Trace Rings of Generic Matrices are Unique Factorization Domains.

June 1984

84-10

The Functional Equation for Poincaré Series of Trace Rings of Generic 2x2-Matrices.

September 1984

84-18

Lieven Le Bruyn (°)

(°) Work supported by an NFWO/FNRS-grant.

Trace rings of generic matrices are U.F.D.

A.W. Chatters and D.A. Jordan defined in [0] a unique factorization ring to be a prime ring in which every height one prime ideal is principal. In this note we will prove that the trace ring of m generic nxn-matrices satisfies this condition.

Throughout this note, k will be a field of characteristic zero. Consider the polynomial ring $S = k[t_{ij}^l; 1 \leq i, j \leq n, i \leq l \leq m]$ and the $n \times n$ matrices $X_l = (t_{ij}^l)$ in $M_n(S)$. The k-subalgebra of $M_n(S)$ generated by $\{X_l; 1 \leq l \leq m\}$ is called the ring of m generic $n \times n$ matrices $G_{m,n}$. Adjoining to it the traces of all its elements we obtain the trace ring $m_{m,n}$ of $m \times n$ generic matrices, cfr. e.g. [1].

The main aim of this note is to prove:

Theorem 1.: Height one prime ideals of $n_{m,n}$ are cyclic

M. Artin and A. Schofield [2] have proved that $\prod_{m,n}$ is always a maximal order, cfr. [3]. The following two results liberate their proof from Hilbert-Mumford theory.

Lemma 2.: Let B be a unique factorization domain amd G a group of automorphisms of B s.t. $H^1(G, B^*) = 1$. If A is the fixed ring of B under G, then:

(a) $A \subset B$ satisfies no blowing up

(b) A is a unique factorization domain.

Proof.

(a) Let P=Bp be a height one prime of B s.t. $P\cap A\neq 0$. Then P has a finite orbit under G, say $\{Bp,Bp_1,\ldots,Bp_k\}$ (take an element $a\in P\cap R$ write $a=p^kq_1^{l_1}\ldots q_m^{l_m}$, then $\sigma(Bp)\in \{Bp,Bq_i\}$). This shows that for every $\sigma\in G$ there exists a unit $f_\sigma\in B^*$ s.t. $\sigma(p.p_1\ldots p_k)=f_\sigma.pp_1\ldots p_k$. $\{f_\sigma;\sigma\in G\}$ is clearly a 1-cocycle, so by assumption there exists a unit $\alpha\in B^*$ s.t. $f_\sigma=\sigma(\alpha).\alpha^{-1}$ for every $\sigma\in G$. Replace p by $p'=\alpha^{-1}.p$, then $p'p_1\ldots p_k\in A$. Therefore, any element $0\neq a\in P\cap A$ can be written as $a=(p'p_1\ldots p_k)^lq_1^{l_1}\ldots q_l^{l_r}$, i.e., $a\in (p'p_1\ldots p_k)A$. So, $P\cap A=(p'p_1\ldots p_k)A$ and therefore $A\subset B$ satisfies no blowing up

(b) By (a) and [4] we know that the natural map $Cl(A) \to Cl(B)$ is a homomorphism. Suppose Q is a nonprincipal height one prime of A, then $(BQ)^{**} = Bp_1^{l_1} \dots p_m^{l_m}$ for irreducible elements $p_i \in B$. Clearly, $Q = Bp_1 \cap A$ which is a principal ideal by the proof of part (a), done.

Let us return to trace rings. Procesi [6] has shown that there exists an action of $PGL_{\bar{n}}(k)$ on S and $M_{\bar{n}}(S)$ s.t.

(1). $PGL_n(k)$ acts trivially on k

(2). The fixed ring of $M_n(S)$ under $PGL_n(k)$ equals m,n

(3). The fixed ring of S under PGL(k) equals $R_{m,n}$, the center of $\mathbb{T}_{m,n}$.

Corollary 3. The extension $R_{m,n} \subset S$ satisfies no blowing up and $R_{m,n}$ is a

unique factorization domain.

Proof.

Because $PGL_n(k)$ acts trivially on k, $H^1(PGL_n(k), S^*) = H^1(PGL_n(k), k^*) = Hom(PGL_n(k), k^*) = 1$ because $PGL_n(k)$ is a simple group.

It follows immediately from this result that $\prod_{m,n}$ is reflexive as an $R_{m,n}$ -module. A reflexive order Λ over a normal domain R is said to be a reflexive Azumaya algebra, cfr. e.g. [8], if the natural map:

$$\phi: (\Lambda \bigotimes_R \Lambda^{opp})^{**} \to End_R(\Lambda)$$

is an isomorphism. It is fairly easy to show that for every divisorial Λ -ideal I (i.e. a fractional Λ -ideal which is reflexive as an R-module) : $I = \Lambda(I \cap R)^{**}$. We are now in a position to prove Theorem 1.

Proof of Theorem 1.

The proof of the Artin-Schofield theorem shows that the localization of m,n at every central height one prime ideal p is an Azumaya algebra (except if m=n=2). This shows that ϕ_p is an isomorphism for every $p \in X^{(1)}(R)$, m,n being a reflexive $R_{m,n}$ -module, this yields that m,n is a reflexive Azumaya algebra and the theorem follows from Corollary 3 and the remark above.

If m = n = 2, then the only height one prime which is not centrally generated is $\mathbb{T}_{2,2}(XY - YX)$ which is cyclic, done.

We will give two applications of this result:

Theorem 4.: (Montgomery) Every automorphism of $G_{m,n}$ which leaves the center invariant is the identity.

Proof.

By the Skolem-Noether theorem such an automorphism is given by conjugation with a normalizing element of $G_{m,n}$, $h.G_{m,n} \subset \mathbb{T}_{m,n}$ being a central extension, h is also a normalizing element of $\mathbb{T}_{m,n}$, i.e. $\mathbb{T}_{m,n}$.h is a divisorial $\mathbb{T}_{m,n}$ -ideal.

If m or $n \neq 2$, this entails that $h = \gamma.c$ for some $\gamma \in [m]_{m,n} = k$ and c in the field of fractions of $R_{m,n}$, done.

If m = n = 2, the only noncentral normalizing element of $n \in \mathbb{Z}_{m,n}$ is XY - YX. This element does not normalize $G_{2,2}$, done.

If Λ is a maximal order over a normal domain R in some central simple algebra Σ , we denote by $h(\Lambda)$ the (pointed) set of of left Λ -module isomorphism classes of left fractional Λ -ideals which are reflexive R-modules and with $t_R(\Sigma)$ we denote the conjugacy classes of maximal R-orders in Σ .

Theorem 5.: There is a one-to-one correspondence between $h([]_{m,n})$ and $t_{R_{m,n}}(Q([]_{m,n}))$. (m and n not both equal to 2).

Proof.

The correspondence is given by assigning to an (isomorphism class) of a left fractional $n_{m,n}$ -ideal L, its right order

$$O_r(L) = \{X \in Q(\widehat{\parallel}_{m,n}) : Lx \subset L\}$$

This map is well defined and epimorphic because for any maximal $R_{m,n}$ -order in $Q(|||_{m,n})$ we can take :

$$L = (\Lambda: |||_{m,n}) = \{x \in Q(|||_{m,n}) : x\Lambda \subset |||_{m,n}\}$$

cfr.,e.g., [4]. Now suppose L and L' are left fractional $\lceil m,n \rceil$ -ideals s.t. $O_r(L) = \alpha^{-1} \cdot \Theta_r(L')\alpha$, then replacing L' by $L'\alpha$ we may assume that $\Theta_r(L) = \Theta_r(L') = \Lambda$.

Let $M = ((\Lambda : r | l_{m,n})L)^{**}$ and $M' = ((\Lambda : r | l_{m,n})L')^{**}$, then M and M' are two sided divisorial Λ -ideals, i.e., M = M'.c for some element c in the field of fractions of $R_{m,n}$ (because Λ is also a reflexive Azumaya algebra and therefore every two sided divisorial Λ -ideal is generated by a central element). Finally

$$L = (([[m,n:r] \Lambda)M)^{**} = (([[m,n:r] \Lambda)M'c)^{**} = L'c$$

finishing the proof.

Remark.: Even if one restricts attention to projective left $\Delta_{m,n}$ -ideals, some of them are not free (cfr. [7] in m=n=2 case and similarly in m=3, n=2 case [5]), so there are maximal orders over $R_{m,n}$ not conjugated to m=1.

References.

- [0] Chatters-Jordan; Non-commutative unique factorization rings, preprint.
- [1] Amitsur-Small: Prime Ideals in p.i. Rings, Journal of Algebra 62, 2, 358-383 (1980).
- [2] Artin; letter dated December 3rd, 1982.
- [3] Auslander-Goldman: Maximal Orders, Trans AMS, 97 1-24 (1960).
- [4] Fossum: The Divisor Class Group of a Krull Domain, Ergebn. der Math. Wiss. 74, Springer Verlag (1973).
- [5] Le Bruyn: Homological Properties of Trace Rings of Generic Matrices, Trans. Am. Math. Soc., to appear.
- [6] Procesi: Invariant Theory of $n \times n$ Matrices, Advances in Math. (1976).
- [7] Small-Stafford: Homological Properties of Generic Matrices, Israel J. Math. to appear.
- [8] Yuan: Reflexive Modules and Algebra Class Groups over Noetherian Integrally Closed Domains, J. Algebra 32 (1974), 405-417.