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INTRODUCTION.,

Throughout this note, L will be a nonzero finite dimensional Lie algebra cver a
field k of characteristic zero. let U(L) be the universal enveloping algebra
of L with center Z(U(Lé), D{L) will be the division ring of guotients of UL}
witf center 7(D(L)), For each A € L*, we denote by D(L)A the set of those

U & B(LY such that xu-ux = A(xJu for all x € L. Its elements are called the
semi~invariants of D{L) relative to A. Clearly, D[L))\.D[L)u - D(L,J}\”j for all

Au € L. We denote by ALfL) the subgroup of L" consisting of those A € L

such that D[LJA # 0. The sum of the D(L)A is direct and is a AD(Lngraded
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subalgebra Sz(0{L)) of D(L), called thessemi-center of D(L). If we put U[L)A =

ULy 0 D[L)A’ then the sum Sz(U(L)) of the U{L), is called the semi-center of

A
UL). It is a commutative subalgebra of U(L), which never reduces to k and
which is stable under all automorphisms of U(L).

If k is algebraically closed, C. Moeglin has shown that Sz(U(L]}) is a unique
factorization domain [8]. The main aim of this note is to extend this result to

any base field of characteristic zero. We wish te thank Prof. F. Van Oystaeyen

for his helpful comments.

1. FACTORTALITY OF Sz(D(LJJ,

Using the result of M.P. Malliavin [ 8] that each nonzero two-sided ideal of U(L)
contains a nonzero semi-invariant, it is fairly easy to check that w is & semi-

invariant of D(L) if and only if w is a quotient of two semi-invariants of U(L)

[6, Prop. 1.8]. It follows that Sz(D(L)) is the localization of Sz(U(L])) at

the multiplicative system of nonzero semi-invariants of U(L).

PROPOSITION 1. The semi-center Sz(D(L)) of D(L) is a factorial domain (UFD).
PROOF. Clearly, Sz(D(L)) is graded by the torsion-free Abelian (hence totally
ordered]} group AD(L}. By [3, Cor. 3.4 (1)] we have to verify that Sz(D(L)} satis-
fies the ascending chain condition on principal ideals. So, let Sz[DEL]a1 «
Sz(D[L))a2 C ... be an ascending chain with a; € Sz(D(L)) for all i. Let K’ be
an algebraic closure of k and put L'=L @ k’. Then Sz(U{L')) is factorial [ 8]

and thus also its localization Sz(D(L')). Therefore, there exists a natural
number N such that for all m 2 N we have Sz[D(L'J]aN = Sz(D(L'J)am. Hence, we

can find a unit w € Sz[D[L’])x auch that ay = w.a . Now, AD(L'J being totally




ordered, every unit w of Sz{0O(L’)) is homogenecus, 1.e. a semi-invariant of

D(L’). But we D(L), so w is a nonzero semi-invariant of D(L) and thus a unit

of Sz(D(L)). Consequently, Sz(D(L)]aN'= Sz(D(LJ)am for all m = N.

"2. THE SEMI-CENTER OF U(L) IS A KRULL DOMAIN.

A domain A with field of freactions Q(A) and graded by a torsion free Abelian
group is a Krull domain if and only if the following conditions are satisfied
(1) (I:I) = {x € Q(A) : Ix C I} = A for every graded ideal I of A,
(2) A satisfies the ascending chain condition on graded diviscrial
ideals of A,
(3} Qg(A), the localization of A at the multiplicatively closed set
of nonzeroc homogeneous elements, is a Krull domain.
[11, €3] and [4. Th. 2.8].
Let k' be an algebraic closure of k and put L'=k ® k', Then U(L’) = U(L) ® K’
and each ¢ € Gal(k'/k) = AutK(K'J can be extended to a k-automorphism, also
denoted by o, of U(L') and D(L'). The orbit {o(u) : 0 € Gallk'/k)} of u is
finite for every u & Q[L'). Furthermore, u € U(L) iff o(u) = u for every
o € Gal(k'/k). If u &€ U(L') is a semi-invariant with weizht A, then o(u) is a
semi~invariant of U(L') with weight c°l°c_1. Therefore, Gal(k’/k) acts on

Sz(U(L"])).

LEMMA 2. Let u, v be nonzerc elements of U(L). If uv and v belong to Sz(U(L}),
then so does u.

PROOF. By assumption v=v1+...+\/r and (%) uv=w,]+...+wS where v, € U[L]u ,
i .
J

w_ € UL with u., y_ €L . Each v,.(resp. w_) is also a semi-invariant of
r 'Yr J r J r




UCL") with weight u& {(resp. Y;J. Because uv € Sz(U(L')) and k' is algebrai-

cally closed, u € Sz(U(L')) by [9]. So, U=, el where O?fu‘:.L € U[L’]A with
o ‘ i

Ai € (L'} . We show that u € Sz(U(L)) by induction on m. This is clear if

m=1, because then u is a semi-invariant of U(L) as u € U(L). Now, let m > 1.

Take ¢ € Gal(k'/K), then
u = glu) = o(u1]+...+o(umj

where o[ui) is .a semi-invariant with weight coxioomq. By the uniqueness of the

decomposition of u, we see that {o{uq),..., c(um]} = {Uql""“m} and
{oen 00_4’...’ oo 00_1} = {A ,..., A }. 0On the other hand, uv = X u,v, where
4 m 4 m : i3

u,v, is a semi-invariant with weight A.+ul.
i j i ]

Regrouping the terms and comparing with (#) we conclude that Y% = Ai+u2 for some
J
-4

1.9, lor s = o ! "_ = - [ .:’:_ r 1ly; o) .o - = . si

i,J Hence xilL (yq Lj]IL Y4 uj L Consequently; o Xl o Al since
these are two k'-linear functionals, taking the same value on esach x&L. Hence
o(ui)=ui for all ¢ € Gal(k'/k) yielding that uy is a semi-invariant of U(LJ.

So, (u—ui)v = uv-uLv € Sz(U(L)) whence by induction u-u, € Sz(U(L)) and therefore

finally u € Sz(U(L)).

COROLLARY 3. Sz(D(L)) NUu(L) = SszU(L))

PROOF. Let 0Au € Sz(D(L)) N UlL), then u=w1+...+wm where each W, is .a nonzero

.. . -1 .. .
semi-invariant of D(L). Now, wi=ui.vj for some semi-invariants UgsVy of UCL).

We may assume that v SSV =V Then o#v € Sz(U(L)} and UVEU +o e bl € sz{UlL)).
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By the previcus lemma u € Sz(U(L}]) finishing the proof.

PROPOSITION 4. The semi-center of U(L) is a Krull domain,

PROOF. Sz(U(L)]) is Aj(L)-graded and 08 (Sz(UL)) = Sz(D(L)) is a Krull domain by




Preposition 1. et I be a graded ideal of Sz(U(L)), then I is generated by
semi-invariants of U(L), hence by normalizing elements of U(L). It follows

that U(L)I = IU(L) is a twosided ideal of U(L). Let g € Q(Sz(U(L))) be an ele-
ment of (I:1), then Sz(D(L))g = Sz(B(L))Ig € Sz(B(L)JI = Sz(D(L)) yielding that
g € Sz(D(L)). Also,‘U(L)Iq C ULLII. This forces g € U(L) since U(L) is a maxi-
mal order of which U(L)I is a two-sided ideal [5]. Therefore, for any graded
ideal I of Sz(U(L)), (I:I) C Sz(D(L)) N U(L) = Sz(U(L)) by Corollary 3. Let

-

ID C 11 C ... be an ascending chain of graded divisorial ideals of Sz(U(L)}).
Because U(L) is Noetherian there exists a natural number N such that U(L)Im =

£a : > - e (71 . = {y & 5 11} : T < 1o
U(L]IN for all m = N. Let g [lm.IN) X RISz{LULIYY Iy % Imr then
g € Sz(D(L)) since SZ(D[LJ)Im = SZ(D[L))IN = 3z(B(L)}. Further,

_ . . -1

 C Y = . ~ - 3 =
U(L]INq U(L;Im U(L)IN whence g € U(L). Therefore, Im“ IN
[Im.lNJ Sz(D(L)) UL Sz(U(L)) and so Im IN whence Im IN for all m =N,
finishing the proof.

3. FACTORIALITY QOF THE EXTENDED SEMI-CENTER.

As we noticed above, Gall{k'/k) acts on Sz(U(L')). Its fixed ring under this ac-
tion, Sz(U(L')) N U(L), will be called the extended semi-center of U(L) and will be
denoted by Esz(U(L)). In [ 6] it was shown that Esz(U(L)) is a factorial domain.
Using Proposition 4 we will now give a more ringtheoretical proof of this result,
based on Samuel’'s thecory on descent of class groups, cfr. e.g. 171,

PROPOSITION 5, The extended semi-center of U(L) is a factorial domain.

PRODF, Let K be a finite Galois extension of k with corresponding Galois group.

G, then as before G acts on Sz(U(L ®K)). By Proposition 4 Sz(U(L®K)) is a




Krull domain, hence soc is its fixed ring Sz(U{L @’K)]G. By Samuel's descent

theory we know that the kernel of the natural morphism :

0:C1(Sz(U(L ®KN®) - Cl(szUL ®K))

* %
1] ?'quG,K ) which is trivial by Hilbert

embeds injectively into H1(G,SZ[U(L ® KJ
80, cfr. e.g. [ 11, ch X, Prop. §1.1], hence ¢ is menomorphic.

The family of all finite Galois extensions of k form a directed system and be-
cause class groups conmute with these direct limits, we obtain that the class

groupyﬁliEsz(U(LJJJ = lim C1({Sz(U(L @’K))G) embeds injectively into
s

1im C1(Sz(U(L ®K))) T C1(Sz(U(L"))) = 1, finishing the proof.

COROLLARY 6. [8] Let u be a nonzero semi-invariant of U(L). Then there exist
unigue irreducible, pairwise non-associated, semi-invariants U1""’Un and natu-
My

% M
ral numbers m;, a € k such that u=a.u 1...un

1 Moreover, each ui is prime in

SzUL)).
PROOF, Clearly, u € Esz(U(L)) which is a UFD. So, let u=a.u?1...u:n be a unigue
factorization of u into irreducible factors. As u is a semi-invariant, so are

u U [6]. Next, suppose u, divides vw in Sz(U(L)), where v,w are nonzero

greee
elements of Sz(U(L)). In Esz(U(L)) us is prime and divides vw. Therefore U
divides v (or w) in Esz{U(L)), i.e. V=ULy for some nonzero y € Esz(U(L)). Now,

Uy and U belong to Sz(U(L)). By lemma 2, this implies that y € Sz(U(L)) end

thus Uy is prime in Sz{U(L]).

The following shows that it may happen that Esz(U(L)) # Sz(U(L]).

ExAMPLE 7. [6]

Let L be the Lie algebra over R with basis x,y,z such that [x,yl=y+z , [x,z]=-y+z




2.2
l.

and {y,z]l=0. One verifies that Sz(U(L))=R[ly +z In L @€ we consider the

basis x,u,=y+iz, u,=y-iz. Then SzWU(L ®¢)) = £lu,,u.] and Esz(U(L))=RIy,z].

1 2 1772

4. FACTORIALITY OF Sz(u(Ll)),

We are now in a position to state the main result of this note.

FTHEDREM 8. The semi-center Sz(U(L)) of U(L) is a unigue factorizstion domain.
PROOF. From Corollary 6 we know that SZ{U(L]J is a graded UFD, that is, a graded
integral domain such that each nonzerc, nonunit homogeneous element is a product
of prime elements {1, Definition 4.11. Morecver, the localization of Sz{(U{L))

at the multiplicative system of nonzero homogeneous elements, ngSZfU(LJ))=
Sz(D(L)) is a UFD by Proposition 1. Invoking |1, Theorem 4.4], we may conclude

that Sz(U(L)) is also a UFD.

5. FACTORIALITY OF sz(U(g)),

We shall now take a brief look at a more generél situation. Let R be a Noetherian
Krull domain of charapteristic zero with quotient field k. Let ¢ be a Lie algebra
over R such that ¢ is a free R-module of Fini&e rank and put L=¢g @ k. Recently,
D. Reynaud has studied U(¢g) and its semi-center A=Sz(U(g)}, which is defined ana-
logously [10]. The results we shall quote from this work do not require that k be
algebraically closed. For instance, Sz(U(g))®k = Sz(U(L)) [10, lemma 8, p. 47].
Therefore Sz(U(L)) is precisely the localization of A at the multiplicative set S
of nonzero elements of R. Also, by [10, lemma 1, p. 3] it is easy to see that if

u and v are nonzero elements of U[g)rsuch that uv is an element of R, then so are

u and v.




LEMMA 9. (1) Let I be a prime ideal of R. Then IA is a prime ideal of A and

‘IA MR =TI

(2) Let P be a height-one prime ideal of A. Then P N R has height

at most one, i.e. R C A satisfies (PDEJ.
PROOF. (1) A/IA is a subring of U(g)/IU{g), which contains no zero divisors
[ 10, proposition 4, p. 24]. Hence IA is prime in A. Also, ICIAFWRCIU(LJAR =T,

(2) Suppose P N R#Q and let I be a nonzero prime ideal of R, contained

in P N R. Then P contains IA, which is prime in A by (13. Theréfore P=IA and
I=IA N R=P N R,
The following generalizes thearem 10 of [ 10, p. 48].

~

THEOREM 10. CL(R) = C1(Sz(U(g})). In particular, R is factorial if and only if
Sz(U(g)) 1is factorial.

PROOF. Again, we put A=Sz(U(g)) and S$S=R\O. By Nagata's theorem [ 7, p. 36], there

is a short exact sequence 0 = K - C1(A) ~ Cl[Sm1AJ > 0 where K is the subgroup of

C1(A) generated by the classes [P] of the height-one primes P of A which meet S,

i.e. PN R # 0. By theorem 8, S 'A=Sz(U{L)) is factorial, so C1(5  'A)=0 and thus

K=Cl(A). Since the extension R C A satisfies (PDE), the natural map f:Ci(R) - Ci{A},

sending [ I] into [TA] where TA=(A:i(A:IA)), is a homomorphism [3, p. 93 1.

Take [P] € K=C1(A) where P is a height-one prime of A such that P N R#0. Using

lemma 8, it is easy to verify that f([P N R]1)=[P], showing that f is onto.

So, it remains to prove that f is injective. Let [I] € ker f, where I is a nonzero

divisorial ideal of A. Clearly, IA=Ab for some b € A. Take 0#x € 1. As I C Ab,

x is of the form ab for some a € A. Since x € R, so is b. Now, we claim that

TA N R=I. Take x € TA N R. Then x(A:IA) C A and thus x(R:I) C A as (R:I} € (A:IA).

But (R:I) is a fractional R-ideal, so s(R:I) € R for some nonzero s € R.




Next, take 0#z € x(R:I1). Then sz € xs(R:I) € xR € R which implies that z € R.
Therefore x(R:I) € R and thus x € I=I1. This establishes the claim. Finally,

I=IA N R=Ab N R=Rb, showing that ker f is trivial.




10.

REFERENCES
[1] D.D. Anderson and D.F. Anderson, Divisibility properties of graded domains,
Can. J. Math., 34 (1982), 196-215.
[2] D.D. Anderson and D.F. Anderson, Divisorial ideals and invertible ideals
in a graded integrel domain, to appear in J. Algebra.
[3] D.F. Anderson, Graded Krull domains, Comm. Algebra, 7 (1); 79-106 (1979)
[4] A. Bouvier, Anneaux de Krull gradués, Université Claude-Bernard, Lyon I,
1881,
[5] M. Chamarie, Maximal orders applied to enveloping algebras. Proc. Ring
Theory, Antwerp 1880, LNM 825, Springer Verlag (1880), 19-27.
[8] L. Delvaux, E. Nauwelaerts and A.I. Ooms, On the semi-center of a universal
enveloping algebra, to appear in J. Algebra.
[7] R. Fossum, The divisor class group of a Krull domain, Ergebn. der Math.
Wiss. 74, Springer-Verlag, 1873.
[8] M.P. Malliavin, Ultra produit d'algébres de Lie, LNM 924, Springer-Verlag
(1982), 157-186.
[8] C. Moeglin, Factorialité dans les algébres enveloppantes, C.R. Acad. Sci.
Paris (A) 282 (1878), 1268-1272.
[10] D. Reynaud, Algébres enveloppantec de R-algdbres de Lie sur certains anneaux

R, Thése de troisiéme cycle, Université Claude-Bernard, Lyon I, 1882,

J.P. Serre, Local fields, Graduate texts in math. 67, Springer-Verlag, 1879.




