m—1)n® < (m-1).00 + (n—r)?) +2
or
0< (r—n)r+(m-1)"1

Because r < n , this inequality can only be satisfied if m = 2. Then we have :
(mn—r)r <1

‘leaving only r = 1 and n == 2 as possible solution. Thus, the only trace
ring T, having non-Azumaya central height one primes is T3,2. In the next

proposition we will show that T2 2 is also a maximal order, finishing the proof.

An explicit description of the trace ring of two generic 2 X 2- matrices is
given in [FORMANEK HALPIN LI]. They showed :

(1) : Ra,2 = k[Tr(X1), Tr(X>), D(Xy), D(X3), Tr(X1X5)]

(2) : T3 18 & free Ry p-modile With basis 1, X7, Xs, X1 Xs.
Further, the followiiig relations sre satisfied

D(X1) = —X2 + Tr(X1)X;

D(X3) = —X35 + Tr(X5) X,
15




(X1X2 —Xin)Xl = (-—X1 -+ Tr(Xl))(XIXz —'XQ.Xj[)
(XLXQ ""XQX]_)XQ = ("‘"XQ + TT(XQ))(X]VXQ — XQXI)

Tr(X1Xz) = X1.Xs + Xo Xy + Tr(X:)Tr(Xs) — Tr(Xz) Xy — Tr(X1)X;

Theorem 11 [SMALL STAFFORD)]

12,2 is the iterated Ore extension :

k[-XlX2 - XQXI 3 Tr(Xl)J TT(XQ)] [XI; o1, 61][X21 o2, 52]

where o; and §; are obtained from the above relations.

By a result of Chamarie’s [CHAMARIE| we get that 7o is a maximal
order. The only non-Azumaya height one prime ideal of the center is generated
by (X;Xe — X3 X;)? which is a central element. The height one prime ideal of

13,2 lying above this prime is generated by the normalizing element Xy X, —
X0 X;.
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6. Factoriality of T, ,.

A reflexive order A over a normal domzﬁn R is said to be a reflexive
Azumaya algebra , cfr. [YUAN], if the natural map :

§: (A ®r A°PP)"" - Endg(h)

is an isomorphism. Obviously, a reflexive Azumaya algebra is a maximal order |
if it is finitely generated. Further, it is fairly easy to see that for every divisorial
A-ideal I (i.e. a twosided fractional A-ideal which is reflexive as an R-module)
we have I = (A(INR))"".

Chatters and Jordan [CHATTERS JORDAN] call a left and right
Noetherian prime ring A a unique factorization ring if every nonzero prime _

ideal of A contains a nonzero principal prime ideal.

Theorem 12 The trace ring of m generic # X n-matrices is a unique

factorization ring.

Proof

Because T, , is affine and a finite module over its affine center Rum,n We
only need to show that every height one prime ide * al of Tm,r is principal.

The proof of the Artin-Schofield theorem shows that the localization of
Tm,n at every central height one prime p is an Azumaya algebra {except if
m = n = 2). This shows that ¢, is an isomorphism for all p. Tp, ,, being a
reflexive R, n-module, this yields that Tm,n is a reflexive Azumaya algebra.

So, for any height one prime ideal P we have :
P=(TmalPNRiaw) = Tmar

for some irreducible element r € R, ,, because Rm,n is a unique factorization

domain.

17




It m = n = 2, then the only height one prime which is not centrally
generated is T3 o(Xy Xo — X5 X1) which is principal,done.

As an immediate consequence of this result we obtain a new proof for a

result due to Montgomery.

Theorem 13 |[MONTGOMERY]

Every automorphism of §,, , which leaves the center fixed is the identity.

Proof

By Skolem-Noether such an automorphism is given by conjugation with a
normalizing element, say h, of Gm,n. Gm,n C Tm,n being a central extension ,
h is also a normalizing element of Ty, ., , i.e. Tm,nh is a divisorial ideal.

If m or n is not equal to 2, this ideal must be centrally generated, i.e.
h = 7.c for some 4y € U(Tin,n) = U(k) and ¢ € Ky, done.

If m = n = 2, the only noncentral normalizing element of Ton,n i8 X1 X5 —

X X. This element does not normalize Gm,n,done.
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