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Introduction. This paper was inspired by Artin’s paper [ 1] about maximal

orders over 2 dimensional regular local rings. The technigues in that paper

however are mere geometrical than ring theoretical.

In this paper we basically study tame orders of global dimension 2. It
appears that it is easier to study a more general class of orders : orders
that satisfy the A2 condition. The main theorem is that these orders are
recognisable by their ramification divisor. However this ramlfication
divisor can still be guite bad. We therefore introduce "smooth” orders.
These orders have by .definition a nice ramifieation divisor. For these =s

orders we can prove nice structure theorems.

The technigues used in this paper are easy order theory and graded ring
theory, in particular generalized Reesrings as introduced by F. Van

Oystaeyen, cfr. [10] .

Acknowledgement : While writing this note we received a preprint of a

paper of M. Artin [ 2] that contains much more specific results than ours.
Our methods however are basically different and we think they are interesting

enough to justify publication of our results.

1. Some generalities.

Throughout this paper, R'will denote a (commutative) integrally closed
Noetherian domain with field of fractions K. An R-order A in a central
simple K-algebra Z is said to be tame [6] iff :

{(T1) ¢+ A is a reflexive R-module

{12) = A.p is hereditary for all p € X(q](R)

where th][RJ denotes the set of all height one prime ideals of R.

A twosided fractional ideal I of A is said to be a (Weil) divisor of

A 1f 1 is a reflexive R-module and if EndX[IJ = A = EndX[I]. It is clear




that . I.is a divisor iff I is a reflexive R-module and Ip is an invertible

(1

Ap—ideal for all p € X° " (R). The set of all Weil divisors of A, D (A},

K%k ;
forms an Abelian group under the multiplication law : I*J = (I.J) where

*k
{-) denotes the bidual A-module HomA[HomA(-,A),A) which is clearly

equal to ﬁ[—)p where the intersection is taken over all p € X[1][R].

From [ 6] we recall .that D (A) is the free Abelian group generated by the

elements of :

X[1J (

(A) & (JA) 0 Asp € X RETIN

where J(-) denoctes the Jacobson radical.

IfD = {Iq,m,In} is a set of divisors of A and if g = {gq,m,gn} is a

set of natural numbers, we will dencte with A[D,g] the Z(n]—graded

-1 -1

subring of Z [X,],X,l ,...,Xn,Xn 1, where deg[Xi) = (0,7, 1,.,0), whose part

of degree (mq,m,mn} is given by :

'[‘Tl] [-n-b-]
“ g1‘ gn m1 mn
= * .k - ’
A [D,g](m ) (1, . I, )X, X
1 n
where | E-] is the least natural number >-§ L IfF g =e = {1,.,1} we will

simply write A[D] . Of course, the rings R[D,g] are defined similarly.

From [8], [ 9] we recall that the orders A [D] are again tame orders and
that R [:D,g] is normal if and only if D = {11,m,in} is a set of semiprime

ideals of R. If A is a tame order over R, there are only finitely many

(1

"prime”"-divisors P € X (A) such that P # A.(P N R). This finite set,

which we will denote by P, is called the ramification divisor of A.

Further, for every Pi € P there exists a natural number e, such that

e:i *k *k
[Pi ) = (A.[Pi N R)) . The set e = {ej;P € P} is said to be the central

ramification divisor.

An order A is said to satisfy [th) iff for every p € X[q)(RJ there

exists an étale extension Rp C S{p) such that S(p) splits Z. Note that

(1)

this condition is s tisfied if the residue fields K (p), p € X {R), are

all perfect [ 9 ] .




The Key Result can then be stated as :
Theorem 1: [8] , [9] .

If A iz a tame order over R such that A satisfied (thl, then A[P] is

a reflexive Azumaya algebra over the normal domain R [Pc,e].

A reflexive Azumaya algebra I', cfr. [ 8 ], [ 8], is an order over a

normal domain S such that :

'L 1oPP ~ r
s r EndS[ )
*k
where A‘lS B = (A 8% B) for all (reflexivel S-modules A and B.

For every set of divisors D of A, there is an equivalence of categories

between A-ref, the category of all.left A-modules which are reflexive

R-modules, and A[D] -gref, the category of all Z[n)—graded left A[D]-

modules which are reflexive modules over the center of A[D].

If every element of D is an invertivble A-ideal, then A-mod is equivalent

(n}

with A[D] -gr, the category of all Z ~-graded left A[D] -modules. In

this case, A[D] is said to be a Rees ring, [10].
1)

Let R be a hormal domain. Suppose that D = {pq,m,pn} C X (R} are

torsion elements in the classgroup of R with orders {lq,m,lnﬂ and let

g = {g4»~»g,} be some set of natural numbers. It is easy to see that

(nl

R[D,g] contains a Z ~ " -graded Rees ring :

j.l j 1 i, j 1
T - o (DM Tw % pJ n]X‘]’l 191 Jnnn
(G, rez™ ] n 1
12" n
1,
By assumption, pil = R ay for some element a, € R and we define the

"roll up” of R[D,g] to be the ring :
' 1,8 lg

RID,gl, = RIDogl /U-a,X ' uyta x ")

Clearly, R[D,q], is ZZ/l,lq,! Z:X e X ZZ/'lngn Z -graded in the natural

way .




Further, one esasily verifies that there is an eguivalence of categories

between R [D,g] -gr and R [D,g ]-gr.

2. Auslanders condition AZ.

Definition 1 : A normal domain R is said to satisfy Auslanders condition

A2 iff there are only finitely many isomorphism classes of indecomposable
reflexive R-lattices. A tame order A over a normal domain R is said to
satisfy Auslanders cbndition A2 iff there are only finitely many isomorphism
classes of indecomposable left A-modules which are reflexive R-lattices.

The usefullness of the AZ condition is established in the following

lemma.

Lemma 0. Let R be a normal noetherian local henselian domain of K difm 2
Let A be a reflexive order over R. Then there exists a reflexive lattice

over A such that gl. dim EndA(MJ = 2 ¢ A satisfies A2.

Proof. This is well known.

In this section we aim to show how one can construct tame orders satis-
fying Auslanders condition A2 and having a nasty central ramification
divisor.

In this section we assume that all rings are reflexive modules over some
local normal Noetherian Henselian domain R (and finitely generated as
modules). We need R to be Henselian because we like to have a Krull-
Remaki-Schmidt-Azumaya decomposition for reflexive modules over R.

Let us begin with some easy remarks.

Lemma 1. Let R € S be a finite extension of normal domains such that
L )

R is an R-module direct summand of S. If S satisfies A2’ then so does R.

Proof. Let M be an indecomposable reflexive R-lattice and let S 1 M = @ IVI_-.l

R

be the decomposition of S lR M in indecomposable reflexive S-modules.




M<i s lR M implies.that M <|Mj for some i. So, there are only a finite

number of paossibilities for M.

Lemma 2. Suppose that the map 8 1_ S > S gplits as S - S-bimodules. If

R
R satisfies A2 then S satisfies Az.
Proof. Let M be an indecompgosable reflexive reflexive S-lattice and let
AR )

M=@ Mi be the decomposition of M in indecomposable reflexive R-lattices.

Because SL1_M=51_8 leM, M< s1_Mas S-modules. Therefore,ﬁ%ﬂ SLRMi

R R R

for some 1 and so there are only a finite number of possibilities for M.

Lemma 3. If A is a reflexive Azumaya algebra over R, then A satisfies
e )

AZ if R does.

Proof. Let M be an indecomposable left A-module which is reflexive as an
R-module, then M lRA is a reflexive A-A bimodule. Let M lR A=® Mi

be the decomposition of M lR A in indecomposable reflexive A-A-bimodules.
Then M‘q Mi”for some i. Because there is an equivalence of categories
between the reflexive R-lattices and the reflexive A-A lattices, there

are only a finite number of different Mi's, whence a finite number of

possibilities for M.

We will now give some results for rings which are graded by a finite group
G. We use a technique which was first-introduced in [13] . Let R be any
G-graded ring and form the groupring:RG which we equip with a G-gradation

given by the formula : deg[Ro.T) =T,

The ring S = i R .0 is a G-graded subring of RG which is graded isc-
morphic to R.OThege exists a Maschke-type theorem between S and RG.
Lemma 4. If |G|—1 € R, then for all M,N in RG-gr there exists a canonical
map

~ o Homs_gr[M,N) - HomRG_gr[M,NJ

with the following properties :




(1) ¢ if ¢ € Hom . (M,N), then ¢ =09

RG-g

(2) ¢+ if we have a commutative diagram :

of graded RG-modules such that ¢,¢' are S-linear and a,a’ RG-linear, then

the diagram below is also commutative :

M
al
M

~

—_
0’:'

= e >

)
—_—
9’

There exists another nice correspondence between S-modules and RG-modules. .

If M 1s a graded left S-module and 7€ G, then M{r) 1is defined to be the

graded S-module such that M[TJp = V%“ for all # € G.

Lemma 5. [13 ] Suppose that M is a graded left S-module, then

RG 8% M= X M{r) as graded left S-modules.
o €0

As a direct application of this construction we get :

Proposition 1. If IGI"1 € R and if R has finite graded global dimension,

then R has finite global dimension.

Proof. Suppose that R is graded regular, then so is S. A standard argu-
ment combined with the foregoing two lemmas then yield that RG is a
strongly graded ring, [10 ] so there is an eguivalence of categories

between RG-gr and R-mod, yielding that R is regular.

Proposition 2 : If IGI_,l € R and if R satisfies a graded version of A2,

then R satisfies A2'

Proof. Suppose that R satisfies graded A2, then so does S. Now, the

reader may easily verify that the natural map




RG @é RG = RG
is graded split. Therefore, by a graded version of Lemma 2, RG satisfies
graded A2. Again, using that RG is strongly graded, this entails that R
satisfies A2.

(1][RJ

Let R be a local normal Henselian domain such that D = {pq,m,pn}CZX
are torsion elements of the class group of R. We aim to investigate the
relation between the AZ—Conditions on R,R[D,g] and the roll-up R [D,g]!
An R [D,g]!-module is said to be R-reflexive if it is reflexive considered
and an R-module. The equivalence of categories between R‘[D,g] -gr and

R [Egg]l-gr maps graded reflexive R [D,g] -modules to R-reflexive graded

R [D,g],-modules and vice versa.

The roll-up R [D,g]! is said to satisfy;igﬁadedlfA24i££4itfhasfaniyfa$i
nite number of isomorphism classes of R-reflexive indecomposable
(graded) modules. By a similar argument as in Prop. 2 one can prove that
graded A2 implies A2 for R [D,g]! if l.c.m. (g111’”'gnln] {in the notation
of § 1) is a unit in R.

We can now state and prove the main result of this section :

Theorem 2 : 1If A is a tame order, over a local Henselian domain R,
satisfying (th). With no.ations as in § 1, A satisfies A2 iff R [Pc,e]

*
satisfies Az,if’l.o.m.[eJ €R .

Proof. Suppose that A satisfies A2, then A [p] satisfies graded A2

by the eguivalence of categories between A-ref and A [P] -gref. By a
graded version of lemma 3 and theorem 1 this entails that R [PC,e]
satisfies graded A2. By the equivalence of categories between R [Pc,e] -gr
and R [Pc,e]!-gr, the roll-up satisfies graded A2 whence A2 by proposition
2. Conversely, if R [PC,e]! satisfies A2 then R [Pc,e] satisfies A2

then R [Pc,e] satisfies graded A2 whence so does A [P] by a graded version




of lemma 3. Finally, A [P]-gref being equivalent to A-ref, A satisfies

A2.

It is now fairly easy to construct example of tame orders A satisfying

Auslanders condition A2 which have. a nasty ramification divisor.

Example 1. S = k [[x,y]] where char(k) # 2,3.

83 =< 0,7 i 02 = 1, 73 =1, 070_1 = 72 > acts in a natural way on
KIIx,y1l byo "(? ;J and 7 ™ ( i ;2 ) where £ is a 3rd root of unity
Then :

ST e R e kO]

"

hence R is regular. If we take u x3+y3 and v = xy, then :

du = 3x  dx +* 3y2dy

dv = ydx + xdy

The ramification divisor of S/R is given by

3x2 3y2 > 2
= 3x -8y =0
Y X
3 6 u2
Therefore, v = x = 7T and the ramification divisor of S/R has a cusp.

The order A = Sk 33 is an order in a matrix ring. A/R has the same

ramification divisor as S/R and is regular.

3. Regularizable domains.

In this section we aim to characterize those normal domains. R such that

for some subset D C X(q)(RJ and some set of natural numbers g € Id(nl,

the ring R [D,g] defined in § 1 is a graded regular domain, i.e. sich
that every graded R[D,g] -module has a finite resolution in graded
projective modules.

We will begin by investigating the connection between regularity

of R and graded regularity of R[D,gl.




Lemma 6. Let R be a Noetherian gr-local domain with unigue maximal
- graded ideal m. Then R is graded regular if and only if gr—dimR/m(m/mZJ =

gr-Kdim(R).

Proof. It is olear]y sufficient to prove that Rm is a regular domain.
In order to do this we have to prove that P is graded projective if P
is a f.g. graded R-module s.t. Pm is Rm-projective. So, we have to show
that HomR(P,“J is exact in R-gr. Let f:M = N be an epimorphism of
graded R-modules and let T be the cokernel 6f the induced map

HDmR[P,MJ > HomR(P,NJ, then it is clear that Tm = 0. Let t be an

homogeneous element of T. Then there exists an element ¥ € R/m s.t. #.t =0

Let & = Mo e ¥l be an homogeneous decomposition of &, then at least
1 h ‘

one of the b is not in'm. This implies that L is a unit in R and
i i
since “0 .t =0 we conclude t = 0. So, T.= 0.
i
Lemma 7 : If R is a regular local domain, then R [D] is graded regular

for every set of divisors D.

Proof. This follows trivially from the equivalence of categories between

R-mod and R [ D] -gr which exists because every element of D is invertible.

We can now give a complete answer to the guestion : when is R[D,g]

graded regular if R is regular ?

(’IJ[RJ

Theorem 3 :Let R be a regular local domain. Let D=={p1,m,pn} C X
apd g = {gq,m,gn} with all 24 > 1. Then R [D,g] is regular if and only
if the generators of the principal prime ideals—pi form part of a re-

gular system of parameters of R.

N
[g ]
Proof. Define S = R; S, = X » i+1 J
A—— Q '_L-i--'l j GZ Dj.'l'/l .Si.xi'*"l. LEt Mi""l be the

unigue maximal graded ideal of Si+ . As the reader may easily verify i

4




[.gL]
3 . i+1 J
Mier = 2 I3tPaar St Mg

j €7

where lj = M, if g,

5 141 1 3 and Ij = Si if Biyq * 0 Caleculating the

. R 2 . .
graded dimension of Mi+1/Mi+1 over S, ,/M.  , glves us :
1+ dim 2
S1/M; (My/My + Py yq8y)
and therefore, Si+1 is graded regular if and only if Si is graded regu-

2 . 2 _ 2,
lar and Pi_y Z (Mi]O. Calculating [Mi+1]o gives us (Mi]O ¥ Piaqe SO

i i-1
2 N/ ‘ : .
= * . ’ > . 1 I 4 1 .
[MiJD Mo + qu pj Therefore S”,l is graded regular if and only if Sl

is graded regular and Py ¢ Mi Pyt e Py

However, as we will see below, there exist non-regular normal domains
s.t. R[D,g] is graded regular for some suitable choice of D and g.

The next result chracterizes those normal domains

Theorem 4. Let R be a normal local domain containing an algebraically
closed field of characteristic zero.

There exists a set of divisors D C X(q)[R) representing torsion elements
in C1(R) and a set of natural numbers g such that R [D,g] is graded re-
gular if and only if there exists a regular overring 3 of R, finitely

generated over R and a finite Abelian group G acting on S s.t. SG = R.

Proof. Let S the roll-up of R[D,g] , then S is graded regular by the
category-equivalence of R[D,g] and R [D,g],. Because R contains a
field of characteristic zerc it follows from prop. 1 that S is regular.
Since R contains all roots of unity, the gradation on S may be changed
into a group action having the required properties, [3].

Conversely, because S is a regular ring, it is a direct sum of regular
domains each containing R. Therefore, we can replace S by a domain and
G by some subgroup of G. R containing an algebraically closed field,

. *
the group action of G may be turned into a gradation of S by G .




_./l/l_

Therefore, S = ® % L, with Ie = R. S being & reflexive R-lattice,
o <0
every I is a reflexive R-lattice. Further, S being a domain entails
that every Ia has either rank zero or one. If rankR(SJ = n, then the
classgroup of R is n-torsion. Let D = {p1,m,pk} be the set of prime
*
factors occuring in the decomposition of the Ia’ ¢ € G, and let
*ok *k

D' = {[D ;SJ L RAad [D SJ }n

1 k

Jok

Each (piS) being invertible, it is claer from the category-eguivalence

that S[D'] 1is graded regular. Furrther, S [D’'] is a graded free exten-

sion of R[D], entailing that R [D] is graded regular.

In dimension two, we can give an intrinsic characterization of regulari-

zable domains.

Thecrem 5. Let R be a normal leocal domain of Krull dimension two. There

(13 of torsion elements of

exists a set of divisors D = {pq,m,pn} C X
C1(R) and a set of natural numbers g = {gq,m,gn} s.t. R[D,g} is graded
regular if and only if R has only a finite number of isomerphism classes

of indecomposable reflexive modules which are all of rank one.

Proof. Because each.of the pis is torsion in Cl[R}, R[D,g] bas graded
Krull dimension two, whence every graded reflexive R [D,g] -module is
free. So, let Mo be an indecomposable reflexive R-module. Then [MOR [D,g]J**
is graded free, yielding that Mo = (MOR [D,g]):* is a direct sum of
divisors which are products of the pis. Therefore, every indecomposable
reflexive R-module has rank one. Since every P; is torsion, there are only
a Finite‘number of lsomorphism classes.

Conversely, if R has only a finite number of isomorphism:classes of inde-
composable reflexive ideals, C1(R) is finite. Let D = {pq,m,pk} be the
prime factors of these indecomposable reflexives. Because there is an
equivalence of categories between R-ref and R [D] -gref, every graded

reflexive R [D] -module is free, yielding that R [D] has graded global




dimension two.

Let us give an example of a regularizable domain which is not regular.

Example 2 : Let R be the affine cone ¢ IXY,z] /[XY-ZZJ then Cl1(R)=Z/zZ

and is generated by the ruling p = (Y,Z).

Take R[D] : = @ (Y”ngz @ p'1x;" ® R ® pX

Then, using lemma 6, it is fairly easy to check that R[D] is regular.

2 3
L ® (IX] ®p.(VIX] © .

4. Smooth Orders.

Whereas tame orders satisfying Auslanders condition A2 can still have a
very nasty ramification divisor, we will study in this section the Zariski
and étale local structure of regular tame orders with an extremely nice

ramification divisor : smooth orders.

Definition 2 : A tame order A over a normal domain R is said to be smooth

*

if there exists a set of divisors - D of A such that A[D] is an Azumaya

algebra over a graded regular center and every element of D is an inver-

tible A-ideal.

Clairly, in view of the equivalenbe of categories between A-mod and A [D]-gr
and because A [D] is graded regular, it follows that A has finite global
dimension. Furthermore, it is trivial to verify that smooth orders are closed
under taking matrix rings and polynomial extensions.

In most applications, one takes D = P the ramification divisor of A, but

we will give an example of a smooth order s.t. A[P] is not Azumaya.

Example 3 ¢ Let R be the affine cone ¢ [ X,Y,21] /[XY-ZZJ and let p = (Y,Z)

be the ruling which generates the class group. Let A be the reflexive

Azumaya algebra :

A= EndR[R @ pl =




_13_

and let D = {AJ[S ;)} which is clearly an invertible two-sided A-ideal.

Then A[D] is the Z-graded ring :

Arpl=Aar® Dk, @ N
1071 -1 1
Y 0
which is easily checked toc be an Azumaya algebra with the graded regular

center :

~e v ix?ep ' eropx, @ X @ p(1X] + .
1

Therefore, A is smooth through A[P] = A is not an Azumaya algebra.

From now on, we restrict attemtion to smooth orders s.t. D = P in a pz—di—
mensional division algebra, p being a prime number.

It turns out that in this case aone has a good hold upon the structure of
such orders. Furthermore, we will always work over a normal local domain R
and assume that the ramified height one prime ideals of A are generated

by a normalizing element. We do not know whether this condition is always
satisfied.

Working inside pz—dimensional divison rings puts severe restrictions on

the number of ramified primes.

Lemma B : If A 1is a smooth order over a local normal domain R in a pz-
dimensional division ring Z, then # P < 2.

Proof. Let n = # P, then, because A[P] is a Z[m?*graded Azumaya algebra

over R [P], which is a graded local domain with unique maximal graded ideal 1

m[P] = z m.R [Eﬁ% @ R[P] ‘
¢ € H o € GL\M o

where G = Z‘nJ and M = pZ @..® pZ. We must have that A[P} /A [P] .m[P]

is a graded central simple algebra of dimension p2 over the Z[n3—grad9d

field [ ]

S PP PP
RIP] /m [P] = R/m [ X3, X,y XX P




_14_

Because we have assumed that every prime ideal Pi’ 1< i<n, is generated
by a normalizing element, an easy calculation shows :
i i

A[P]/ATPLm[P]l = @  A/(AmtP +..4P JX T.x
L n 1 n
U<1j<p

n

the isomorphism being one of the graded R/m [xﬁ,x;p,m,xﬁ,x;gl modules.

Calculating dimensions on both sides yields 1

2

oon . .
(*) p- = p .dim m(A/(Am+P1+ " Pn)]

R/

This immediately implies that n < 2.
Combining (*) above with theorem 3 we get

Theorem 6 : If A is a maximal order over a regular domain R in a p2-

dimensional division algebra X, then A is smooth if
(a) R has a regular ramification divisor with normal crossings in Z

(b) For every m € Spec(R) one of the following cases occur ¥

CASE O : Nm = 0, i.e. Am is an Azumaya algebra over Rm
CASE 1 : Nm = 41 and dlmR/m[A/Am+P] = p
CASE 2 : N = 2 and dim (A/Am+P+a) = 1

m R/m

where P resp. Q) is the height one prime of A lying over the ramified central

prime p (resp. gJ.

Let us give a geometric interpretation of this result for a maximal order
over a smooth surface. Let {pq,m,pn} be the ramified height one primes,
then each p, can be viewed as a curve on the surface. Nm < 2 then says

that there'are no three such curves intersecting at one point. Furthermocre,
each curve must be nonsingular and in an intersection point of two

curves the tangent lines may not coincide.

As we will see later, CASE 0 (resp. 1,2) corresponds to CASE 1.1. (i)
(resp. (ii), (iii) of [1] , whereas CASE 1.1 (iv]) cannot occur as a

smooth order. Let us give some examples of smooth maximal orders.




_/15_

Example 4 : Let A = ¢ [X,-] be the skew polynomial ring over ¢, where -
denotes conjugation. It is clear that A is a maximal order with center
R = R[t] where X2 = t. It follows that P = {{X)}, so A[P] is the Z-

graded ring :
LxP e K hix e ae ax, @ (41 e

and R [P] is the Z-graded ring #

=1,,-2

~@ t hx e Rx;1 ®@RO® (t)X, ® tt)xf ® (tZJX? ® .

For every prime ideal g # (t) € Spec R[t], /\.q is an Azumaya algebra over

Rq, whence A [P]qpis Azumaya over R [P]q. In the ramified prime we have

dimprey /[t)[ct[x,f] /(x3) = dimg (§) = 2

i.e. CASE 1, so A is smoocth over R.

Further, R [Pl /t [P], = ]R[t,l,t;/l] where t, = t X° and

{t) 1 1
A [P][t)/t [P] A'[P](t] is the Z-graded central simple algebra :

1

-1 _ . _ -
¢Lv,,y -1 with v, = X.X, over R[t,.t, 1.

1
Example 5 : Let R be a regular local domain of dimension two and suppose

that x and y generate the maximal ideal m. Let £ be the quaternion-algebra
(xky] and let A = R[1,1,3,1i3], i.e. A is R-free with generaférs 1,1,3,13
and relations :

.2 .2 - <
i”" =x,J =yand ij = - ji

In[ 18] it is shown that A is a maximal R-order. Clear]y,‘Pe = {(X),(Y}}
which is a set of regular ramification divisors with normal crossings.

Further, A[P] is a Z @ Z-graded ring which can be wisualized (omitting

powers of X1 and X2J as
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and its center R[P] is the Z ® Z-graded ring which looks like

)

X'yl @ ) @ (y) @ (xy)
@ )] ® 0]
'y @ ) @ () @ (xy)
@ @ @ ®
«h @ R © R @
® @ (©) ®
[x_,l) ® R @ R @ (x]
® @ @ ®
x Ty v v ey
and dimR/m[A/A m+ (i) + (J)) = d‘imR/m(R/m:

R-order of case 2.

Further, R[P]1 /m[P] = R/m [Yi,\(,l Y

-1 -1 . o
R/M LYY, WYouY, 1 with Y, Y, = -Y,Y

-2 2

*ior2
Whereas A[PI/A[P]ImI[P] is the Z ® Z-graded central simple algebra :

21

Y-?1 where Y, =

@ {xy3
@

@ (xy)
@

©) (x)
®

@ (x)
@

(xquJ

80 A is a smooth maximal

1X1 and Y2 = JXZ.

It s part of degree (0,0) equals

R/m corréesponding to the fact that A is quasi-local with maximal ideal

M= (i,3).
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Example 6 : Let F be any field with characteristic unequal to 2. Let

§ = ?JfX;Y]q(x’Y] where X and Y are indeterminates over F. Then R is regular
local of dimensions two and has field of fractions K = F(X,Y). Let £ be

the guaternian algebfa [X,’H-YJK and let A be the R-free order R [1,1,3,1] ]
then A is a maximal order [ 16, p. 471. Then P = {(i)}, P = {(x)} and

x) ¢ m2, Because dim. (A/Am+ (1)) = dimF[F ® F) = 2, A is smooth. Further

RIP]/m[P] =F [Yf,\{1

21 where Y, = iX, and A[P]/A[PIn[P] is

the Z-graded algebra

ae

1

- 2 -2
(F @ Fe) [Y1,Y1 »9 ] MZ(F [Y,I,Y,I 1)

where ¢(a @ b E) = a® -b E and o is given by

10 -1 0
oc['l@ﬂ)—[01] oc(O@E)—(O ’IJ
atv,) = (00
Y1 0
Therefore, A[P]m[P] is a Z-graded central simple algebra over F [Yf,Y;z]

However, the part of degree Bepf A[P]/ A[PIm[P] is semisimple F @ F €.
corresponding to the fact that A is not guasi-local. Each factor corresponds

to one of the two maximal ideals of A lying over m = (X,Y) :

M1 = Ali,ji-1 . M2 = A(i,3+1)

Having characterized smooth maximal orders over a regular center, we will
now study their Zariski local structure, i.e. the number of conjugacy

classes over a regular local domain. One of the basic ingredients in this
study is a result of Grothendieck on descent of modules. For convenience,

we state this theorem here.

Theorem . [7,2.5.8] Let R be a Noetherian (semi) local ring, A a finite

R-algebra and let M1, M2 be finite left A-modules. Let R > S be a faithfully
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flat morphism with S Noetherian. If M, ® S = M2 ® S as left A @ S-mo-

1
dules., the M, = M. as left A-modules.

1 2
Using this theorem, we will have to compute the conjugacy classes of the
extended orders A.8>R8h where A is smooth over R and RSh denotes the
strict Henselization of R cfr. [ 121].

CASE O is easy : if one (maximal) order A over R in Z is Azumaya, then

sh

every smooth order, say A is Azumaya too. Because Br(R~ ') = 0,

A ® R3" h

= Mn(RSh] =T ®RrR"" and by descent A =T as R-algebras, yielding

that A and T’ are conjugated.

Before treating other cases, let us recall the definition of the graded
Brauer group as introduced by F. Van Oystaeyen in the Z-graded case in [14] .

(n)

If T is any Z -graded ring, then a graded Azumaya algebra over T is an

Azumaya algebra over T admitting a Z[n]—gradation extending the gradation
of the center. Two graded algebras I' and © are said to be gr-equivalent

if there exist finitely generated graded projective T-modules P and Q

such that there exists a degree preserving isomorphism

r @T ENDT[p) = Q ®T E:NDT(QJ

where the rings ENDT(—] and the tensorproducts are equippped with the
natural gradation, cfr. e.g. [14]. The set of gr-equivalence classes of
graded Azumaya algebras forms a group with respect to the tensorproduct
Br®(T), called the graded Brauer group of T.

If T is a Z-graded Krull domain it was shown by S. Caenepeel, M. Van den
Bergh and F. Van Oystaeyen, [5] that the natural (i.e. gradation-forget-
ting) morphism Br&(T) = Br [4]: is monomorphic. Their argument can .-
éésily be extended to the Zin3mgraded case.

S. Caenepeel [ 4] calles a graded local ring R (i.e. having a unique
maximal graded ideal) gr-Henselian if every finite graded commutative R-

algebra B is graded decomposed, i.e. when it is the direct sum of graded
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local rings. In the Z-graded case it tursn out that a graded local ring
is gr-Henselian iff its part of degree zero is Henselian, [4] . This

{n)

result can be generalized to Z -graded rings. Furthermore, if R is

gr-Henselian with maximal graded ideal m then the natural map :
BréR - BreR/m

is monomorphic by a similar argument as in the ungraded case.

Theorem 7 : If A is a smooth order over a local normal domain in a p2—
dimensional division algebra, p a prime number, then :

sh

(@) ¢+ If Ais in CASE 1, R”' gsplits A

(b) : If A is in CASE 2, R®" does not split A
i char (RSM/m®M # p.

Proof. A[P] ®k RSh is a graded Azumaya algebra over rSh [P] 8% RSh

equipped with the natural gradation. RSh [P] is graded Henselian because

its part of degree (0,-,0) is Henselian. The unigue maximal graded ideal

of RSh [P] will be denoted by mSh [P].

{a) : In this case RSh | P1] /mSh [P] is the graded field

sh
R™ /m 1

p
[Y2.Y

P

P
where Y1 w X1

() being the ramified central prime.
Now,

T=[r] 9r®M/a[r] ® RS [p]

is a Z-graded central simple algebra of dimenszion p2 over RSh/mSh[Ya,Y;p].

Calculating the part of degree zero of T it turns out that Tb need to be

h

an algebra of dimension p over RSh/mS » using the formula (*).

Because Rsh/mSh is separably closed and ohar(RSh/mSh] # p we must have that :

TE = RSh/mSh @ .. @ Rs'h/mSh (p copies)
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Therefore, T contains zero divisors and hence :
T=n RS vP,v P
p 1771
with an appropriate gradation (ef. example §}.

Finally, using the injectivity of the morphism :
sr8 (R [P1) - BB (R [P [P D)

it follows that :

(s1) : A[P]1® R®" = Enp o P
R™[P]

for some graded finitely generated projective RSh [P] -module P. Calculating
the parts of degree zero on both sides yields that :

sh _ sh
A 8% R > MD(Q(R 1)

finishing the proof of part (a).

(b) : In the second case, RSh [P]/mSh [P]is the Z ® Z-graded field :

sh

sh Py 1P P
RE/m™ LYY, LYo, Y, ]

where Ya =7 X? and Y? = q? Xg where () and (@') are two central ramified
(p,0) and deg (Yg) = (0,p). Now,

primes and deg(Y?)

T-=A[rP] @r%"/(AlPT® R [P]

is a Z @ Z-graded central simpile algebra of dimension p2 over

Rsh/msh

[YD,Y;D,Yg,Y;p] . Using formula (*) it is easy to see that all
homogeneous parts should be one-dimensional. In particular,

= - Rsh/msh
{o,0)

Let X be a generator of the P(o O]—module_f[,l oy @nd Y a generator of the

P(o o) “Module F(o 4y » then it turns out that T is a graded cyclic algebra

determined by the relations :
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XP = g Yi ac RSh/mSh
v o= b ?i b e r%M/mSh
XY = £TXy 1 <i < p-1

where ¢ is any primitive pth root of unity. Because RSh/mSh is separately

closed and char(RSh/mSh) # p, this algebra does not depend upon the
choice of a and b, showing that T is graded isomorphic to the Z ® Z-graded

cyclic algebra determined by :

P o_up
X =YY
PP
32 : Yo=Y
XY = EYX

and calculating the norm, it follows that this algebra is a domain. Again,

using injectivity of the morphism :
88 (R%" (2D - BrE RS [P V" [P1)

it follows that A [P]® R®" represents a non-trivial element in Br® (RSP,
so its part of degree (o,0) cannot be an order in a matrixring since
R[P] ® r%M is regular and

sh

Bre RN [P > BrR [P -~ BreREN [P D)

finishing the proof.

Theorem 8 : All smooth orders over a .local normal domain in a pz—dimen—

sional division algebra are conjugated.

Proof.
CASE 1 : Let A be a smooth order in A. By (S1) in the proof of Theorem 9

we know that there exists an étale extension R = S s.t.

A[P]®S = END P

s[P]

where P is a graded finitely generated projective S [P] -module. Because
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S[P] is graded local, P is graded free, i.e. of the form :
PQSWH%JQWQSLNWR

where o, €Z and S[P] [GiJ is the Z-graded S [P}~ module determined

by taking for its homogeneous part of degree o :

s[Plo,), =5 [P]“+ai

Therefore, A[P]® S = MD(S [P]l[oq,myOpJ, where the homogenecus part of

degree a of the ring on the right side is given by

J
t
s[zi]a :
- |
[}
- >
l~“-"“"”\fS[PkWﬁW
‘o i ]
~
\\
S[P]a

An easy computation shows that up to conjugation in the part of degree
zero, all Oi may be chosen to be elements of the set {0,1,..,p-1}. Further,
we may/assume that o, <‘02 < . <’ap for otherwise one simply has to
conjugate with a permutation matrix.

Because all isomorphisms occuring above are gradation preserving we have :

;

[}

5 1

o i

j"“"'“’-\‘”“"S[P]O'O' (N]
A® RS & ~~ i3 = M (S) (0,0 )
—_— \ - n 1,...,
\\
~N
~
~
o
S

Only very few rings Mn[S][aq’”’UpJ can occur.

E.g. if o, = Oy = = Op’ Mp[SJ(Uﬂ’m’ODJ = Mp(S] an Azumaya algebra, con-

tradicting the fact that A is ramified.
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. < = - 1 e
Further, if °, < g, < . \.Up and if O, = 0.y for some i, then Mp[S](Gq, .Op)

is no longer a tame order because it has the form :

~

1
i
s L e
!\\
4+ 'S S~
1 - — - ——— \S

where the upper-triangular entries are S, the lower triangular are either
() or S and at least one of them, namely (i+1,1) equals S. Localizing

at (7} and using the characterization of hereditary orders given in [ 1]
it follows that (A ® S](ﬂ] is not hereditary, whence A ® S is not tame.
Because R = S is étale this cannot occur.

Therefore, the only possibility is MD(S)[D,1,2,m,p—1] and Grothendieck

descent finishes the proof.

CASE 2 : From Theorem 7 we retain that A [P] cannot be split by an étale
extension of R. Nevertheless, mimicking the ungraded case, A [P] can be
split by a graded étale extension of R [P] because R [P] is graded local,
here graded étale is defined in the obvious way) .

Denote S = R [ X1V (XP-7) then S(®) will be defined to be the Z @ Z-graded
ring :

@x% o wxh e wy e wx o @y e

® ® ® ® ®

@x% @ @x) e @l o @y o @) e
® ® ® ® ®

x4 e ' e s ® X3 @ x4 @
® ® ® ® ®

x5 e oh e s © e X e
® ® ® ® ®

- _2 - - - - . -
@ he @Y e wl e @ % e a ™% e
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This is such a graded étale splitting ring for A[P] . Again, mimicking the

argument of case 1 above

A[P] ©® S(®) =M (S(®))(0,,u,0 )

where the 9, €Z ®Z may be chosen to lie in the set :

{(0,0) | 0< 0o <p}
It can be shown that all rings MD[S[QJ](Oq,m,Op] are graded isomorphic to
Mb[S(®J][[0,0J,m,(D,O)J

Applying a graded version of Grothendieck's descent theorem, it follows

that whenever A and T' are two smooth R-ornders in A, then
A[pPl=T]P]

as graded R [P] -algebras. As always, this isomorphism is given by con-
Jjugation with a unit

-1 -1
€ A
o [X,l,x ;ngxz ]

and because this ring is a Z ® Z-graded domain, o is homogeneous, i.e.
L b

a =6 X1 X2

*
with & € A", Fipally, computing parts of degree (0,0) gives us that

finishing the proof and this paper.
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