HOMOLOGICAL PROPERTIES
OF TRACE RINGS
OF GENERIC MATRICES

by

L. LE BRUYN (%)
January 1984 84-02

AMS classification 18A38,16A62,16A18," BA03

Department, of Mathematics
University of Antwerp, U.LA.
Universiteitsplein 1

2610 Wilrijk

Belgium




1. Introduction and motivation .

The trace ring T, n of m n X n-generic matrices arises naturally in rather

different algebraic diciplines :

affine p.i.-theory : up to some extent, affine p.i-theory is the study of the
rings G, of m n x n-generic matrices. However, these rings are rather difficult
to handle and it turns out to be convenient to study the overring 7y, ,, of G, o

and consequently to pull the obtained information back to G n, cfr. [1],{4].

representation theory : in [2],[4] and [12] it is shown that the study of finite
dimensional representations of the free associative algebra k < 21,...,%Zm > inm
variables is essentially the study of the maximal ideals of the trace rings T,, ,, ,

n & IN.

invariant theory : Procesi [14] proved that the ring of invariant polynomial
mappings from m copies of M,(k) to M, (k) under the natural action (i.e. by

conjugation) of GI,(k) is precisely the trace ring Ty, p.

- mazimal orders : if A is an affine maximal [5] or tame [9] order over a normal
domain R , then there is a sufficiently large ring of generic matrices G and a
specialization morphism ¢ : Gy, » — A which factorizes through T, ... Artin and
Schofield [3] have proved that T, », is 2 maximal order. Therefore, trace rings can

be viewed as generic maximal orders.

It was this last property that motivated me to look for analogies between these
trace rings and commutative polynomial rings. In particular we were interested in

the following :




Question A : Determine all m,n € IN such that gldim(Ty, n) < 00

The only result existing in the literature is due to Small and Stafford [17].
They proved that gldim(T:2) = 5. In this paper we aim to solve question A in
p.i-degree two (i.e. » = 2) using some powerfull results of Procesi [15] on the

Poincare series of trace rings. The main result will be :

Theorem : gldim(Tp,2) < co & m=10,1,2 or 3.

In proving this theorem we will also show that the trace ring of every prime
p.i. ring of p.i.-degree two is a specialization of an iterated Ore extension , solving
the embedding problem for quaternionic orders.

In the last section we will show that the rational expression of the Poincaré

series of the ring of m generic 2 x 2 matrices can never be A pure inverse.

Acknowledgement : This paper was written while the author visited the
university of Leeds. He likes to thank J.T. Stafford for several enlightening con-

versations.




2. Poincare series and finite global dimension

Throughout this paper, k will be a field of characteristic zero and
k< Z1yerey Ty >

will be the free k-algebra in m variables. If I, is the ideal of all identities satisfied
by n x n-matrices in m variables , then Gy, , = k< %1,y Zm > /I is the ring
of m n x n-generic matrices, cfr. e.g. [13],[11].

A more convenient description of this ring is obtained in the followiﬁg way.
Let R be the commutative polynomial ring k[ti;1 < ¢ <7< m1 <1< m) and
consider the matrices X; = (t;)i,; in Mq(R). Then Gm,n is the subring of M,(R)
generated as a k-algebra by the elements X;;1 < ¢ < m.

The trace ring of m n X n-generic matrices , Th,n , is the subring of M.(R)
generated as a k-algebra by G, and all the coefficients of the reduced charac-
teristic polynomials of its elements, cfr. e.g. [1],[4].

G, is 3 positively graded k-algebra if we give every generic matric degree
one. Similarly, Tp,,n is positively graded if the trace of an element is given the

same degree as the element.

In commutative algebraic geometry, the Hilbert polynomial of the
homogeneous codrdinate ring is important in order to define invariants {e.g. the
genus) of the variety [10]. However, if a graded k-algebra is not generated by its
elements of degree one, one can no longer prove the existence of such a polynomial.
A manageable substitute for it in this case is the Poincaré series,cfr. e.g. [18]. Let

us recall the definition :



If A= ,A; is a positively graded k-algebra and M = @, is a graded
left A-module, then one defines the Poincaré series of A (resp. of M) to be the
power series in Z][[¢]] :

P(A,t) = i dimy(A;).¢

g==0

P(M,t)= Z dimk(M,-).t'.

=0
If it exists, one is u,sua,Hy interested in a rational expression for these series. Because
Tn,w is a finite module over its center which is an affine k-algebra [1], it follows from
the Hilbert-Serre theorem that the Poincaré series of Tw,n is a rational function,
cfr. e.g. [8].

Using the representation theory of the general linear and symmetric group,
Formanek [8] was able to compute the Poincaré series {in a multi-gradation) of the
trace ring T, .. In this paper, we prefer Procesi’s approach [15] for the Poincaré
series of trace rings of 2 x 2- generic matrices. So, from now on we assume 7 = 2

and we will write T,,, = Ty, 2. By separating traces, Procesi shows that :
T = T [Tr(X3), ..., Tr(X )]

where TS, is the trace ring of generic 2 x 2 matrices with trace zero. Therefore,
P(Twm,t) = 1/(1 — t)™.P(T,, )

Moreover, he gives a k-vectorspace basis for .

Recall that a standard Young tableaux is 2 Young diagram (cfr. e.g. [16]) filled
with numbers from 1 to m such that in each row the numbers strictly increase
from left to right and in each column the numbers do not deerease from top to

bottom:.




Theorem [Procesi,15] There is a natural one-to-one correspondence
between a k-vectorspace basis of 79, and all standard Young tableaux with at
most three columns.

Moreover, the degree of an element corresponding to sach a standard Young

tableau is equal to the number of cells in the corresponding Young diagram.

This result allows us, at least in principle, to compute the Poincaré series of
T?, :

P(Tfm i) == Z L3a261e .t3a+2b+16
a,b,cG]N

where Ljags. is the number of standard Young tableaux corresponding to a Young

diaghram of shape 3%21°.
The next result (which is perhaps well known) is included for lack of a
convenient reference. Its proof is due to J.T. Stafford :
Lemma 1 : Let A be a left Noetherian, positively graded k-algebra such
that A, = k and gldim(A) < co. If I'is a graded left ideal of A , then :
P(A/1,ty = f(t).P(A,1}
for some polynomial f(t) € Z[t].

Proof Using the fact that A is left Noetherian and gldim(A) < oo ane can

show that trhere exists a resolution :

0—F, >+ Fp 41— ..o F—2A— Afl -0




of A/ as a left A-module such that Fy, ..., F,,_; are graded free left A-modules
of finite rank , F, is a graded projective left A-module and all morphisms are
gradation preserving. Because 4, = & one can show , cfr. e.g. {6] , that Fy, is also

graded free. Therefore, we have :

PMMQ:PM@+§]AﬁN%ﬂ

=1

F; is graded free with basis , say f(l") . gf)i, where deg({ f‘(f")) = dg-'.) , then :
P(Fit) = P(A8).( + ... + )

finishing the proof.

This result gives a necessary condition on the Poincaré series of a graded

k-algebra to have finite global dimension :

Corollary 1  : Let A be a left Noetherian, positively graded k-algebra such
that 4, = k. If gldim(A) < oo, then :

P(A,t) =1/f(2)

for some polynomial f(¢) € Z[t]. .
Proof Takel=A, =@, ,then P(A/L,t)= P(k,t)=1.

Of course, the main problem is to determine a rational expression for the
Poincaré series of T'¢,. We will solve this difficulty by proving a result which is of

some independent interest.




3. The embedding theorem in p.i. degree two.

In recent years, several attempts have been made to start off noncommutative

algebraic geometry | cfr. e.g. [4],[19]. An essential gap in these theories is, at least

to the author, a noncommutative version of the embedding of varieties in affine or

projective n-space, cfr. e.g. [10]. Therefore, one would like to answer :

Question B : Let A be an affine prime p.i-algebra over a field & with trace

ring TA, efr. [1]. Does there exists an iterated Ore extension A over k and an

epimorphism 4 — TA ?

Even if we weaken our hypotheses on A » .8. A a maximal order having

finite global dimension, it is not known to the author whether this question can

be answered affirmatively.

In p.i. degree two, such an embedding result exists :

Theorem 1 : The trace ring TA of an affine prime p.i. algebra A of p.i.

degree two is an epimorphic image of an iterated Ore extension.

Proof Because A is affine of p.i. degree two, there exists a natural number

m and 2 specialization map :




Ton,2 — T(A)

therefore it suffices to prove the result for the rings Ty, = Tm,2. Consider the

iterated Ore extension :
Ap, = k[aij; 1 S. 1 < .7 _<_ m][al}[%a 02, é.2]~"[a'm.; Oms §m]

where for every ¢ < j one defines o;(a;) = —a; and 6;(a;) = a4;. Of course, one
has to verify that every oy is an automorphism (which is trivial) and that & is a

o~derivation of the subalgebra :
Am(k) = kla;1 <4 < § < mlfar]...[@k—1, Ok—1, Ok—1]

We have defined &, on a generating set , so it is defined on A,,(k) and we only
have to check that it preserves the commutation rules , i.e. we have to verify for
1< J<k:

érx(ai.a; + a;.a;) = 0p(ai5) =0

NOW, 5}6(65.&]‘) = Q.G — Gjk-Cs and 6;;(@_.;.(1;) == Ak G — Qi Ay 5 done.
Now, we define a map :

Om : A — T2,

by sending a; to X? = X; — 1/2.7r(X;) and a;; to Tr(X?.X$). ¢m is an algebra
morphism because in T¢, we have X¢.X¢ + X2.X? = Tr(X?.X7). This follows

from the fact that for any pair of 2 x 2 matrices A, B one has :
A.B+ B.A = Tr{A.B) + Tr(4).Tr(B) — Tr(A).B — Tr(B).A

and Tr(X%)=0.




Moreover, ¢, is epimorphic : it follows from Procesi’s description of T2, that

T7, is generated by the elements : X2, Tr(X?.X ) and Tr(X?.X%.X4).Now,
Tr(X3.X3.X3) = 1/3.55(X2, X2, X3)

finishing the proof of our claim.
Finally, we have seen above that T, = T..[Tr(X;), ..., Tr(X )] and therefore

there exists an epimorphism :

¢; . Am[yl) esey ym] i Tm

finishing the proof.

Corollary 2 : Let A be a prime affine p.i. algebra of p.i. degree two
such that A is positively graded as a k-algebra with the gradation induced by
the specialization map G,,,2 — A. Then the Poincaré series of TA has a rational

expression of the form :
P(TA,8) = J(&)/(1 - £#)™m=b/2 (1 - gy

for some polynomial f() € %[#.

Proof If we define deg(a;) = 1 and deg(as;) = 2 , then A, is a positively
graded k-algebra which , as a graded vectorspace, looks like the commautative

polynomial ring kle;, a;x]. Therefore, we can compute its Poincaré seies :

“

P(Am) =1/(1 — 2)™m=1)/2 (3 _ gym




Now, Am[y1, ..., ¥m] has finite global dimension, its part of degree zero is k, it is

positively graded and there exists a gradation preserving epimorphism :

Am[yls '";ym] =¥ Tm -+ A
Therefore, we can apply lemma 1 and get :
P(TA, 1) = f(B)/(1 — #F)™(m=0/2 (1 —g)*™

for some polynomial f{t) € Z[t].
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4. Global dimension of trace rings.

We are now in a position to state and prove the main result of this paper :
Theorem 2 : gldim(T,) < co & m=10,1,2 or 3.

Proof : Above we recalled Procesi’s expression of the Poincaré series of T°
p m

(1) : P(To%8) = D Laagsye.ti0t2bte
a,b,cG]N

where L3.951. denotes the number of standard Young tableaux corresponding to

a Young diagram of shape 3*261¢. This number was computed by H. Weyl in case

m~—1 m—2 m—3
Lyagiye = (1+8).(1+c).(1+6 + y2). [ 1+ + b+ /4. J[ AHa+ oY) ] (1+e/4)
. §=2

J=3 j=1

This formula allows us to compute the first terms in (1) :
Ly = m; Lo = m(m —1)/2; L3 = m{m +1)/2
L3 = m(m — 1)(m — 2)}/6; Loy = m{m + 1)(m -- 1)/3; L1s = m(m + 1)(m + 2)/6
Ls1 = (m — 1)(m — 2)m(m + 1)/8; Loz = (m — 1)(m + 1)m? /12
Loy2 = (m — I)m(m + 1)(m + 2)/8; L14 = m(m + 1)(m + 2)(m + 3}/24

This gives us :

2 : P(T2,,8) = 1+mi+m2 2 +m(2m? +1)/3.t° -+ m(m+1)(3m? —m+2)/8.4* +...
m

11




On the other hand, in the proof of Theorem 1 we defined the k-algebra epimor-
phism ¢, : Ay, — T, , yielding that :

(3): P(T%,, ) = f()/(1 — 2)y™m=1)/2 (1 — )™

for some polynomial f(f) € Z[t]. Now, suppose that T2, (or equivalently Ty)
has finite global dimension, then (3) combined with corollary 1 implies that the

Poincaré series of T'?, should have the rational expression :
PT%,8) = 1/(1+8)%.(1—t)f

for some natural numbers o and £. The power series expansion of this expression
is :

(4):1+ (8 — a)t+{ala+1)/2+B8(8 +1)/2 - a.pf)® + ..

Jomparing (2) with (4) , & and 8 should be solutions of he following set of equations
p—-a=m

afa+1)+ A8 + 1) — 208 = 2m?

Therefore, &« = m(m — 1)/2 and § = m{m + 1)/2 and this entails that
P(Te, . t) = P(A,,t) whence ¢, should be an isomorphism.

Let us compute the Krull dimension of A, and T9?,. Clearly, Kdim(Ay) =
m{m —1)/2 + m and Artin [2] and Procesi [12] calculated K dim(Ty,) = 4m — 3
whence Kdim(T?,) = 3m—3 (at least if m > 2). Therefore, m has to be a solution
of the quadratic equation m? —5m +6 =10, ie.m =2 or m = 3.

Conversely, if m = 2 or m = 3, equality of the Krull dimension of A and T3,

implies that ¢,, is an isomorphism because A,, is catenary, ﬁnﬂishing the proof.

Remark 1 : The fact that 73 has finite global dimension has some

12




independent importance. It is a natural example of a regular order such that its
center has infinite global dimension.

More important, Severinho Colier Coutinho [7] deduces out of this result that

Ko(Gs,2) o Z.

Remark 2 : We have now a method to compute the rational expression
of P(T5,,t). For, the coefficients of the Poincaré series of 72, and A,, are easy to
eompute and from this comparison one deduces the coefficients of the polynomial

Fm(t) s.t. P(T9,,t) = fm(t)/(1 — t23)m(m=1)/2 (1 _ tym The first cases are :

fz(t) =1
f3(t) =1
faf) =1—¢*

f5(t) =1 -5t + 5t — 10
Therefore, one would like to make the following :
Conjecture : The Poincaré series of T2, satisfies the following functional

equation :

P(T%,1/t) = o.t? P(T®, 1)

where oo = 1 if m is odd and @ = —1 if m is even and p € Z.

Furthermore, deg(fm(t)) = m? -- 83m and p = (m2 - Tm)/2.

This conjecture has been verified by the author (using a computer) for m <

15. Details will appear elsewhere.
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5. Poincaré series of generic matrices.

Procesi [15] calculated the Poincaré series of the ring of m 2 x 2 generic

mafrices

(5): P(Gm,2,t) = 1/(1 = )™ . P(Top, )—1/(1 — t)™ ((m.(m—1).(m—2)) /33 +1/(1 — t}™—1]

Theorem 8 : There exists a polynomial g(t) € Z[t] such that P(Gp 2,t) =
1/g(%) if and only if m =0, 1.

Proof : 'We have seen before that :
P(TS, 1) = [()/(1 — 2)mlm—1/2 (1 _ gym

for some polynomisal f(t) € Z[t].

If we substitute this in (5) we obtain that whenever P(G 2, t) is a pure inverse
, then g(t) = (1 + £)*.(1 — ¢)? for some a, 8 € IN.

Computing the first terms of (5) gives us :

P(Gmo,t)=1+mit+m? e +mdsd+..

So we have to solve the same set of equations as in the proof of theorem 2 , giving
@ = m(m —1)/2 and 8 = m(m + 1)/2. Comparing the coefficient of ¢ in (5) with

that of the power series expansion of :

1/(1 + t)m(m--—l)/2_(1 - t)m(m+1)/2«

14




gives us : m® = 1/3.(2.m® + m) leaving m = 0 or m = 1 as the only solutions.

The other implication is trivial.

Unfortunately, this result does not imply that G, 2 has infinite global dimen-
sion because G, o is not Noetherian. This raises the question whether there exists
a (possibly infinite) resolution of & (as left G'r, 2-module) with graded free modules

of finite rank.

15
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