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1t will be pointed out to me that many important facts and valuable results about
local fields ean be proved in a fully algebraic context, without any use being
made of local capacity and can thus be shown to preserve their validity under
far more general conditions. May I be allowed to suggest that I am not unaware of
this circumstance, nor of the possibility of similarly extending the scope of even
such global results as the theorem of Riemann-Roch? We are dealing here with
mathematics, not with theology. Some mathematicians may think that they can
gain full insight into God’s own way of viewing their favourite topic ; to me , this
has always seemed a fruitless and frivolous approach. My intentions in this book
are more modest. I have tried to show that, from the point of view which I have
adopted, one could give a coherent treatment,logically and aesthetically satisfying,
of the topics I was dealing with.

For anyone familiar with the language of *Galois cohomology” it will be an easy
and not unprofitable exercise to translate into it some of the definitions and results
in one or two places , this even makes it possible to substitute more satisfactory
proofs for ours. For me to develop such an approach systematically would have
meant loading a great deal of unnecessary machinery on a ship which seemed well
equipped for this particular voyage ; instead of making it more seaworthy , it might
have sunk it .

A. Weil , introduction to ?Basic Number theory”
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introduction

Whereas the classical theory of maximal orders over Dedekind domains has
its roots in algebraic number theory , our main motivation for studying maximal
orders over Krull domains comes from a quite different algebraic topic , the theory
of rings satisfying a polynomial identity (p.i-rings for short). It is based on the
next two recent resulis :

The first is Chamarie’s generalization of the Mori-Nagata theorem to p.i.-
rings : every Noetherian {or affine} p.i.-ring A with center B can be embedded in a
maximal order A over R™ , the complete integral closure of B , which is a Krull
domain.

The second result is due to Artin and Schofield and states that the trace ring
of the ring of generic matrices (over a field of characteristic zero) is a maximal
order over 2 Krull domain.

Beside their ringtheoretical importance (showing that containment in a max-
imal order might generalize to some extent the commutative theory of normaliza-
tion of Noetherian domains) , these results show that the spectra of these maxi-
mal orders are a feasible noncommutative generalization of affine normal varieties.
Therefore, a closer investigation of them might shed some new light on a relatively
fresh algebraic topic , namely noncommutative algebraic ’geometry’ , cfr. e.g. the
work of Artin - Schelter or Van Oystaeyen - Verschoren .

One of the main problems in the theory of maximal orders is to find a suitable
generalization of unique factorization domains and , related to this question ,
to find a proper definition of the classgroup. Several possible definitions were
suggested , e.g. a rather obscure K-theoretical class group W{A) by R. Fossum
, the normalizing classgroup CI{A] by M. Chamarie and the central classgroup
CI°(A) , studied by E. Jespers and P. Wauters .

In this thesis we aim to survey some of our results on the normalizing and the
central classgroup. The thesis is organized as follows.




In the first part we recall some well-known definitions and results from p.i.-
theory and the study of maximal orders.

In the second part we treat the central classgroup. The quiding problem
is to determine to what extent Cl°(A) ~ CI(R) implies that A is a (reflexive)
Azumaya algebra over R. We were able to prove this result for étale or Zariski
tamifiable maximal orders and some counterexamples to the general case are
included . This fact enables us to show that certain divisorially graded rings over
tamifiable maximal orders are graded (reflexive) Azumaya algebras , providing a
new approach to this class of orders. For a more extensive introduction to part II
the reader is referred to IL1 .

In the third part we focuss attention to the normalizing class group of a
maximal order. This time our approach is of a more geometrical nature. In the
study of commutative Krull domains there are some important questions on class
groups for which purely ringtheoretical methods seem to be insufficient. To solve
them one has to use some geometrical machinery. A typical example of such a
situation is presented by some results of V.I. Danilov on the relation between CI(R)
and CI(R[[t]]) for a Noetherian integrally closed domain R. First, the classgroup
is expressed in terms of Picard groups of certain open subvarieties of the affine
~ scheme. Then one can use the good functorial and cohomological properties of
these Picardgroups to prove the theorems on these open sets and afterwards one
can pull the obtained information back to the classgroup.

We try to generalize some of these results to maximal orders over Krull
domains. To this end we introduce Weil and Cartier divisors and the correspond-
ing class groups. Since the proofs of the classical theorems on the relation between
these invariants do not generalize to the p.i.-case we had to come up with a new
approach. These new proofs have the extra advantedge of presenting ringtheoreti-
cal interpretations (such as the type number and the genera of a maximal order)
for certain cohomology pointed sets.
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PART I : SOME GENERALITIES

A : SOME DEFINITIONS

For the reader’s convenience we briefly recollect the basic definitions and
properties concerning maximal orders over Krull domains, a more extensive ac-
count of the theory may be found in the monographs by R. Fossum [22] (Krull
domains) , I. Herstein [29] (central simple algebras) and I. Reiner [67] (maximal
orders) .

1. Krull domains

A commutative domain R with field of fractions K is said to be a Krull domain
if the following conditions are satisfied :

(a) : R,y is a discrete valuation ring for all p € X()(R) where X(V(R) is the
set of prime ideals of R of height one;

(b) : B = n{Ry;p € X(R)};

(¢) : (finite character property) Each nonzero element of R is a unit in ail but
a finite number of the Rp’s , p € XW(R).

An R-module M is said to be divisorial if it is torsion free and in K @z M
we have the equality :




M =n{M, =R, Qr M;p e XV(R)}

For any R-module M , rk(}) , the rank of M , is defined as the dimension of
the K-vectorspace K Qg M. An R-module M is said to be an R-lattice if M is
torsion free of finite rank and if there exists an R-module F of finite type with
M C F C K ®r M. It follows from this that rk(M) = rk(F) and that r.F C
M for a suitable nonzero element r of R. For any torsion free B-module M the
R-module (M : R) is defined by :

(M : R)={f € Homg (K @r M,K): /(M) C R}

From [22] we recollect that whenever M is an R-lattice , N{Mp;p € XV(R)} may
be identified in a natural way with (M : R) : R where the latter is viewed as
a subset of K @g M via the canonical isomorphism K @r M =~ (K Qg M)™
(double upperstar denotes the bidual K-module , i.e. Homg (K Qr M,K),K) ,
cfr. e.g. [61]). Furthermore, for any R-lattice M , (M : R) is naturally isomorphic to
Homp(M,R) = M". It follows that an R-module M is divisorial iff the canonical
homomorphism M — M ** is an isomorphism, i.e. iff M is a reflexive R-module ,
efr. e.g. [22] or [61]. Let M and N be torsion free R-modules and let V = K @p
M, W =K Qg N. Following an idea of Yuan [92] we introduce the notion of
2 modified tensorproduct —~®p— . Let M.N denote the image of M @z N in
V ®x W . Now,define

M Qg N =n{(M.N),;p € XV(R)}

Note that whenever M and N are R-lattices , then there is a natural map from
M®grN to M®p N such that (M ®g N)™" o~ M ®p N. Another, more torsion-
theoretic, way of interpreting this modified tensorproduct is the following : let o,
be the kernel functor associated with a prime ideal p of R , ¢fr. e.g. [74] , and let
0(1) = mf{ap,p € X(l)(R)} then M ®R N =~ Q,(l)(M ®R N) for R-lattices M
and N, where Q,(—) denotes the iocalization functor in R-mod associated with
the kernel functor 7, cfr. e.g. [74].

A divisorial R-ideal is a divisorial R-sublattice of K. From [22] we retain that
the set of all divisorial R-ideals forms a free Abelian group generated by the height




one prime ideals of R under the *-multiplication , i.e. A*B = (A.B)"" = (4.B :
R) : B. We will denote this group by D(R) and call it the group of divisors of R. By
I{R) we denote the subgroup of D(R) comsisting of the invertible R-submodules
of K. P(R) will be the subgroup of I(R) consisting of the principal invertible
R-submodules of K , i.e. those of the form R.k where k € K™ = K — O.

The classgroup of R , C(R) , is defined to be the quotient group D(R)/P(R).
The Picardgroup of R , Pic(R) , is defined to be the quotient group I(R)/P(R).
For more details on these obje¢ts and their interrelations , the reader is referred
to [22].

2 : Central simple algebras

A not necessarily commutative algebra X over a commutative field K is said
to be a central simple K-algebra if the following conditions are satisfied :

(a) : © is simple , i.e. contains na proper (twosided) ideals ;

(b) : X is finite dimensional over K ;

(c) : the center of ¥, Z(X) , equals K .

‘Weddenburn’s theorem asserts that ¥ is isomorphic , as a K- algebra to a matrix-
ring M,(A) for some central simple K- skewfield A. Moreover , A is unique up to
isomorphism , i.e. My, (A1) o2 Mp,(A2) if and only if A; =~ Az and ny = ns.

The set of all central simple K-algebras is closed under taking tensorproducts
over K . X is said to be equivalent to I' iff M,(E) ~ M,,(I') for some natural
numbers n and m. The set of all equivalence classes form an Abelian group under
the multiplication rule [~®x —]. This group is the Brauer group Br(K) of K.

If A is any central simple K -skewficld , then A has a maximal commutative
subfield [ such that I is a separable fieid extension of K , dim(A) = dimg (L) =
n and AQx L o~ M,(L) (L is said to be a splitting field). This entails in particular
that the dimension of any central simple K-algebra is a square. Moreover, for any
central simple K-algebra X one can find a finite Galois extension L/K such that
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Y ®x L o2 My(L) if dimg(Z) = n® , however L cannot always be taken to be
a subfield of & | cfr. e.g. [30]. This fact enables us to present a cohomological
interpretation for the Brauer group :

Br(K)= ‘lir_;’zHQ(Gal(L/K),K')

where the direct limit is taken over all finite Galois extensions L/X with cor-
responding Galois group Gal(L/K). For proofs and more details on these results
, the reader is referred to [29].

Finally, let us define the reduced trace , tr(--) , and the reduced norm , nr(-—)
of a central simple K-algebra . Take a finite Galois splitting field L and an
L-algebra isomorphism :

h:LQ®x L— M,(L)

Now, define tr(a) = trace(h(e @ 1)) and nr(a) = det(h(e @ 1)). It is fairly easy to
verify , cfr. e.g. [67] , that ¢ér(—) and nr(—) do not depend upfon the choices of L
and h . Moreover, tr(X) C K and nr(X) C K ; tr(—) is an additive map whereas
nr(-—) is multiplicative.

3 : Maximal orders

Let R be a Krull domain with field of fractions K and let ¥ be a central
simple K-algebra . An R-order in ¥ is a subring A of X satisfying the following
three conditions :

(a):RCA;

(b) : K.A= X, ie. A contains a K-basis of ¥;

(¢) : A is integral over B .

By (c) we mean that any element z € A satisfies a monic poiynomiai :c.'~‘+r1.:o:;":l +
o + 7 = 0 with all r; € R. From coroll.1.2 of [21] we retain that any R-order in
¥ is actually an R-lattice in £. Chamarie [13] showed that A is an R-order in I
iff Z(A)=Rand KA=2X.

11




We say that an R-order A is maximal if it is not properly contained in another
R-order in E. If A is an R-order , it is easily verified that N{A,;p € X((R)} is
also an R-order containing A. Conditions (a) and {b) above are immediate and
condition (c) follows from the fact that R = N{R,;p € XW(R)}. Therefore, we
have that A is a maximal R-order iff :

(1) : A is a divisorial R-lattice in T and

(2) : Ap is a maximal R,-order for each p € X(V(R).

Another , equivalent condition for an R-order A in ¥ to be maximal is that
(I ¢ I} = (I :, I} = A for each nonzero twosided ideal I of A , cfr. e.g. [13] or [50].
‘We denote for any two subsets A and B of I :

(AuB)={2€%:2.4C B}

(A:y By={z€%:Az C B}

If A is 2 maximal R-order in ¥ , a divisorial A-ideal A is a divisorial R-lattice
in ¥ which is a twosided A-module. Another, equivalent characterization is : A
is a twosided A-submodule of ¥ such that A.k C A for some £ € K~ and (4 :
A) : A = A . Let D(A) denote the set of all divisorial A-ideals , then we define a
multiplication on P(A) by :

A*B=(A.B)" = (A.B:A):A

From [21] we retain that D(A) equipped with this multiplication is isomorphic to
the free Abelian group generated by X (1)(A) , the set of all height one prime ideals
of A. In I1.2 we will present another proof of this result relating it to the so called
“Van Geel - primes and arithmetical pseudo valuations.

With J(A) we will denote the subgroup of D{A) consisting of those divisorial
A-ideals A which are invertible , i.e. there exists a divisorial A-ideal B such that
AB=BA=A.

As in the study of commutative Krull domains , it is possible to introduce
class- and Picardgroups of A by taking classes modulo a subgroup of *principal”
divisorial A-ideals. There are two possible candidates :
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P°(A) = {A.k; k € K"} which leads to the so called central classgroup , Ci°(A)
, and the central Picardgroup , Pic®(A).

P(A) = {Am;n € ¥ : An = n.A} which leads to the so called normalizing
classgroup , CI(A}, and the normalizing Picardgroup , Pic(A).

Studying these objects and their relation to the ringtheoretical structure of A
will be the main objective of these thesis.
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B : NUTSHELL ON P.I-THEORY

The classical theory of maximal orders over Dedekind domains , cfr. ¢.g. [67]
, has its roots in algebraic mumber theory. Our main motivation for studying
 maximal orders over Krull domains comes from a quite different algebraic topic ,
namely p.i-theory , cfr. e.g. [30],[62].

1. p.i.-rings

Let us recall that 2 noncommutative ring A with center R satisfies a polynomial
identity (p.i.) of degree d if there exists a nontrivial polynomial :

p(Xlr -'":Xn)

of degree d in 7 noncommuting variables with coefficients in B , such that for
every n-tuple (\y, ..., \n) of elements of A we have that :

(M, X)) =0

The theorems of Kaplansky and Posner , efr. e.g. [62] , characterize the prime
rings A satisfying a polynomial identity (p.i.-rings for short) in the following way

A prime ring A is a p.i-ring if and only if A is an order in a central simple
'K -algebra (where K is the field of fractions of R) T of dimension say n? ;and in

14




this case A satisfies the standard ideniity of degree 2.n :

Z E(0'))(0(1)-~~—X‘¢y(2.n)
0SSy
where Sz denotes the symmetric group of order 2.n and ¢(o) is the sign of the
permutation o.

For an extensive account of the properties of p.i.-rings, the reader is referred
1o [30],[62] or [90].

2. (reflexive) Azumaya algebras

An important topic in p.i.-theory is the study of Azumaya algebfas and related
to it the study of the Brauer group of a commutative ring. We will recall here
briefly the definitions and some results. We restrict ourselves to the ease that the
center R is a Krall domain. Further generalization can be found in [19].

Let A be an R-order in a central simple K -algebra T , suppose A is a divisorial \
R-lattice and consider the natural R-algebra morphism :
m:A° = A Qr A°PP - EndR(A)

where A°PP denotes the opposite ring of A (i.e, the abelian group A with reversed

muitipiication) and m is determined by : m(z e; ® b,-)(i\) = ia.-.')\»l},- . Since A

is a divisorial R-lattice , so is Endp(A) , cfr. e.g, [61]. This entails that m extends
to an R-algebra morphism m’ making the diagram below into a commutative one

15




A QR A°PP - A @R} Aorr

T~ o m

Endgr(A)

An Azumaya algebra over R is an R-order A as above such that m is an R-
?,lgebra isomorphism. Actually an Azumaya algebra can be defined more generally
as an R-algebra over any commutative ring R such that A is a finitely generated
projective A Qg A°?P-module. Among the many important properties of Azumaya
algebras we recall the following :

(1) : A is 2 finitely generated projective R-module ;

(2) : All twosided ideals of A are centrally generated ;

(8) : A is an Azumaya algebra over R if and only if A/P is a central s1mple
R/R N P -algebra for every maximal ideal P of A .

For further use , we include here an intrinsic characterization of Azumaya
algebras essentially due to M.Artin and C.Procesi , cfr. e.g. [62] or [30].

In studying the center of a prime ring satisfying a polynomial identity it is
useful to have ’central-valued’ or ’central’ polynomials , i.e. polynomials which
when evaluated always yield elements of the center. Of course, we are only in-
terested in non-constant polynomials , i.e, taking at least two values. It is clearly
sufficient to have central polynomials for matrixrings. The first class of such central
polynomials was constructed by E. Formanek. More recently, Razmyslov has dis-
covered multilinear central polynomials. If A is 2 prime p.i.-ring with center R ,
then the Formanek center of A , F(A) , is defined to be the ideal of R generated
by the values taken by a central polynomial for A . If P is a prime ideal of R
such that F(A) Z P, then Ap is an Azumaya algebra over Rp and the inverse
implication holds also. This entails :

(4) : A is an Azumaya algebra over R iff F(A) =

Two Azumaya algebras over R, A and T, are said to be equivalent if there

16




exist finitely generated projective R-modules P and @ such that there is an R-
algebra isomorphism :

A Q®r Endr(P) >~ T Qg Endp(Q)

The equivalence classes of Azumaya algebras over R form an Abelian group under
the tensorproduct , Br(R) , the Brauer group of R . For more details , the reader
is referred to [19],[35] and [52] ,a.0. .

The study of Azumaya algebras over R reduces roughly to the determination
of the Brauer group of R and to the structure of the trivial Azumaya-algebras ,
i.e. the study of finitely generated projective R-modules and their endomorphism
rings.

Extending an idea of Yuan [92] , M. Orzech defines in [61] a reflexive Azumaya
algebra to be a divisorial R-order A such that the R-algebra morphism :

m’: A @p A°PP — Endp(A)

defined above is an isomorphism. Two reflexive Azumaya algebras over R, A and
T', are said to be equivalent if there exist divisorial R-lattices M and IV such that
there is an R-algebra isomorphism :

A Q®r Endr(M) ~T Q% Endr(N)

The equivalence classes of reflexive Azumaya algebras form an Abelian group under
the modified tensor préduct , B(R) , the so called reflexive Brauer group of R.

It is easily verified that A is a reflexive Azumaya algebra if and only if A, is
an Azumaya algebra for every p € X((R) , or equivalently , F(A) & p for every
p € XMW(R) (here A is already supposed to be a divisorial R-lattice). The second
part of the following proposition extends a result of Riley [68] :

17




Proposition B.1

(1) : If A is a (reflexive) Azumaya algebra over a Krull domain R , then A is
a maximal R-order.

{2) : A reflexive Azumaya algebra A over R is an Azumaya algebra if and only
if A is a flat R-module. '

Proof

(1) : Because A is a divisorial R-lattice , it suffices to check that A, is a
maximal Rp-order for all p € X()(R). To this end we need to verify that an
Azumaya algebra over a Krull domain is a maximal order, i.e. that (I 3y I) = ([ :,
I) = A for every twosided ideal I of A. Write z = ¢~1.) where ¢ € Ranf A € A and
suppose that I.z C I. Because I and A.)\.A are centrally generated , we obtain that
e LAXANR)(INR).A C (INR).Ayielding that : ¢~1.(ANANR).(INR) C (INR)
whence ¢ . {AXNA N R) C R because R is a Krull domain , i.e. ¢c"L.ANA C A.
Similarly one proves that (I ;; I} = A. ’

(2) : In view of the definitions we have to prove that the R-algebra morphism
i: A Qg AP —» A @R A°®P is an isomorphism. By flatness of A this morphism is
clearly monomeorphic. To prove surjectivity let a = 35 M ® pifr € NA®r A°PP),
where A\; € A, p; € A°PP and r € R. Because R is a Krull domain, R satisfies the
finite character property , i.e. I = {p € XM)(R) : r ¢ U(R,)} is 2 finite set. Now,
define : J = XO(R)—I,T = M{APP;p € T} , T7 = N{AJP?;p € J}. Then,
o € AQgT’ and clearly : & € N{(A Qr A°P?),;p € I} = A Qr N{AYP";p € I}
because I is a finite set and A is a flat R-module ( thus , tensoring with A commutes
with finite intersections , cfr. [12]). Therefore :

0 €EAQrTNA®RT’ =A®g (I NIY) = A @ A%PP

because A is flat and A°PP is a divisorial R-lattice (as a reflexive Azumaya algebra).
The inverse implication is of ecourse trivial since an Asumaya algebra is 2 finitely
generated projective R-module.

We will now give an example which shows that the flatness condition in the

18




foregoing proposition cannot be dropped. First, let us recall the definition of a
regular ring.

A ring R is said to have global dimension < n (written gldim(R) < n) if
every (left) R-module M admits a projective resolution of lenght < n , i.e. there
is an exact sequence :

0P, >Ppy—>..oP o P-+M-0

with all P; being projective R-modules. A commutative local ring is said to be
regular if it is Noetherian and has finite global dimension. For a commutative
Noetherian ring one has gldim(R) = sup{gldim(R,);p € Spoec(R)} and one may
even restrict attention to maximal ideals. \

‘We say that R is regular if and only if R, is a regular local ring for every
prime ideal p of B. One of the most striking properties of regular local domains
is given by the Auslander-Buchsbaum theorem , cfr. e.g. [6] , which states that
they are unique factorization domains. Another noteworthy property for regular
rings is that a reflexive finitely generated module E is projective iff Endgr(E) is
projective.

Example B.2 : (reflexive Azumaya 5% Azumaya)

Suppose that R is a regular local ring of dimension greater than two , then
there exists a non-projective finitely generated R-lattice E such that B = E",
Consequently, Endg(E) is a reflexive Azumaya algebra. Now, suppose Endr(E)
is an Azumaya algebra , i.e. in particular a finitely generated projective B-module
, then E would be projective , a contradiction.

E.g. if R is a regular local ring of dimension three and if & is a finitely
generated non-projective reflexive R-lattice , then rad(F(Endg(E))) = m where
m is the unique maximal ideal of R , because for a regular local ring of dimension
smaller or equal te twe all maximal orders in matrixrings are Azumaya algebras.

Let us recall two basic properties of (R) , proofs can be found in [92] or [61]
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(1) : B(R) = N{Br(Ry);p € XI(B)};
(2) : The following sequence is exact :

1 — Pic(R) — CI(R) — BCI(R) — Br(R) — 8(R)

Here, BCI(R) is the so called Brauer-classgroup of R. It is defined by taking
the set of R-module isomorphism classes of divisorial R- lattices M such that
Endp(M) is a finitely generated projective R-module (and hence an Azumaya
algebra by Prop.B.2) and then taking equivalence classes with respect to the
relation :

M~N&MQRrP~NQrQ

for some finitely generated projective R-modules P and Q. The cokernel of the
natural morphism Br(R) — B(R) Is tiot So easy to determine.lt may be nontrivial.

Finally, let us mention that there exists a cohomological interpretation of the
Brauer group of a ring. Galois cohomology used in the field-case has to be replaced
by étale cohomology , cfr. e.g. [52].

Up to some extent one may study (reflexive) Azumaya algebras, by :

(1) : studying the groups Br(R) and B(R) ;

(2) : studying the trivial (reflexive) Azumaya algebras , i.e. Azumaya algebras
or maximal orders in matrixrings over X and this study usually reduces to module-
theoretic questions about finitely generated projective R-modules and divisorial
R-lattices resp. .
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PART II :
THE CENTRAL CLASSGROUP OF A
MAXIMAL ORDER

1. A PROGRAM FOR STUDYING MAXIMAL ORDERS

a. : introduction

Although maximal orders over Krull domains were already studied in the early
sixties by e.g. Auslander and Goldman [7] , Maury [49] , Riley [68] , Ramras [84] ,
[85] , a.0. , relatively little is known about the structure of a general maximal order.
The main purpose of this chapter is to present a unified approach to maximal
orders over Krull domains. In this first section we will merely scetch this program
whereas the next sections contain the proofs and the technical machinery needed.

The question we will be concerned with primarely is the following : if A is an
arbitrary maximal order over a Krull domain R , is it possible to embed A in a
natural way in a2 maximal order A’ over a Krull domain R’ :

A = N
T 1
R~ R

such that :

(a) : A’ is a ‘nice’ maximal order , i.e. we can study the structure of A’ over
R ;

(b) : there is a good connection between A and A’, R and R’ which enables us
to descent structural results of A’ over R’ to results of A over R.

21




It is not difficult to satisfy condition (a) , e.g. by localization the bad part of
A can be killed , but then one cannot expect too much for condition (b). The idea
‘we will pursue in this chapter is the following : is it possible to choose A’ to be a
graded maximal order which satisfies (a) and such that there is a good connection
between graded properties of A’ (resp. of R’) and ungraded properties of A (resp.
of R). We will now show that this is possible for *allmost all’ maximal orders and
moreover we will give a method for studying the exceptional maximal orders.

Of course, we first have to explain what is meant by a ’nice’ maximal order . As
is clear from the introductory chapter there are at least two classes of maximal R-
orders which are reasonably understood , namely Azumaya algebras and reflexive
Azumaya algebras.

b. : the central classgroup

Having clarified what we mean by a ’nice’ maximal order , our next aim is
to define and study an invariant associated to a general maximal B-order A which
describes how far A is from being ’nice’ , i.e. from being a (reflexive) Azumaya
algebra.

There xists such an invariant in the literature, namely the different and the
reduced discriminant of a maximal order , cfr. e.g. Reiner [87] Let us briefly recall
its definition :

If A is 2 maximal B-order in the central simple K -algebra & and if ¢r: & — K
is the reduced trace map, then we can define the following set :

NM={z€Z:tr(zA) C R}
It i6 cleaf fFoi the dehfiltich that A* 1§ 3 Fight A- Sublicdls of T (bsesuss t7(—) 18
an additive map) and that A  A®. The different of the maximal order A , dif f(A)
, will then be defined to be : ’

diff(h) = (A" = {z€ £: Azt C A%}

22




It is not hard to verify that diff(A) is actually a twosided (!) divisorial A-ideal
contained in A. Moreover the definition of the different is left-right symmetric ,
i.e. one could also define :

tA={z€ D :ir(Az) C R}

and dif f(A) = (tA)~! , but then it is rather easy to verify that diff(A) =
dif f°(A).

Further, one defines the reduced discriminant of A to be :
disc(A) = nr(dif f(A))

therefore, disc(A) is an ideal of R. Hence, there are only a finite number of height,
" one prime ideals of R , say p1,..., fn , containing disc(A). The main result is that
these prime ideals are precisely the height one primes of R such that A, is not an
Azumaya algebra over B,.
Therefore, if A = dif f(A) then A is a reflexive Azumaya algebra and dif f(A)
(or disc(A)) measures how far A is from being reflexive Azumaya.

However, since these invariants are usually rather hard to compute and be-
cause it is even harder to describe their behaviour under ring extensions, we looked
for a more manageable invariant. The invariant we propose is related to the central
classgroup which has been studied by e.g. E. Jespers and P. Wauters [33]. 1t is
defined to be :

CUI°(A) = D(A)/ P°(A)

where P°(A) denotes the subgroup of D(A) consisting of the divisorial A-ideals
which are generated by one central element. Of course, there is a natural map :

¢ : Cl(R) - CI°(A)
induced by the morphism :

®: D(R) ~ D(A); ®(4) = (A.4)""
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and it is clear from the definitions and the fact that there is a one-to-ome cor-
respondence between X ((R) and X(V(A) that ¢ is an injective groupmorphism.

Let us first give some examples :

If A is an Azumaya algebra over R {or even more generally : a reflexive
Azumaya algebra) , then CI(R) = Cl°(A). This fact may be derived from the fact
that there is a natural one-to-one correspondence between D(A) and D(R) given
by A~ (A.4)" and B — (BN K)™".

If A =C[X,-], then we have seen above that every height one prime ideal
P # (X) is centrally generated since it does not contain the Formanek center.
And for P = (X) we know that P? is centrally generated, yielding that CI°(A) ~~
Z[2.%Z.

Guided by these examples one could conjecture :

Jespers — VanOystaeyen congecture : If A is a maximal order over a Krull

domain R , then the following two statements are equivalent :
(1) : A is a reflexive Azumaya algebra
(2) : CUR) =~ CI°(A) , ie. Coker($) =1

What can we say about Coker{¢) ? If R —+ § is a ringmorphism between
two commutative Krull domains satisfying pas d’éclatement (or no blowing up
, pour les anglophonnes),i.e. if h#(P N R) < 1 for any height one prime ideal
of 8, it is well known that Coker(CI(R) ~» CI(S)) describes the splitting and
ramification of height one prime ideals , or equivalently , of the associated discrete
valuations. The ringextension we are interested in ,B A, satusfies p.d.é. since
ht(P N R) = 1 for every height one prime ideal P of A and moreover , no
height one prime ideal of R splits in A. So, Coker($) measures in some way
how the essential discrete valuations associated to R ramify in ¥. Now, the most
manageable noncommutative generalization of valuation theory known to the
author is the theory of Van Geel-primes and their associated arithmetical pseudo-

" valuations , cfr. e.g. [80]. This theory will be generalized in I1.2 to maximal orders
over Krull domains and we will prove that Coker(¢) does indeed tells us how the
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discrete valuations on R ramify in X with respect to the corresponding Van Geel
primes. Moreover, we will prove :

Theorem 1.1 : If A is 2 maximal order over a Krull domain R then
Coker(¢) is a finite group whose exponent is bounded by the p.i-degree of A {i.e.
by n if dimy(Z) = n?).

Returning to the Jespers-Van Oystaeyen conjecture . It is sufficient to study
the local case , i.e. if R is a discrete valuation ring in K such that the associated
Van Geel prime in & does not ramify (that means , if A is a maximal R-order in 5
, then the unique maximal ideal of A is generated by the uniformizing parameter
of R), does it follow that any maximal R-order in ¥ is an Azumaya algebra ?

The key lemma in our approach to this problem (which will be proved in the
next section) is the following :

Lemma 1.2 :If Ris adiscrete valuation ring and if A is a maximal R-order
such that its maximal ideal is centrally generated , then either one of the following
two situations occur :

(2) : A is an Azumaya algebra over B

(b) : Z(A/A.m) is a purely inseparable field extension of R/R.m

The proof of this lemma comes down to a verification of the fact that there
is a2 one-to-one correspondence between prime ideals of A[61] lying over A.m and
the prime ideals of R[61] lying over R.m.

An immediate consequence of this result is that the Jespers-Van Oystaeyen
conjecture is true for all applications in algebraic number theory (BR/R.m is finite
and hence perfect] and in algebraic geometry over a basefield of characteristic zero
(char(R/R.m) = 0 and hence perfect).

In order to tackle the general case , we will however need some extra condi-
tions on the maximal order A since D. Saltman [73] has provided the following
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counterexamples to the conjecture (in another context):

Example 1.3
equicharacteristic case : Let F be a field of characteristic p and K = F((2)) ,

the field of Laurent sequences over F equipped with the natural discrete valuation
and let R be the associated (complete) discrete valuation ring, Let {a,b} be
contained in a p-basis for F' (e.g. over its prime field) and let A be the cyclic algebra
[¢.E7?,b]. Choose an element o € A such that o — @ = a4™? , then (a.f)? —
t*7 (o.t) = o whence K{a)/K is a field extension such that the corresponding
residue fields are F{a/?) and F. Since b ¢ (F(a!/?))? one can verify easily that
b is not a norm of K(a)/K yielding that A is a skewfield (for details on cyclic
algebras we refer the reader to [30] ) . Since any discrete valuation on a complete
field extends to a finite dimensional skewfield over it , there exists a valuation ring
Ain A over R with CI°(A) =~ 1 and one verifies that A/A.t = F(a'/?,b!/P).

case of changing characteristic : Let K be a field of characteristic zero and

residue class field F of characteristic p. Suppose K contains a primitive p**-root
of unity , say w. Again, assume that {a,b} is 2 part of a p-basis for F (over its
prime field) . Choose preimages ¢’ 0’ € K of a and b and let A be the cyclic
algebra [a’,4’] defined over K . Again, there exists a valuation ring A in A such
that A/A.t = F(a'/? b'/?) and such that CI°(A) =~ 1. .

The above explains why we have to introduce Zariski {or &tale) tamifiable
maximal orders. An order A over a Dedekind domain D is said to be hereditary
if every omesided ideal of A is a projective A-module. Note that A is hereditary if
and only if the Jacobson-radical of A, is a left and right projective Ap-module for
every height one prime ideal p in D. A reflexive order A over a Krull domain R is
said to be a tame order in the sense of R. Fossum if and only if A, is an hereditary
order for every p € X(V(R).

If A is 2 maximal order over a Krull domain R in some central simple X
algebra ¥ , then A is said to be Zariski tamifiable if and only if the following
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condition holds: for every p € X (1)(R) there exists a separable splitting subfield
L{p) of ¥ such that the integral closure $(p) of R, in L(p) has the property that
A, ®r, S{p) is an hereditary order over the discrete valuation ring S{p).

Of course, a special ¢ase of such a situation (which explains the terminology)
is when A Qg S is a tame order over S where  is the integral closure of R in
some separable splitting subfield of .

A is said to be étale tamifiable if and only if the following condition is satisfied
: for every p € X()(R) , there exists an étale extension S(p) of R, such that S(p)
splits ¥, i.e. B @, $(p) =2 M,(L) where L is the field of fractions of S(p) and
# = pi.d.(A). More details on étale ringextensions can be found in e.g. Raynaud
[66] or Milne [52].

The main result which will be proved in the next section is then :

Theorem 14 :If A is 2 maximal order over a2 Krull domain R , then the
following two statements are equivalent :

(1) : A is a reflexive Azumaya algebra over R ;

(2) : CI°(A) =~ CI(R) and A is Zariski or étale tamifiable.

This shows that for a rather extensive class of maximal orders , the cokernel
of the natural monomorphism :

$: CU(R) ~ CI°(4)

is an invariant which measures how far A is from being a reflexive Azumaya algebra.
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(c) : generalized Rees rings :

The central classgroup of a maximal R-order A turns out to be a useful
invariant measuring ( for a large class of maximal orders , i.e. the tamifiable ones)
how far A is from being a reflexive Azumaya algebra.

Our next aim is to develop a method for killing off the ’bad’ part of C'l°(A) ,
namely Coker(g).

We will use the construction of the so called generalized Rees rings, first
introduced by F. Van Oystaeyen [88] in the commutative Z- graded case over a
base ring which is a Dedekind domain. In 1.3 , which is largely the content of a
joint paper with F. Van Oystaeyen, [42], we will extend this construction in three
directions : .

(1) : our construction takes as the grading group any torsion free Abelian

group, eventually satisfying the ascending chain condition on cyclic subgroups

(2) : the basering does no longer have to be commutative ;

{3) : we will assume that the basering is 2 so called relative maximal order,
which were introduced by the author in [40] in order to present a unified approach
to rings having an arithmetical ideal structure, such as maximal orders, h.n.p.-rings
[71] , Bass-orders [71] , tame orders in the sense of R. Fossum [21],... .

Generalized Rees rings over these relative maximal orders provide new ex-
amples of orders with an arithmetical ideal structure.

In this preliminary section we will not go into the details of the most general
case, but we will restrict attention to generalized Rees rings over maximal orders
and how they may be applied to kill off the bad part of the central classgroup.

Throughout, A will be a maximal order over a Krull domain B and {F,, ..., P}

will be the finite number of height one prime ideals of A which are not centrally
generated and coker(¢) = @Z/n:% (cfr. theorem 1.3 above)
‘We consider the Z @ ... @ Z-graded subring A(®) of BXy, X7 e X, X1
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equipped with the natural gradation i.e. deg(X;) == (0, ..., 1, ...,0) with 1 on spot ¢
,which is defined by :

A(®)(my, .oy my) = (PP PTnY" X2 X0

Part (a) of the next theorem is an adaptation of a similar result in IL3 ,
therefore we will merely present an outline of the proof.

Theorem 1.5 : If A is a maximal order over a Krull domain R , then :
(a) : A(®) is a p.i. maximal order over its center R(®) which is a Krull domain
(b) : Clo(A(®) ~ CUR(®))

Proof

{2) : In view of [13] we have to check the following two facts :

1. For any ideal I of A(®) , (I 4 I) = (I :;, I} = A(®)

2. A(®) satisfies the ACC on divisorial ideals (i.e. ideals of A satisfying

I:A®) : A(®)=1).

(1) : Since A(®) is a graded p.i. ring , its graded ring of quotients , @?(A(®)) =
T[X:, X7 is obtained by inverting central homogeneous elements and it is an
Azumaya algebra over the Krull domain K [X;, X7'],cfr.[42]. So, Z[X;, X7 ] is a
maximal order. Now, let I be any ideal of A(®) and suppose that I.¢g C I for some
g € Q(A(®)). Then, Q9(A(D)).1.¢ C Q7{A(®)).] and by maximality of Q?(A(P))
this yields that ¢ € Q9(A(®)) .Hence we may decompose ¢ in its homogeneous
components , ¢ = ¢;, + ... + gz, With 43 < ... < 4 (note that Z D ... @ Z
can be given the structure of an ordered group. We obtain : Co(I).q;, C C; (1)
where C;(I) denotes the set of all leading coefficients of elements of I of degree 7. _
Therefore, (Co().q:,)"" C Ci ()" whence : g;, € (Co(I)" "y *Ci(I)™. By [42],
this means that g;, € A{®){4). Replacing g by ¢ — ¢;, and repeating the foregoing
argumentation one finally arrives at g € A(®), finishing the proof of (1).

(2) : If {I.;n € N} is an ascending chain of divisorial A(®) ideals , then the
ascending chain {(Q¢.1,)"";n € N} becomes stationary , i.e. there is an n’ € N
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such that (@7 0 (Q”.I,.!)" for every m > n’. On the other hand , because
A is a maximal order , there exists an n” € N such that : Co(fn)"" = Co(lpn)™
for every m > n". Let N = sup(n’,n") , then I,, = Iy for every m > N jfr.
[42].

(b) : The graded central classgroup of A(®) , CI5(A(®)) is defined to be :

Clg(A(®)) = D,(A(®))/ P3(A(®))
where D,(A(®)) is the subgroup of D(A(P)) of ths ZD...PZ-graded divisvrial ideals
of A(®) and P5(A(®)) = {A(®).c|c€ E[X:, X7, ..., X0, X 71| and homogeneous
}. By [33,Th.3.2] the following sequence is exact :
1 - CE(A®)) = CI°(AP)) - CU(B[X1, X7, .., X, X' m 1
Now, L[X;, X7, ..., Xn, X!] being an Azumaya-algebra over a factorial domain,
Cle(B[Xy1, X7, .., X0, X ;1] = 1 whence : CI(A(®) = CI°(A(D)).
Fuarthermore, it is easy to verify that the sequence below is exact :
1< [P1], o [Pa] >— CI(A) — CL(A(D)) — 1
Similarly, Cl,(R(®)) =~ CUR(P)) and :

1 =< [p1], s [Pn) > CUR) — Cl(R(®)) — 1

whence one finally obtains the exact diagram :

1 1
i i

1 - <p]> — Cir — CURE®) — 1
i i)

1 - <> — e€rp) — CrP)@e) — 1
i !

DL/n; % BZ/n; %

finishing the proof.
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Our pext aim will be to prove that A(®) is tamifiable if A is. In order to do
this, we need some more information about the center of A(®) , which we will
denote by R(®). By direct calculation it is clear that all rings R(®) occuring in

. this way are of the following type :

Let R be a Krull domain , then for any finite set of height one prime ideals
{p1,...,pn} of R and for any set of natural numbers {ms, ..., mn} one can define
the so called lepidopterous Rees ring (in the terminology of F. Van Oystaeyen)
R{p:, m;) to be the Z ... %- graded subring of K[X;, X7, .., Xn, X ;1] defined
by :

B(pi, ma)(in, s in) = (/™% spllin/moll Xt Xin

where [[a/b]] = sign(a/b).[| a/b |] (as usual, [-] denotes the integral part of - ).
These lepidopterous Rees rings are readily seen to be Krull domains , cfr. e.g. [87).
They form a directed system in the following way :

R(p;,m;) < R(p’j,m’;)

iff {p:} C {p’;} and m; | m’; for corresponding values of ¢ and j.
In our case, B(®) = R(p;, m;) where {pi,...,p,} are the ramified prime ideals
in A and m; = ¢,, , the ramification indices. We are now in 2 position to prove :

Proposition 1.6

(1) : If A is a Zariski tamifiable maximal order over R , then A(®) is Zariski
tamifiable over R(®).

(2) : I A is an étale tamifiable maximal order over R , then A(®) is étale
tamifiable over R(®).

Proof :

(i) : Let p € XW(R) and suppose that L is a separable splitting subfield of ¥
such that the integral closure S(p) of R, in L satisfies : A, @ S(p) is hereditary.
Of course, L(X3, ..., X,) is a separable splitting subfield of B(X7, ..., Xy.). Let S(®)
be the integral closure of R(®) in L(X,, ..., X,). Because B(®) is a graded Krull
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domain , so is §(®) by an argument similar to [81]. Now, let P be any height
one prime ideal of $(®) , then either P is a graded prime ideal or F, (the set of
homogeneous elements) = 0 , by a standard argument cfr. e.g. [nasf]

Suppose first that P, = 0. Then the localization of A(®) @ S(®) at P is a
localization of (£ ®x L}[X1,X T2, .y X, X71]. Therefore, it will be an Azumaya
algebra over the Krull domain $(®)p, hence a maximal and certainly 2 tame order.

Next, suppose that P is a graded prime ideal and that PNR =p . p ¢
{p1,.-,Pn} , then the localization of A(®) ® S(®) at P is a localization of (Ap @
S(p)[X1,X7?, ..., Xn, X 1] and therefore it is a tame order because the class of
tame orders is closed under polynomial extensions and central localizations.

Finally, suppose p = p; , then (A(®) ® S(®))r = (A(S) Q
8(8))g[X2, X5, ... Xn, X ;] where A(f)(n) = PT.XT, S(6) is the integral closure
of R(®) , the center of A(8) in L(X;) and p = P 1 $(6). Now, A(8)  §(8) is
readily checked to be an overring of (A ® §)(8) in (£ ® L)(X1). Furthermore,
{(As ® S(p))(®) is a tame order by [42] or [48] and therefore so is (A(8) ® 5(8))y;
finishing the proof.

(2) is rather trivial since étale extensions are preserved under tensorproduct
and localization.

The foregoing results complete the proposed program for tamifiable maximal
orders. In section II.3 we will prove that there is a natural one-to-one correspon-
dence between divisorial A-ideals and graded divisorial (onesided) A(®)-ideals. The
connection between graded divisorial ideals of R(®) and divisorial ideals of R is
not that easy to determine. The reader is referred to a fothcomming article of
M. Vanden Bergh for an exposition of this relation in the Z- graded case over a
Dedekind domain R. It would be extremely interesting to generalize his methods
to the Z & ... @ %- graded case and with R being a Krull domain,

In order to study the {reflexive] Azumaya algebras A(®} over the graded Krull
domain R(®) it might be interesting to study the graded (reflexive) Brauer group of
R(®) introduced by F. Van Oystaeyen in the Z-graded case [86] and consequently
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generalized in [91] to arbitrary grading groups G. We will here merely present the
definitions and some of the problems in the theory .

A graded order A over the graded Krull domain R is said to be a graded
Azumaya (resp. reflexive Azumaya) algebra if the natural morphism :

A ®r AP -> Endg(A) resp. A ®} AP — ENDg(A)

is a degree preserving isomorphism. It is easy to check that a graded (reflexive)
Azumaya algebra is just a (reflexive) Azumaya algebra admitting a gradation
extending the gradation of the center. Two graded (reflexive} Azumaya algebras A
and T are said to be gr-equivalent if there exist graded finitely generated projective
{resp. reflexive R-lattices) P and @ (resp. M and N) such that there exists a degree
preserving isomorphism :

AQ@r ENDg(P)=~T @r ENDR(Q)

AQg ENDg(M) ~T @ ENDg(N)

where the rings EN Dgr(—) and tensorproducts are equiped with the natural grada-
tiom, cfr. e.g. [58]. The set of gr-equivalence classes of graded (reflexive) Azumaya
algebras fofiis & group WIth FESpect to the tensorproduct , BFI(R) (resp. FI(R)).
These groups are called the graded (reflexive) Brauer group of R. These groups
were extensively studied in the Z-graded case by F. Van Oystaeyen, A. Verschoren
and S. Caenepeel [86],[91]. One of the key problems in the theory is the determina-
tion of the kernel of the natural morphism Brf(R) — Br(R).

Another problem is whether Br(R) may be reconstructed from Br?{R)’s ob-
tained by changing the gradation. That this is indeed possible in certain cases has
been demonstrated by F. Van Oystaeyen.

As in the ungraded case , the study of graded (reflexive) Azumaya algebras
shows two different faces :

(3) : determination of the groups 89(R) {resp. Br?(R)),

(b) : the study of graded reflexive (resp. projective) B-modules or equivalently
the study of graded maximal orders in M,(K).
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It is an interesting problem to investigate whether f7(R(®)) may be generated
by the classes of reflexive Azumaya algebras of the form A(®) where A is a maximal
R-order. A natural idea would be to try to prove that the part of degree (0, ...,0)
of 2 graded reflexive Azumaya algebra is a maximal R-order. However, this need
not be the case as the following counterexamples due to M. Vanden Bergh shows

Example 1.7

Let A be an hereditary;not maximal order over a discrete valuation ring R.
If we form the Z-graded generalized Rees ring over A starting from the Jacobson
radical of A then it is not difficult to see that this is an Azumaya algebra over its
center. However, its part of degree 0 is A.

Another example of such a situation is the following : let A be a maximal order
with prime discriminant over a Dedekind domain R in a quaternionalgebra ¥ over
its field of fractions K . Form the generalized Rees ring over A starting from this
ramified prime and suppose that it is an Azumaya algebra (is always the case if A
is tamifiable, e.g. for quaternions over Q). Now, split this Azumaya algebra with
the integral closure of the center in a separable splitting subfield , then we find a
graded Azumaya algebra with part of degree 0 not a maximal order.

For every lepidopterous Rees ring R(p;, m;) there exists a natural morphism
A(p:, mi) : B2(R(p;, m;)) = Br(K)
which is defined to be the composition of the morphism
B9(R(pi, ma)) = Bré(K[X1, X7, .., X, X11]
and the natural isomorphism Brf(K[Xy,X7,..., Xy, X 1]) = Br(K) which ex-

ists because K[Xy,X7!,...,X,, X 71| is strongly graded and hence there is a
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natural one-to-one correspondence between graded Azumaya algebras over the
graded field K[X;,X77, ..., Xy, X 71| and Azumaya algebras over K.
Hence, one can define 2 morphism :

¢: lim B*(R(p;, m;}) — Br(K)

and we claim that Coker(6) gives a measure for the aboundancy of non-tamifiable
maximal orders over B, for :

Proposition 1.8
If B is a Krull domain such that every maximal R-order is tamifiable , then
9 is surjective.

Proof

The map ¢ is defined by sending a class of B(R(p:,m:)) say [A] to [(A @
K[X1, X7, .., X0, X2 )o] .So take a representant ¥ of a class in Br(K) and let
A be a maximal R-ordet ini . Bé¢dusé A is tamifiable , A(®) is a reflexive Azumays
algebra over R(®) and it is easy to see that A(P) @ K [X1, X%, ..., X, X1 =%,
finishing the proof. '

d. : universal measuring bialgebras

Finally, let us return briefly to the study of non-tamifiable maximal orders.
In 1.4 we will develop a method which might help to describe their structure. The
motivation behind it is Saltman’s approach in [73] for his class of non-tamifiable
maximal orders. over a discrete valuation ring. He is only concerned with the case
that BR/R.m — A/A.m is a commutative () , purely inseparable field extension
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of exponent one and degree p”. It turns out that the structure of A is entirely
described by the R-derivations of A.

Inspired by this special case, one might expect that for more general non-
tamifiable maximal orders, higher derivations of A will come into the picture as
well as the extension Z{A/A.m) ~ AfA.m which depends on the structure of the
group of R-automorphisms of A .

Therefore, it would be usefull to have some invariant associated to A which
describes in a unified way both the (higher) derivations and the automorphisms of
A over R.

If Ais an algebra over a field K , the universal measuring bialgebra Mx (A, 4)
and more in particular its maximal cocommutative pointed subbialgebra Hx-(4, 4),
both introduced and studied by M.E. Sweedler [78], [77] satisfies the requirements
of the proposed invariant we are looking for.

For general definitions and more details on coalgebras, bialgebras etc. , the
reader is referred to Sweedler’s monograph [76] or the more compact book of Abe
[[1]]. Roughly, coalgebras are the dual objects of algebras (reverse all the arrows in
the diagrams defining an algebra) and bialgebras are both algebras and coslgebras
such that the defining maps are compatible with one another. Standard examples
of bialgebras are groupalgebras and universal enveloping algebras of Liealgebras
of derivations, cfr. [76]. A bialgebra M is said to measure an algebra A to itself if

there exists a K-linear map :
P MRIk A=A

such that the following conditions are satisfied :

(1) : 9(m Q@ a.0’) = 3 P(m() ® a)P(m() @ ')

(2): ¥(m @ 1) = e(m).1a

for ail a,a’ € A and m € M ; where 3(m) = Em(l) ® mz) is the comui-
tiplication map of M and ¢ : M — K is the counit map. If m is a group-like
element of M , ie. A(m) = m @ m and e¢(m) = 1, then it is easy to see that
P(m Q ~) : A — A is a K-algebra morphism of A. i m is a primitive element
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of Mie Am)=m@1+1@mand ¢(m) =0then p(m @ —): A > Ais a
K -derivation of A. This shows that measuring bialgebras present a concept which
- unifies actions of both automorphisms and derivations. Sweedler {76] has shown
that there is a universal object My (A, A4) in the category of bialgebras measuring
Ato A That is; if ¥ : M @k A — A is a measuring bialgebra then there exists
a unique bialgebra map F : Mg (A4,A) — M such that the diagram below is a

commutative one :

! /
M@k A

Therefore, in order to study measurings from A to A , it will be sufficient to
study subbialgebras of Mg (A, A) and their induced measurings. However, in
most cases this Mx(4,A4) is far too large to admit a manageable description.
Therefore, one restricts attention to the maximal cocommutative pointed subbial-
gebra Hy (A, A) of Mk (A, A). Note that this Hx (A, A) suffices for our purposes
since automorphisms and derivations can be described by measurings with cocom-
mutative pointed bialgebras. If char(K} = 0 , then a beautiful theorem due to
Kostant describes Hx (4, 4) , namely :

Hx (A, A) = K .Galg(A) # U(Derg(A))

where . # . denotes the smashed product , efr. [76]. These objects can be used in
several fields , e.g. to obtain a Galois theory for commutative field extensions , cfr.
[77].

Of course, one can define algebras,coalgebras,bialgebras,measurings etc. in the
obvious way over an arbitrary ring R but then it is no longer possible to construct a
universal measuring biaigebra in general. This forced S. Chase and M.E. Sweedier
in [15] to introduce the notion of a so called Galois object in order to get a more
or less satisfactory Galois theory. However, the condition of being a Galois object
restricts the ringextensions in this Galois theory rather severely.
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Therefore, it would be interesting to find a nice class of commutative rings {e.g.
the Dedekind or Krull domains) for which it is possible to extend the construction
of Sweedler . In IL.5 we show that this is indeed possible. The reason why this
generalization holds for Dedekind domains is that there are enough projective
modules (every f.g. torsion free module is projective) whereas for Krull domains it
holds because they may be viewed as a global sheaftheoretic version of a discrete
valuation ring.

‘We will show that for every order A over a Dedekind domain D in 2 central
simple K-algebra ¥ there exists a universal measuring bialgebra Mp(A, A). Further
it is rather easy to show that Mp(A,A)@p K is a subbialgebra of My (Z, £). Now,
if we define :

Hp(A,A) = {z € Mp(A,A) : i(z ® 1) € Hx (S, T)}

where ¢ is the canonical inclusion map. This Hp(A, A) is shown to be a maximal
pointed cocommutative subbialgebra of Mp(A, A). Similarly , one may define the
pointed irreducible component of the unit element :

Hp(A,A) = {z € Hp(A, ) : i(= ® 1) € H} (5, 1)}

and it turns out that this H} (A, A) is a not necessarely finitely generated D-order
in H4(%,5), i.e.:
Hb(A,4) @b K =~ HY(S,X)

However , Hp(A,A) need not be an order in Hg(%,X). E.g. if D is a discrete
valuation ring and if A is a maximal order then Hp(A, A) is a D-order in Hg(Z, )
if and only if A is a discrete noncommutative valuation ring. In general, for a
maximal D-order A , G(Hx (X, L)}/ G(Hp(A, A)) measures the conjugated maximal
D-orders.

Furthermore, we present a method in order to lift most results from Dedekind
domains to Krull domains.
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2. THE CENTRAL CLASSGROUP OF A MAXIMAL ORDER.

a. primes, pseudo-valuations and maximal orders.

In this section we aim to develop a machinery which resembles the theory of
essential valuations associated to a commutative Krull domain, cfr. e.g. [22].

First, we aim to establish that the set of all divisorial A- ideals » D(A), is an
Abelian group, To this end we use the axiomatic construction of the group of E.
Artin. The construction we present here runs along the lines of G. Maury and J.
Raynaud in [50]. We denote by F(A) the set of all nonzero fractional A- ideals,
i.e. R-lattices in ¥ which are twosided A- modules , or equivalently , twosided
A-submodules A of ¥ such that A.k C A for some suitable k € K*. Clearly, if
A and B are in 7(A) , then their product A4.B is also 2 fractional A-ideal. 7 (A)
equipped with this multiplication and ordered by inclusion satisfies the following
properties :

(1) : #(A) is an associative semigroup with identity element A ;

(2) : 7(A) is a lattice ; A+ B = sup(4,B) and AN B = inf(4,B) ;

(3):  A,B,C € 7(A) , then A < B implies that A.C < B.C 2nd moreover
A(B+C)=AB+AC,(B+C)A=BA+C.A;

(4) : If {A;;4 € I} is a nonempty set of elements of F(A) such that LA EF(A)
» then for any C' € 7(A) , sup(C.4;) and sup(4;.C) exist in 7 (A) and sup(C.4,) =
2 C.A; = C.3 A; = C.sup(4;) and similarly sup(A;.C) = sup(4;).C;

(5 : For every A€ 7{A}, (A:A) e 7 (A) (note that because A is a maximai
R-order , (A A) = (A:r A) = (A: A)efr. e.g. [k]) and A(A : A).A < A moreover °
if AX.A < Afor some X € 7(A) then this implies that X < (4:A)

(6): A% < A, moreoverif A< T, 2 <TandT ¢ F7(A) , then A = I because
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A is a maximal R-order.

An abstract ordered semigroup satisfying these requirements is said to be an
Artin-setting. Now, we define an equivalence relation on 7 {(A) by saying that A ~
Biff (A:4):A=(B:A):Aiff A = B**. The set of equivalence classes s
F(A)/ ~ ,is isomorphic to the set of divisorial A-ideals , D(A) , which becomes an
associative semigroup by defining the *-multiplication rule : A+ B = (A.B : A):
A = (A.B)**. Proposition 1.4 of [50] now yields that D(A) with this multiplication
is an Abelian group.

Now, we reverse the ordering on D(A) ,ie. A <’Bif 4 D B. It is easy to
verify , cfr. e.g. [50] , that every nonempty subset of D(A) has a supremum for this
new ordering Ay ... N Ay, and an infimum (4; + ... + 4, :A): A .

Proposition 2.1 : D(A) =~ Z for a certain index set I and this isomor-
phism is order preserving.

Proof \

We have seen that D(A) is an ordered Abelian group such that any two
elements have a supremum and an infimum. Because A is a2 maximal order over
~ a Krull domain R , A satisfies the ascending chain condition on divisorial ideals
contained in A . This entails that every nonempty subset of positive elements of
D(A) , i.e. of divisorial A-ideals contained in A , has a minimal element. A well-
known theorem on ordered Abelian groups satisfying these requirements , cfr.
[12] , yields that D(A) =~ Z? for some index set I and that this isomorphism is

order-preserving.

Here, the order relation on ZY) is of course defined by : (a:): < (8): iff

a; < B;forall £ € 1. Let 4 : D(A) — ZD be an order preserving isomorphism.
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Put ¢; = (8;;); where §;; is the Kronecker-delta and let P; = ¢~ (e;). Thus, any
element A € D(A) can be written uniquely as :

A== PP s  « Pin;cl
In order to avoid heavy notation, we will sometimes use the abbreviation : A% —
(A:A)y: A= 4"

Lemma 2.2 : P;is a prime ideal of A.

Proof

Let z,y € A be such that z.A.y C P.It is straightforward to check that
Az * (AyA)Y = (Az.AyA) C P; Further, P(AzAY) = Yonj.e; and
P(A.y.A?) = 37 m;.e; where nj,m; > 0. In particular, $(A.z.A%) + P(Ay.Ad) =
2.(n; + my).e; > P(P:) = e;.Therefore, ng > 1 or my 2> 1 yielding that either
z € P; or y € P;, finishing the proof.

Lemma 2.3 : Let P be any nonzero prime ideal of A , then P contains
some P;.

Proof
Since A is a prime p.i. ring P contains a nonzero central element , say . Since
A.r € D(A) we may write :

PDAr=P{"%.. « P > Py PH

and all n; > 0.Therefore P ) P; for some ¢ € I.

Proposition 2.4 : D(A) is generated by the height one prime ideals of A.
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Proof

Suppose P is a height one prime ideal of A , then by the foregoing lemma
P = P; for some i € I. Conversely, let P be a prime generator of D(A). Xf Pis not
a height one prime ideal, then 0 ¢ Q & P for some prime ideal @ of A.Again by
the foregoing lemma this entails that P; & P for some 7 € I. Therefore, ${P) <
#(P;) = e; which is a contradiction because $(P) > 0.

In the commutative case, valuation theory is a powerfull tool in order to study
Krull domains. A useful noncommutative generalization of valuation theory is the
theory of the so called Van Geel - primes {cfr.[57] , [80]). We aim to relate pseudo-
valuation functions on the set of divisorial A-ideals to Van Geel-primes in ¥.Let
us start by recalling some definitions :

Following J. Van Geel we will call a pair (M, 0) a prime in the central simple
K-algebra I if and only if it satisfies the following properties :

(P1) : O is a subring of I;

(P2) : M is a prime ideal of O;

(P3):For all z,y € £, 2.0.y C M implies that either z € M or yEM.

If (M, 0) is a prime in T , then so is (M, M) where we denote by M the
set {z€X:2.M C M and M.z C M}.

Primes are natural generalizations of commutative valuation rings, for, if &l =
K is a commutative field , then (M, K'™) is a prime in K if and only if KM is a
valuation ring in K and M is its unique maximal ideal.

Extending the terminology of [57] to the case of a maximal order A over a
Krull domain R in a central simple K-algebra T , we define :

Definition 2.5  : An arithmetical pseudovaluation v on D(A) is a function
v : D(A) > T'U {oo} where I is a totally ordered group satisfying :

(Vi) : VA, B € DlA) : v[4 « B) = o{d) + v(B);

(V2) : V4, B € D(A) : v((A + B)**) > min(v(A4), v(B));

(V3) : VA, B € D(A) : if A C B then v(4) > V(B);

{V4) : (A) = 0 and v(0) == co.
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For any element z € X we will denote by C, = (A.z.A)** € D(A). The next
result is a generalization of a similar result in [57] :

Proposition 2.6

(1) : To any arithmetical pseudo valuation ¥ on D(A) one may associate a
prime in I.

(2) : To any prime (P,2F) in T such that P = NA,.P.A, and A C 5P we
may associate an arithmetical pseudo valuation on D(A).

Proof

(1) : Let v be an arithmetical pseudo valuation on D(A). Define P = {z € & |
v(C;) > 0}. By definition of v , P is clearly a multiplicatively closed additive
subgroup of X, , the Abelian group X ,yielding that P is an ideal of 2F. If 2,y €
¥ such that z.5%.y C P, then z.Ay ¢ P because A C SF. Therefore, 0 <
v(NAp.2.45.9.4p) = 9(NAp(NAp.2.A).(NAY.Ap).Ap) = v(Cy % Cy) = 9(C,) +v(Cy)
and thus either v{C.) > 0 or ¥(C,) > 0 yielding that (P, £F) is a prime in X.

(2) : If (P, 2F) is a prime in ¥ such that NA,.P.A, = P and A C £F, define
for any divisorial A-ideal I :

W)={z€X|C.+xIC P}

Now, let T’ be the set {v(I) | I € D(A)}, then T is totally ordered by inclusion. To
show this , suppose that I, J &€ D(A) are such that both v(I}) & »(J) and v(J) ¢
(). Therefore, there exist elements z,y € = such that C, * I C P ,C,xJ ¢ P
, Cy*I C P and Cy %I C P. Because (P,ZF) is a prime , we then obtain :

(CoxNEP(Cys )z P
yielding that for some z€ £F : G, + J + G, « 5, « I ;Z P. But, 5(1‘15 is an abelian
group whence C, [+ C, %+ Cy + I ¢ P and because for any z € £F we have trhat

C,+*P C P and P+ C, C P this is a contradiction, finishing the proof of our
claim.
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We claim that v(I)+(J) = v(I*J} is a well defined addition on I which turns
I' into an ordered group with unit element v(A). For, if v(I) = v(I ) and v(J) =
v(J’) for 4,1, J and J° € D(A) then we have for any z € oI+ J):CoxIsJ C P
whence C, I C v(J) ==v(J’) hence Cp + [+ J’ = C, +J’+I C P and thus finally
since o(I} = V() , Co % '+’ =C,x '+ J’ C P follows , i.e. z € o(I’+ J*). The
fact that v(A) is a unit element is obvious.

o(I) < o(J) yields o(I) + v(H) < o(J) + v(H) for any H € D(A) , for , if
2€v(l+H)then C, + H+I=CoxI+H C P ,ie. C, s H C o(l) C v(J)
whence C, % J «H C P. The required properties for v to be an arithmetical pseudo
valuation follows directly from the definition of v.

Let us define for all 7 :

Vi:DA) = Z:A=PM x ..+ P o ny

Proposition 2.7 : v; is an arithmetical pseudovaluation on D(A).

Proof

It is easy to check that A = P}* % .. % Pp* = (A: (A : PT*...PE¥)). Since
D(A) is a commutative group, we see that for all I, J € D(A) we have vi(I + J) =
vi(I) + v;(J). Now, let I C J and let $(J) = S mj.e; , $(I) = 3. nj.e;. Since
$(J) < $(I) we have that vi(J) < vi(]).

Next, we have to establish that v;((I+ J)%) > min(vi(), vi(J)). Suppose first
that both 7 and J are in A. Then J = (A : (A : PP*..PP)) C (A : (A : PH)
because all n; > 0. Similarly, J = (A : (A : PP*..PP™)) C (A: (A : P
whence (I +J) CA: (A: P+ (A: (A: P™))=(A:(A: P%)) where k; =
min(n;, m;) yielding that v{(Ff + /) > min{oi(D),0.(J}). ¥ I Z hor F & & ,
there exists an element ¢ € R such that ¢.J C A and ¢.J C A. Hence, vi({(c.A).] +
(e.A).T)%) > min(vy{(c.A).D), vi((c.A).T)) = min(vi(c.A) + vi(I), vi(c.A) + vy ().
Therefore, v{c.A)+v:((I+ J)%) > vi{c.A)+min(vy(I), v:(J)) completing the proof.
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Lemma 2:8 : Let v be an arithmetical pseudovaluation on D(A) and let {I;}
be an arbitrary set of divisorial ideals such that 3° I; € 7(A), then v((3- I))H) =
inf(v(1;).

Proof
One inequality is obvious since »{(} 7;)%) < v(I;) for every j. The proof of
the converse inequality is similar to the proof of proposition 2.7.

Corollary 2.9 : If v is an arithmetical pseudovaluation on D(A) and if
I € D(A), then o(I) = inf{v((A.z.A)%) | = € I}.

Now, let us consider again the arithmetical pseudovaluation :
V1 D(A) 2 BiA=P{ s .. « PP s 5i;

and let us assume for the sake of simplicity that ¢ — 1, Denote Qi={z€X|
v1(C.) > 0}and Ay = {z € X | v.Qy C Q; and Q1.2 C Ay} It is straightforward
to check that @; NA =P;.

Proposition 2.10 :A; ={z€ X |v(C,) > 0} ={z €2 |2.J C A and
I.z C A for some ideal I of A not contained in P;}.

Proof

(1) : Suppose z € £,6:(C,) > 0 and y € @y, i.e. v1(C.) > 0. We immediatly
have that A.z.y.A C Az AAyA C O, 5 Cy , hence C, , C C, * C,. This yields
v1(Cry) 2> v1(C.) + v1(Cy) > 0. Therefore, 2.Q; ¢ @ and similarly @,.2 C
Q1. Conversely, suppose z € A; , so in particular 2.5, & J,> Corollary 3.8
above yields that there is an element y € P; such that v1(Cy) = 1. Hence ,
AzAyA C Q. We claim that vi((A.z.Ay.A)%) > 0. K A.z.AyA C A we may
write (A.2.A.y.A)* = (Ca.py.y+...+Ch., 4)* (because the divisorial ideals contained
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in A satisfy the ascending chain condition). If A.z.A.y.A & A, then it may be
multiplied by a central element such that the image is in A and then the argument
used before may be repeated. Since z.r;.y € @, for all 7 and lemma 2.7 yields
that vy ((A.z.A.y.A)%) > 0. Therefore, vy ((A.z.A.y.A)%) = v,(C.) +v:(Cy) > 1 and
v1(Cy) =1 hence v,(C,) > 0.

(2) : Let z € Ay , that means v;(C,) > 0. Write C, == P «...x Pg* and ny >
0. Multiply this equality by those P? with n; < 0. Then I %C, = P%'* % ... P,’:”‘
where I € D(A) and on the right side of this equality all »’; are positive. Hence
we have that I+ C, C A. Now I is the product in D(A) of positive powers of
P; and ¢ # 1. Hence I ¢ P;. Counversely, suppose I.z C A and I ¢ P,. Take
y € I— P;. Then y.A.z C A C Ay. Similarly, as in the first part of the proof we
have vy ({A.z.A.y.A)?) = v1(Cy) + v1(C.) > 0. But, v1(Cy) = 0 since y € A - P
and therefore v;(C,) > 0 and thus finally z € A;.

It is easy to derive from the foregoing proposition and from the fact that there
is'a one-to-one correspondence between the beight one prime ideals of B and those
of A that Ay =~ A,, where py = P; N A. This yields that A; is a left and right
principal ideal ring and that it is 2 maximal order over a discrete valuation ring.
Thus, in particular , any twosided ideal of A; is some power of its Jacobson radical
J(A1).

Let R, be the center of Ay and let m be the uniformizing parameter of the
associated discrete valuation in K , then by the foregoing remarks we know that
A;.m = J(A1)® . This e is called the ramification index of the valuation v in 2.
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b : the central classgroup :

In this section we will introduce and study an invariant which describes how
the srithmetic of the maximal order differs from that of its center : the central
classgroup.

This central classgroup of a maximal R-order £ , Ci°(A) , is defined to be the
quotient group of D(A) by P°(A) , where P°(A) is the subgroup of D(A) consisting of
those divisorial A-ideals of the form A.k for some k € K*. Alternatively, one could
view C°(A) to be the twosided A- module isomorphism classes of divisorial A-ideals
, for if f : A =~ A as a twosided A-module , then there exists an element z such
that f(X) = M\.z. Because f is right linear we obtain that FOWN) = F(A\’).x and
therefore M. h.z = X’.z.) for all \,\’€ A yielding that A.z = z.)\ ,i.e. 2 € K*.

K R is a discrete valuation ring in K and if A is a maximal R-order in some
central simple K-algebra £ and if M = J(A) is the unique maximal ideal of
A , then M°® = A.m where m is the uniformizing parameter of R and e is the
ramification index of this valuation in ¥ , cfr. the previous section. Since all
maximal orders over a discrete valuationring are conjugated , it follows that this
ramification index does not depend upon the particular choice of A. If ¢ > 2 we
say that the valuation ramifies in ¥ , otherwise it is said to be unramified.

Our first objective is to study the relation between the central classgroup of
a maximal order over 2 Krull domain and the classgroup of the center.

Proposition 2.11 :If A is 2 maximal order over a Krull domain R in some
central simple K -algebra ¥ , then the following sequence of groups is exact :

1 -+ CU(R) = CI(A) > @X/e, % — 1

where @Z/e,Z is a finite group which describes the ramification- indices of the
essential valuations associated to R in ¥ and moreover its exponent is bounded by
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the p.i-degree of A.

Proof

Consider the natural map ¢ : D(R) — D(A) which is defined by ¢(4) =
{A.A)**. Because there is a natural one- to-one correspondence between X ()(R)
and X(U(A) , this map is readily checked to be a groupmonomorphism and for
every pe X (1)(12) , there exists a unique natural number e, and 2 unique prime
ideal P € X(U(A) such that {A.p)** = (Pe»)**. It is straightforward to check that
ep is the ramification index of the discrete valuation associated to p in I.

Furthermore , ¢(P(R)) = P°(A) so we obtain the following exact diagram :

1 1
H |

1 - P(R) — D(R) —+ CIR) — 1
1 { Lo

1 — Pe(A) D(A) - CI(A) — 1
l i
1 DL/e,Z

where ¢ : Ci(R) — CI°(A) is the induced morphism. Applying the snake lemma
entails that the sequence below is exact :

1 -+ ClR) — CI°(A) > DZ[e,Z — 1

Therefore , we are left to prove that Coker(¢) is a finite group whose exponent
is bounded by the p.i.-degree of A. Let ¢ be an arbitrary nonzero element in the
Formanek center F(A) of A, then there are only a finite number of height one
prime ideals p in R such that ¢ € p by the finite character property of R. Because
the localization of A at any of the other height one prime ideals of R is an Azumaya
algebra , it follows that e, = 1 for allmost all p € X(V(R) showing finiteness of
Goker(4).

As for the last claim :

Let P be an height one prime ideal of A with ramification index e, , then
(nr(P))** = (pf)** for some natural number f. Then , (A.p)** = (P*»f)** and
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therefore taking reduced norms on both sides yields : (p7-")** = (p’ *.¢5)** whence
finally e, < n, finishing the proof.

Example 2.12  : Let A =C[X,~], then A is a maximal order over B =
R[X?]. If P 3£ (X) € XM(A) then pid(A/P) = 2 and pid(A/(X)) = pidC) = 1
whence epnr = ml for all P 3£ (X). Furthermore, e(x2y = 2 and therefore (
since CR[X?])=1), CI°C[X,~]) = Z/2%.

Proposition 2.13 : If A is a reflexive Azumaya algebra over the Krull
domain R , thex CUR) =~ CI°(A).

Proof

If F(A) denotes the Formanek center of A , then XW(R) C X (R.F(A) =
{p € Spec(R) : R.F(A) Z p} because A is a reflexive Azumaya algebra. This entails
that A, is an Azumaya algebra over R, for every p € X (M(R) , hence ep=12and
proposition b.1 now finishes the proof,

The main problem in the rest of this section will be to determine to what
extent the inverse implication of the foregoing proposition holds , i.e. for which
maximal orders are the ramified height one prime ideals exactly those lying outside
the open set of Spec(R) determined by the Formanek-center of A.

Since Coker(¢) depends only upon the ramified essential valuations of & in &
‘we have :

Proposition 2:14 : If A and I are two maximal R-orders in the same
central simple K-algebra ¥ , then :

Ci*(A) ~ CI°(T)
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From [33] we retain that this central classgroup has mice functorial properties
with respect to ringextensions in the sense of C. Procesi. So, if A C T’ is an
extension of maximal orders which satisfies the pas d’éclatement condition , i.e.
ht(P N A) < 1 for every P € XMW(I). Note that A C T satisfies pas d’éclatement
if and only if Z(A} C Z(T') satisfies pas d’éclatement.

In {33] it is shown that whenever A -+ I’ is an extension which satisfies pas
d’éclatement , then the natural map :

D(A) — D(I)
defined by sending A to (I'.4)** is 2 groupmorphism and it induces a morphism :

CI*(A) — CI(T)
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c ¢ the Jespers-Van Oystaeyen conjecture for tamifiable maximal orders

F. Van Oystaeyen and later E. Jespers [34] asked whether for a maximal order
A over a Dedekind domain R , the vanishing of the central classgroup implies that
A is an Azumaya algebra over R, This conjecture is equivalent to the following :

{Jespers-Van Oystaeyen conjecture} If A is a maximal order over a Krull
domain B then the following statements are equivalent:

(1) : A is a reflexive Azumaya algebra in the sense of M. Orsech [61].

(2) : CI°(A) =~ CI(R).

In this section we aim to prove this conjecture for a large class of maximal
orders. Let us start by recalling some definitions :

If A is an order over a Dedekind domain R , then A is said to be an hereditary
order (or an h.n.p.-ring in the terminology of Robson [69]) if every one sided ideal
of A is a projective A-module. Note that , unlike in the commutative case , an
hereditary order need not be maximal. A standard counterexample is :

A e (R M )
R R
where M is an ideal of the Dedekind domain R. An order A over a Krull domain

R is said to be a tame order in the sense of R. Fossum [21] if A, is an hereditary
order over R, for every p € X(U(R).

{a) : the loeal ease

In this first section we will restrict attention to the case where A is 2 maximal
order over a discrete valuation ring R such that Cl°(A) = 1 . This means that
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the unique maximal ideal M of A is of the form A.m where m is the uniformizing
parameter of B . In order to check that A is an Azumaya algebra over R , it is
sufficient to check that A/A.m is a separable algebra over R/Rm ,{19].

The condition which appears in the literature , cfr. e.g. [67] , is that Z(A/A.m)
is a separable field extension of R/Rm (for, A/A.m is a simple p.i-ring whence
separable over its center). Our first aim is to improve some results of Reiner [67]
and Riley [68] and to reduce the study of the Jespers-Van Oystaeyen conjecture
to two special cases. The proof of the next proposition relies heavily upon some
results of J. Mc Connell [51] and M. Chamarie [13] on the localizability of prime
ideals in maximal orders.

Proposition 2.15 : If A is 3 maximal order over a discrete valuation ring
R with CI°(A) = 1, then one of the following situations occurs :

(2) : Z(A/A.m) = R/R.m in which case A is an Azumaya algebra

{(b) : Z{A/A.m) is a purely inseparable field extension of R/R.m

Proof : The proof will be split up in several steps :

step 1 : First, we claim that it is sufficient to check that prime ideals of the
polynomial ring A[t] which lie over A.m satisfy the unique-lying-over property
with respect to the center R[t]. For, it is rather easy to see that this set of
prime ideals corresponds bijectively to Spec{A/A.m[t]). Now, A/A.m is a simple
p.i-algebra, whence there is a one-to-one correspondence between Spec(A/A.m|[t])
and Spec(Z(A/A.m){]). If the claimed condition is satisfied, this entails that there
is a one-to-one correspondence between Spec(Z(A/A.m)[t]) and Spec(R/R.m[f]) ,i.e.
there are no irreducible polynomials over R/Rm which decompose over Z(A/A.m)
in distinct irreducible polynomials. Because Z(A/A.m) is a finite field extension of
R/Rm this entails that Z(A/A.m) cannot contain separable elements over R/Rm
not belonging to R/Rm , finishing the proof of our ciaim.

step 2: In [13] , M. Chamarie proved that a prime ideal P of a maximal order
over a Krull domain satisfies the unique-lying-over property with respect to its
center if and only if C(P), the maultiplicatively closed set of elements which are
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regular modulo P, satisfies the left and right Ore - conditions. Let us first verify
that every P € Spec Aft] such that P N A = A.m satisfies the AR-property. By
[51] 2.7 it is sufficient that P has a centralizing set of generators. Now, m € P
and P/A.m[t] = A/A.m[t].c’ for some ¢’ in Z(A/A.m)[t] , because every ideal in a
polynomial ring over a simple ring is generated by a central element . So, (m,c)
is a centralizing set of generators of P. Using [51] Th.6 and Coroll.7 , it will now
be sufficient to check that every ideal of A[t] has a centralizing set of generators.
In fact, the proof of [51] Th.6 uses only the fact that certain ideals H, have a
centralizing set of generators, so we just have to check this property for ideals
intersecting A nontrivially. :

step 3 : Let I be any ideal of A[t] such that /N A £ 0, then INA = A.m"
for some natural number n. Let Iy = p;(I) where gy : Aft] — A[t]/(m™) is the
canonical epimorphism and let ¢; € I be of minimal degree such that g1(c1) 7 0.
If my is the leading coefficient of ¢y , then clearly pi(mi) % 0 and Am; A =
A.m!t where Iy < n, for , otherwise one could lower the degree of ¢;. So, we may
suppose that the leading coefficient of ¢4 equals m!*. Because m!t € R and the
degree of ¢; is minimal , e;X — Xer € (m™) for every X € A yielding that ui(es) €
Z(A[#]/(m™). ¥ [; = 0 (i.e. my = 1) then py(I) = A[f]/(m"™).p1(c1), finishing the
proof. f 0 < I; < n and if I 2 (m"™, ¢1), choose ¢z € I of minimal degree such
that po(c2) # 0 where po : Aft] — Aft]/(m",¢,) is the canonical epimorphism.
Clearly, by a minimal degree argument as before we may assume that the leading
coefficient of ¢g equals mi2 for some lo < I and that coh — hex € (m™,¢q) for
every A € A whence p2(c2) € Z(A[t]/(m™, ¢1)). Continuing in this way leads after

a finite number of steps to an element c,, such that either . = (m™, ¢y, ...,c) or
the leading coeflicient of ¢,y is 1 yielding that I = (m™. ,..,¢m+1), finishing
the proof.

Remark 2.16

The condition : Z (A/ Am) isnot a purely inseparable field extension of B / Rm,
is always satisfied in the cases under consideration in algebraic number theory and
algebraic geometry. For, in these cases , T is a central simple algebra over 2 global
field or over a functionfield of a variety over a basefield of characteristic zero ,
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yielding that R/R.m is a perfect field.

This vast amount of good examples may account for the manifest lack of
interest of order-theorists in the question whether there exist maximal orders
satisfying the condition of Prop.2.15.b .

Proposition 2.17 : If A is 2 maximal order over a discrete valuation ring
R in a central simple K-algebra ¥ and if L is a separable splitting subfield of X
and let § be the integral closure of R in L. Then, the following two statements are
_ equivalent :
(1) : A is an Azumaya algebra over R ;
(2) : Cl°(A) ~ 1 and A ®r S is an hereditary S-order.

Proof

The implication (1) = (2) is trivial since Azumaya algebras over discrete
valuation rings are maximal orders and hence in particular hereditary.

Conversely, we have to check that the situation (b) of Prop.a.1 cannot occur.
Again, we devide the proof in three steps :

step 1: Suppose that Z{A/A.m) is a proper purely inseparable field extension
of R/R.m. By a result of [35] we know that the natural map between the Brauer-
groups :

[-®Z(A/A.m)] : Br(R/R.m) - Br(Z(A/A.m))

is an epimorphism. So, there exists a central simple algebra A over R/R.m such
that Mi(4) ® Z(AJA) =~ Mi(A/A.m).

Replacing A by M;(A), by M;(E) A by M;(A) etc. we may therefore assume
that A/A.m contains a simple algebra A over R/R.m such that A/Am ~ A®
Z(A/A.m).Now, if 4 : A — A/A.m denotes the natural epimorphism we will denote
by A; = p,"'i (A) Because A; and A share the common twosided ideal A.m s A
is an order in ¥ and the center of 4; equals R. Furthermore, A.m is the unique
nonzero prime ideal of A; and Z{A4; /A.m) = R/R.m. Actually, A; is a Bickstrom
- order [70] with associated hereditary order A .
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step 2 : Let L be a separable splitting field for £ contained in X. Further, let
S be the integral closure of R in L. K is easy to check that § == LN A is a discrete
valuation ring with uniformizing parameter m as is well known. Now, A® S is by
assumption an hereditary order in M,,{L) which is not maximal because otherwise
A would be Azumaya (cfr. [70] Th.VI1.2.8 or an easy descent argument). Now, by
results of Harada or Artin [5] one can describe A ® S in the following way

M"-l (S) Sﬂ-x Xng T SﬂxXn,"
M.8ny X ny an(S) v Saax nj

AQr S =~ ) . .
m.Snj‘an m.SnJ.‘an . M,.:(S)

with ny + ng + ... + n; = n and § > 2. Clearly, 4y @ § has an ideal n common
with A ® § namely (A ® S).m , therefore :

ARS)MCARSCARS

This implies that there are at least j prime ideals of 4; ® § lying over mS . The
proof will be complete if we can show that this is not possible.

step 3 : Because £ : A; -+ A3 ® § is a central extension, prime ideals
intersect A, in prime ideals, so we have to calculate the fiber of ¢ in A.m. Ay
being a finite module over its center and A.m satisfying the unique- lying-over
property with respect to the center, A.m is localizable whence there is a one-to-
one correspondence between this fiber and Spec(A ® §) = Spec(§/8.m) because
A is a simple algebra with center R/R.m and since S/S.m is a field the proof is
finished.

‘We now present an étale approach to our problem. For more details on étale
extensions the resder is referred te Raynaud [66] or Milne [53]:

Proposition 2.18 : If A is 2 maximal order over a discrete valuation ring B
in a central simple K-algebra X , then the following two statements are equivalent
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(1) : A is an Azumaya algebra over R ;
(2) : CI°(A) == 1 and there exists an étale extension B C § such that § splits
L, le. EQ®r S o~ M, (L) where L is the field of fractions of § and » = p.i.d.(A).

Proof

{1) = (2) : is easy since any Azumaya algebra may be split by an étale extension
, cfr. e.g. [35].

{2) = (1) : First, we aim to prove that § ®g A is an hereditary order over
S. First we will assume that § is a Galois extension of E and thus there exists an
element ¥ = 3 2;®y:in S@r S such that 3 z;.9; = 1 and (6@ 1).u = (1Q s).u
for any element s € S.

Now, let J = J(S ®r A) be the Jacobson radical of S ®r A. Because A is
hereditary and J is a f.g. A-module (R C § is finite) , J considered as a left
A-module (denoted by Ju) is finitely generated and projective.We now define a
map :

J—S5Qr Ja

by sending an element 7 to 3 2;Qy;.7. It is easily verified that thisis 2 SQgA-map
which splits the § @p A-map :

SQrJr—J

defined by sending & ® 5 to s.7. Finally, because § @g J, is a finitely generated
S @r A- module , so is J = J(S§ @gr A) entailing that § @z % is hereditary.

As for the general case , we may always assume (after loc.lization) that § isa
discrete valuation ring with uniformizing parameter m such that R/R.m ¢ S/S.m
is a separable field extension. We now aim to prove that S @pgrad(A) ~ rad(S ®r
A). One inclusion being trivial, it is sufficient to prove that § @r A/S Qg rad(A)
is semisimple. Now, § ®r A/S Qr rad{A) =~ S Qr Afrad(A) ~ §/§.m ®r/Rm
A/rad(A) and is therefore semisimple Artinean because B — § is unramified.

Now, by our assumptions , S splits ¥ and therefore S @z A is of the form as
described in the proof of proposition a.3 . Therefore, it will be sufficient to check
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that the fiber of the natural map :
S+ S®rA

at S.m consists of one element (by a descent argument as in proposition 2.17).
This fiber is in a one-to-one correspondence with Spec(S/S.m @ A/Am) =~
Spec(S/S.m@ Z(A/A.m)). By proposition 2.15 we know that Z(A/A.m) is a purely
inseparable field extension over B/R.m and §/S.m is separable over R/R.m ,
whence this fiber consists of precisely one element as desired.

(b) : the global case

Now, let A be a maximal order over a Krull domain R in a central simple
K-algebra 5. A is said to be Zariski-tamifiable if for every p € X 1(R) one can
find a separable splitting subfield L of ¥ such that A ®r, S(p) is an hereditary
order over S(p) if S(p) denotes the integral closue of R, in L.

A special case of such a situation {which explains the terminology) is the
following : assume that § is the integral closure of R in some separable splitting
subfield L of  and that A ®@gr S is a tame order in the sense of R. Fossum , then
A is Zariski-tamifiable.

Theorem 2.19 : With notations as before , we have :

(1) : A is a reflexive Azumaya algebra over R if and oniy if CU(R) = CI°(A)
and A is Zariski-tamifiable.

(2) : A is an Azumaya algebra over R if and only if OU(R) = CI°(A), A is
Zariski-tamifiable and A is a flat R-module.

Proof
In view of IL1.a , we have only to prove part {1). Now, it is readily verified
that CI(R) =~ CI°(A) entails that for every p € X(R) we have that A, is a

57




maximal By-order with CI°(A,) = 1. Because A is supposed to be Zariski-tamifiable
, Prop.2.15 entails that A, is an Azumaya algebra over R,. Therefore, X (1)(R) C
X (R.F(A) yields that A is a reflexive Azumaya algebra, finishing the proof,

A maximal R-order A in the central simple algebra X is said to be étale
tamifiable if and only if the following condition is satisfied : for every p € X (1)(12)
, there exists an étale extension Ry, C 8{p) which splits =.

Theorem 2.20 : With notations as before , we have :

(1) : A is a reflexive Azumaya algebra over R if and only if Ci{R) =~ CI°(A)
and A is étale tamifiable.

(2) : A is an Azumaya algebra over R if and only if CI(R) =~ CI°(A), A is étale
tamifiable and A is a flat R-module.

Proof

As before, we only have to prove part (1) . Again, CI(R) =~ CI°(A) entails that
for every p € XW(R) we have that Ci°(A,) = 1. Proposition 2.18 then entails that
Ap is an Azumaya algebra , whence X' WRycx (R.F(4)) , finishing the proof.
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3. : NEW EXAMPLES OF ORDERS

a. ¢ introduction

The contruction of generalized Rees rings , first introduced by F. Van
Oystaeyen [88] in the commutative case , has been generalized in [42]. Roughly,
the general situation may be described as follows. Let T be a {rather arbitrary)
ring and let G be an arbitrary group , consider the crossed product, :

Z[Xr, 9, 6]

where X, is a symbol for each 7 € G, 9 : G — Aui(X) isa groupmorphism and ¢ :
G X G — U(Z(%)) is a 2-cocycle , i.e. ¢ represents an element of H 2@, U(Z(D))
where U(Z(Z)) is the group of units of the center of X. The ringstructure of
B[X,,®,¢] is determined by the rules : X,.z = ¢(r)(z).X, forall z € X,7 € G
and X,. X, = ¢(r,7) Xry forall r,y € G.

A generalized Rees ring is then a subring of L[X,, ¢, ¢] of the form DA, X,
, where A, == A is a subring of X and A, , 7€ G isa twosided A-module in ¥ such
that A, AZ() C A,

Taking G = % , A a commutative Dedekind domain and X its field of
fractions and if we have moreover that A,...Aﬁ(") = A, , then we obtain the
commutative generalized Rees rings sudied in [88]. Another commutative example
may be obtained by taking G to be an Abelian, torsion free group satisfying the
ascending chain condition on cyclic subgroups , taking A t< be a commutative
Krull domain with field of fractions £ and if we impose (Ar.Aq)*(D)** = A, for
all 7,4 € G , where (—)** denotes the bidual module of (—). These rings were
defired in [42].

Now, in the noncommutative case it is piausi'bie that & is going to be a central
simple algebra whereas A is some subring having nice arithmetical properties , e.g.
2 maximal order over a Dedekind or Kruil domain , an H.N.P.-ring or a tame order
in the sense of R Fossum [21]. '
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The author introduced relative maximal orders [40] in order to present a
unified approach to rings having an arithmetical ideal structure and indeed all
examples mentioned before reduce to special cases of relative maximal orders. This
motivates the introduction of generalized Rees rings over general relative maximal
orders.

The ringtheoretical tools used in this section are : general techniques in the
theory of G-graded rings , properties of Picard and relative Picard groups of orders
and the arithmetical features of relative maximal orders. For a more extensive
account of these topics the reader is referred to [23],[91],[41],[40] and [58].

Although further generalization is certainly possible we restrict attention to
the case of p.rime rings satisfying a nontrivial polynomial identity , and usually
even to orders over Krull domains.

b. : relative maximal orders and Picard groups

Throughout A will be a prime p.i. ring with classical ring of quotients X which
is a central simple K-algebra , K the field of fractions of B = Z{A), £ will be the
multiplicatively closed filter of all nonzero (twosided) ideals of A and L(p) will be
a multiplicatively closed subfilter such that the generated left (resp. right) ideal
filkers £!(p) {resp. L7(p)) are idempotent in the sense of [74] or [83].

We say that A is 2 p —maximal order in ¥ if there exists no intermediate ring
A CT C X such that I.T'.J € L{p) for some I,J € L{p). This concept provides
a relativation with respect to L(p) of the classical notrion of a maximal order as
introduced before. It is fairly easy to verify [40] that A is a p — maximal order in
L if and only if (I ;4 I) = (I i, I} = A for all ideals I € L(p). Unless mentioned
otherwise A will be a p — maximal order in X.

A fractional ideal A of A is a twosided A-submodule of ¥ such that 1.4 and
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A.T both belong to L{p) for some ideal I € L{p). The set of all fractional A-ideals
, 7,(4) , is closed under multipliation. Therefore, 7,(A) is an ordered set (with
respect to inclusion) equipped with a multiplication. The construction of the E.
Artin group (cfr. previous section) associated to such a set comes down to taking
equivalence classes of elements of 7,(A) with respect to the relation :

A~B&a(A:A)=(B:4A)

where it should be noted that for every A € 7,(A) we have (4 3 A) = (A, A},
cfr. [40]. The E. Artin group associated with 7,(A) will be denoted by D,(A) and
it is obvious from the construction that D,(A) may be identified with the set of
all divisorial A-ideals (i.e. fractional A- ideals such that (A : A) : A = A) equipped
with the *-multiplication : A+ B = (4.B : A) : A . It follows that D,(A) is an
Abelian group , cfr. [40].

From now on we will also assume that A satisfies the ascending chain condition
on divisorial A-ideals contained in A. Note that this is a relativation of the notion
of a maximal order over a Krull domain. Considering D,{A) with the reversed
ordering one obtains that every finite set of elements of D,{A) admits a supremum
and an infimum and moreover any nonempty set of divisorial A-ideals contained in
A has 2 minimal element. As in the previous section one deduces from these facts
that D,{A) o~ %) for some index set S. The divisorial A-ideals contained in A and
which are maximal (with respect to inclusion) as such form 2 set of free generators
for D,(A). One easily verifies that these generators are actualy prime ideals of A
and conversely that all divisorial prime ideals are generators,cfr. [40]. Let P(p) be
the set of free generators of D,(A). To any prime ideal P of A we associate the
filter of ideals :

LA-P)={I <: M1 Z P}

and we define
L) = {LA-P)N L(p); P € P(p)}

We will always assume that L!(c) and L"(0) are idempotent filters, i.e. o may be
regarded as a kernel functor in A-mod as well as in mod-A. All imposed conditions
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will be satisfied in the examples we will encounter, e.g. for orders over Krull
domains.

With Q,(A) we will denote {z € £: I.z C A and z.1 C A for some I € L(p)}
Clearly, all fractional A-ideals are contained in @,(A).

Lemma 3.1 :Let A be a p—maximal order in £. If A € D,{A) and I € 7,(A)
, then (I ;; A) and (I :, A) are divisorial A-ideals and

Ta A= A=A+ =TI+ A= (14, A= 4

where J¢ = (I :A):Aand I = {2 € Q,(A): I.z.] C I}.

Proof

It is clear from the definitions above that (41.1)~* and I~ « A are divisorial
and that (A~1.J)~1 = "1+ A. If z € Q,(A) is such that .z C A, then A~'.I.z C
A1 A ¢ A hence z € (A~.I)"L. Conversely, z € I7! « A entails that I.a C
L1 A)¢ ¢ I4(I"1. A C A. Therefore, (I :; A) = I" + A and similarly one
proves A # I = (I ;; A). The fact that D,(A) is an Abelian group combined with
(I%)* = I"! now finishes the proof.

Proposition 3.2 : For A, B € D,(A) : QL (AB) = A+ B = Q(AB).

Proof

If z € Q(AB) then 2. C AB C (A.B)? for some I € L(0). Since I € 7,(4)
and I is not contained in amy P € P(p) it follows that I4 = A. Now it follows
from the foregoing lemma that z.I4 = z.A C (A.B)?. Conversely, z € {A.B)?
yiolds 2. (A5 - A} C A and thus 2 (A.B : A B C AB. Because (A.F : .AB
is an ideal of A not contained in any P € P(p) and since (A.B : A).A.B € L(p) it
follows that (4.B)? C QL(AB). In a similar manner one can prove that Q'.(AB) =
(A.B)* finishing the proof.
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Remark 3.3 : More generally, if a subfilter L(p’) of L(p) is such that
the generated filters of left (resp. of right) ideals are idempotent , then for any
divisorial A-ideal A we have : @%,(4) = Q%.(4) = {z € @,(A) : I.z C 4 and
z.I C A for some I € L(p’)}.

Picard groups of orders have been studied by A. Fréhlich in [23] but explicit
results are only obtained for orders over Dedekind domains. In order to study the
more general situation of orders over Krull domains we do not only have to study
the Picard group Pic{A) but also the relative Picard group Pic(A,o) for some
suitable kernel functor . This group arose in the study of the Picard group of
a Grothendieck category in [91’]. E.g. if A is a commutative Krull domain then
Pic(A, o) is nothing but the classgroup in case o == inf{os—p; P € XV(A)}. Let
us first recall some generalities :

Let o be any idempotent kernel functor in A-mod. A twosided A-module P is
said to be o-flat if for every exact sequence :

0->K-+M-+N—=0

in A-mod with ¢(K) == K (i.e. K is o-torsion) we have that the kernel of the
extended morphism P @x M — P @4 N is a o-torsion module too, A twosided
A-module P is said to be o-invertible if P @4 — maps o-torsion modules to o-
torsion modules and moreover there exists a twosided A-module @ having the
same property and such that Q,,(P R4 Q) = Q(A) =~ Q,(Q @4 P) , where all
isomorphisms are twosided A- module isomorphisms. It is known that o-invertible
modules are o-flat , cfr. [41]. The isomorphism classes of o-invertible modules form
2 group under the modified tensor product @,(—®a—). This group is called the
relative Picard group of A with respect to o and it will be denoted by Pic(A, o). One
can relate Pic{A, o) to the Picard group of the localized Grothendieck category
(A,0)-mod , cfr. [81]. For further use we need two basis lemmas about Pic{A, o) in

the noncommutative case :
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Lemma 3.4 :Let A be a p—maximal order , let ¢ be defined as before and
consider P € Pic(A, o) , then :

(8) : Ends(yP) o= A°PP;

(b) : Endy_a(P) == Z(A) , where End,_,(—) stands for the ring of twosided
A-module endomorphisms ;

(¢) : If P = A in A-inod , then there exists an o € Aut(A) sich that P o4y A,
as twosided A-modules .

Proof

(a) : Define @ : A°P? — End(sP) by 8(\)(p) = p.) for every p € P. If §(0\) =
0 then P\ = 0 entails that (@ @a P).A = 0. Because any A-linear morphism :
Q®AP — Q@4 P extends in a unique way to Q% (Q @4 P) = @4(Q®4 P) we may
take @ € Pic(A,0) such that @L(Q ®a P) =~ QL (P ®a Q) =~ Q' (A) and deduce
from this that multiplication by X extends to the zero map @%L(A) — QL(A) , i.e.
X == 0 because 1 € Q% (A) and therefore 4 is injective. It follows from lemma a.1
above that Q! (A) = A. Note also that the definition of Pi¢(A, o) implies that we
may take P to be o-closed , i.e. @, (P) = P and also that for every M € A-mod
, @5(P @A M) = 0 if and only if o(M) = M. Now consider f € Enda(sP),then
1g ® f extends in a unique way to a left A-linear morphism ¢ = QL(lo ® f) :
A — A which makes the diagram below into 2 commutative one :

QAP — A
1®f | 19
QAP — A

If g(1) = X , then ¢ is determined by right multiplication by A. Define h: P — P
by h(p) = p.X , then we have Q4 (1g ®a4 f) = @4 (1g ®a h). Now, Im(f —h) C P
and is therefore o-torsion free while on the other hand Q4(Q ®a Im(f — k)) =0
, yielding that f = h ,finishing the proof.

(b) I f is a twosided A-module enciomorphism of P then ‘by part (a) it is
given as right multiplication by some XA € A. Right linearity of f then implies that
P(h.z — 2.3) = 0 for all £ € A. By an argument as in part (a) it follows that
Az—zix=0forall x€A,ie )€ Z(A). ‘
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{c) : Recall first that for 8, € Aui(A) , the twosided A-module gA,, is defined
to be the Abelian group A¢;) with left A-action defined by .z = B(\)z and right
A-action given by z.) = za()) for all X € A, = € A(y.

Let f: P — A be an isomorphism in A-mod and let A € A. Define g: P -+ P
by g(p) = F~1(f(p))). Because A°PP = End,(oP), there exists an a()\) € A such
that g(p) = pa()), i.e.f(pa(\) = f(p)\ for all p € P.Evidently, @ € Aut(A) and
then f can be considered as a twosided A-module isomorphism | P, — A.

Lemma 3.5 : With notations as before, there exists a canonical
groupmorphism e : Pic(A, o) — Aut(Z(A)).

Proof

For ¢ € Z(A) , P € Pic(A,0), define f : P — P by f(p) = c.p . By part {a)
of the foregoing lemma , there exists a unique element ap(c} € A such that c.p =
p.cp(c). Now, on one hand : e.p.x = p.ap(c).\ but on the other hand c.(p.\) =
ph.ap(c) whence P.(\.ap(c) — ap(e))) = 0 ,ie. hap(c) = ap(c).) = 0 for all
A E A, ie ap(c) € Z(A). Injectivity of ap(-—) is clear. Moreover, multiplication by
¢ € Z(A) on the left extends to left multiplication by ¢ , @L(P ®4 Q) — QL(P Qa4
Q). Furthermore, apg,@ = aqg © ap so, if @ represents [P]™! in Pic(A, o) ,
then ag o ap = agg,Pp = apPg,@ = ap o ag = lz() showing that ap(~) is
epimorphic and that a : Pic(A, o) — Aut(Z(A)) is a groupmorphism.

The next proposition clarifies the relationship between relative invertible
modules and divisorial A-ideals.

Proposition 3.8 :If A is a p - maximal order and if A € D,{A), then A is
o-invertible.
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Proof

Suppose that M € A-mod is such that o(M) = M and consider A @4 M .
Hy=30a,Qm; € AQs M — o(A ®a M) then pick an ideal I € L(0) such
that L.m; = 0 for all m;. Because D,(A) is an Abelian group Q,(A 1) = Q,(I.4)
and thus for every ¢ € [ there exists an ideal Ji;) € L(o) such that Jipia; € AL
Therefore, Jiy.4.3- a; @ m; C 35 A.IQ@m; = 0. Consequently, I.(3 a; @ m;)
o(A @i M) and idempotency of o entails that y € o(A @4 M), a contradiction ;
ie oc(AQRA M) =ARs M.

The second property for o-invertible modules will follow from the more general
result :

Proposition 3.7 :If A\B € D,(A), then Q,(A ®4 B) ~ Q,{A.B) as
twosided A-modules.

Proof

Multiplication in ¥ defines a surjective twosided A- module morphism 4 :
A@sB — AB I Y,a; ®b; € Ker(0) , then : AA™L.),0;, @8; C AR
A6 b; = 0. From Q,{4.A71) = A+ A™' = A it follows that 4.4~ € L(0)
and thus > a; @ b; € 0(AQ B). Localizing ¢ at & yields :

Qs(AQAB) = Q,(AB)=A+B

and all isomorphisms are twosided.

Remark 3.8  : The relative version of the Picent-group in [23] is defined in
the following way : let Picent(A, o) be the subgroup of Pic(A, o) consisting of the
isomorphism classes of o-invertible twosided A-modules P such that ¢.P = P.c for
all ¢ € Z(4) ; i:e: such thab the canonical ap of lemma 8.5 is the identity: In other
words the following sequence is exact :

1 — Picent(A, 0} — Pic(A, 0) — Aut(Z(A))
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c. ¢ divisorially graded rings

In this section we will consider rings graded by an arbitrary group G For
generalities on graded rings, the reader is referred to [58] or, in particular, to [58’]
where rings graded by arbitrary groups are being studied extensively.

A graded ring A = Pregh, is said to be divisorially graded if the following
two conditions are satisfied :

(dg.1) : A, is 2 p — maximal order , where ¢ is the neutral element of G ;

{dg.2) : For all 7 € G we have that Q,(A.A,) == A where o is the kernel functor
in A, — mod derived from P(p) as in the foregoing section.

Lemma 3.9 :If A is divisorially graded by @ , then :

{a) : For every 1 € G : Qo{Ar.Ar-1) = A, ;

(b) : For every 1 € G : Q4(A;) = A, ;

(c) : For every graded left ideal L of A we have : @,{L) = @,(A.L.).

Proof

First note that A, is o-torsion free for every r € G since A, C A = Q,(A.A,).

(a) : If z € A, then it follows from (dg.2) that for every € G , there exists
an ideal I € L(0) such that I.z C AATL. Hence, .z C (AATY), = A,.A7Y and
therefore : Q,(A,.A;}) = A,.

{b) : The inclusion A,  A.A, entails that @,(A,) C @,(A.A,) = A. Because o
is a localization functor in degree ¢, it follows immediatly from this that Q,(A,) C
£,

{¢): fv€ G and z €Ay, then Ay.A -1z C AL, and it follows from part
(a) that z € Q,(A.L,). Consequently, @,(L) C Q,(A.L,), the converse implication
is of course trivial.

67




Lemma 3.10 : Let A be divisorially graded by G. Let M € A — gr be such
that @,{M) = M in A.-mod , then there is a canonical graded isomorphism of
degree ein A —gr : Q,(AQ@a, M) = M.

Proof
Consider the exact sequence :

0K 2AQa M. > M

where the right morphism is the canonical (multiplication) morphism , which is
clearly graded by degree e , hence K is a graded A~ module. Since (M) =0,
o(A ® M) C K. Conversely, if z € K, for some 7 € G , then write z ==} \)®
m{?) with A\ € A, for all 4.

f(z) = 0 entails that A, A7 .z C A, @ ATH( AN .m{) = 0 whence z €
o(AQ M.) because A..A; 1 € L(0}, s0 K = o(AQ M.). It follows from the inclusion

AQM)o(ARQM,) > M

that Q.(A ® M.) ~ Q-(M) = M is monomorphic.

Because Q,{A® M,) is o-closed and since it contains M , for , if m € M, then
A A7Ym C A, M, it follows that @,{A ® M.) == M in A-mod. Finally , taking
into account that M, is o-torsion over A,.M, , it follows that Q,(A, @ M.) ~ M,
, therefore , the isomorphism Q,(A® M.} == M is a graded isomorphism of degree
e.

Remark 3.11  : Let M be a graded A-module such that Q,(M) == M
, then it is clear that Q,(M(r) = M(r) holds for all 7 € G. Here, M(r) is the
graded A-module such that M(7), = M, ;. Moreover , @o(A @a, M(1)) =2 M(r)
in A-gr.

Let us now turn to the structure theorem for divisorially graded rings.First,
note that for any o there is a canonical embedding of Pic(A) (in the sense of
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Frohlich [23]) into Pie(A, o). This allows us to restrict the constructions we care
about to describe , to Pze(A) if one wants to.

Let A be any p — maximal order and let G be any group and consider an
arbitrary grouphomomorphism :

®: G — Pic(A,0)

We write (r) = [P;]. A factorset f associated to ® is a set f = f, ;4,7 € @ of
twosided A-module isomorphisms :

far 1 Qo(Py @a Pr) = Py,
a:P,—s A
such that the following diagrams commute for all v,7,0 € G :

Q(Py@P: Q@ Ps) — Qo(PyQ Pro)
f'm ®1 i) f'y,'r.‘o
Q’(P“qu &® Po) - P'y‘.'r..ﬂ

P,QP. ™ P,®A

P.QP, = AQP,
S
Py

In writing down these diagrams we implicitly used the fact that for any P &
Pie(A, o) we have :

Qo(P @r M) ~ Q,(P @a @,(M)) for any M € A-mod;

Qo(N ®4 P) =~ Q,(Q,(N) @ P) for any twosided A-module .

Extending the notation introduced in [88] to this case , we write F,{®) for
the set of factorsets associated to . We make the additive group @2, into a ring
by defining the multiplication rule as follows : for z € Py , y € P, define z.y =
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fy,(z @ y). The ring defined in this manner will be denoted by A < f, 6,G > .
With these notations we have :

Theorem 3.12 : The ring A < f,6,G > is a divisorially graded ring
containing a subring isomorphic to A. Conversely, if A is divisorially graded by G
, then there exists a groupmorphism ® : G — Pic(A., o) and a factorset f € F,(®)
such that A~ A, < f,9,G >.

Proof

Because P, is a twosided A-module isomorphic to A it follows that P, QP =~
A whence P, @4 P, =~ Qo(P. @a P.). It is clear that A < f,0,G > isa ring and
that P, is a subring since f. ¢ : P, @A P, — P, is an isomorphism. Again, it follows
from P, o~ A as twosided A-modules that P, = A.p = p.A for some » € P such
that X.p = p.X for all X € A. Consequently, P, ®@a P, = A(p®p) = (pQ@p).A. Since
Je,e is a twosided A-module isomorphism we have that Je,elp @ p) = p.p forome
# € A. Bilinearity of f.. then entails that 4 € Z(A) and even that p € U(Z(A)),the
group of units of Z(A). Put py = p~'p, then f. .(p1 ® p1) = p1 and A — P,
defined by sending X to \.p; is a ringisomorphism. It remains to show that p1 is the
identity element for A < f,8,G >. Since P, =~ A , i.e. P, Q4 P, ~ Py ~ Q.(P,)
for all v € G we have that P, Q4 Py =~ Q,{P. Qa P,) for all ¥ € G. Therefore , if
z € P, then there exists an element y & P, such that z = f, ,(p1 ® y). Then we
calculate :
fc,'](pl ®z) = fc,q(]’l ®fe,7(p1 ®y)) = fe,'](fc,e(Pl ®p1)®y) = fe,'y(Pl ®y) =2z
and this establishes that py.z = z for all £ € A < #,6,G > and similarly one can
show that z.p, = z.

Conversely, let A be divisorially graded by G , then by lemma ¢.3 , the
canonical A.-bimodule morphism A, @A A,—x -~ A, extends to an isomorphism
Qo(A, 4 Ay-1) — A, Similarly, §,{A,-: @4 A,) == A, as twosided A,-modules.
To conclude from this that A, is o-invertible we have to verify that A, QaTis
o-torsion if T € A,-mod is o-torsion.

Take 2 = 3N\ ®t; € A, QA T and let I € L(o) be such that 1.t; = 0
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for every 4. Because A,,—x‘.A,, C A. we have that A, J.A,—1.A; < A,.J whence
Pz CYAQILt;=0if I = Ay L.A,—1 € L(0). Therefore, A, ® T is o-torsion.

Hence, Ay € Pic(Ae,0) for every v € G. Because Qo(Ar @ Ay) = A, as
twosided A.-modules, there is a groupmorphism ® : G — Pie(A.,0) given by
®(7) = [A4] forall v € G. Extending the multiplication map for : Ay @A, — A, ,
to a twosided A.- module isomorphism f.; : @o(Ay @ A7) — Ayr = Qo(A, 1) We
obtain a factorset f associated to @ and it is clear that A ~ A, < f,9,@ >,
finishing the proof.

Remark 3.13

(1) : For any 7 € G, take P,” such that [P,] = [P,’] in Pic(A.,0) and let
o, : P~ P,’ be a twosided A,- module isomorphism. Then one can easily check
that up to replacing f, , by f, ,’ which is defined by the commutative diagram :

P,®P, — P,
1 i
P,QP, - P,,

then P, < f,®,G > and P,” < f’,®,G > are graded isomorphic.
{2) : The composition morphism :

G — Pic(A,,0) — Aut(Z(A.))

allows us to give a cohomological classification of all divisorially G-graded rings
over A, in the sense that graded isomorphism classes of divisorially G-graded rings
A with A, as its part of degree e, correspond bijectively to H2(G, U(Z(A,))).

Proposition 3.14 : Let A be a p — maximal order and let T be divisorially
graded by G such that T, = A. If Pic(A,0) = [A], then T' ~ A[{X,,¢,c] is a
crossed product of A and G described by a groupmorphism ¢ : G -~ Aut(A) and a
2-coeycle ¢ : G X G — U(Z(A)).
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Proof
It follows from Th.3.12 that T' = @P, where P, € Pic(A, o). By the assump-
tions we have that P, ~ A as twosided A-modules , hence by lemma b.5 we know
that P, o~ Ag4, for some ¢, € Aut(A). Put X, = 8,(1) where 6, denotes the
bimodule isomorphism :
0,. 1 A¢.,_ — P,.

Then P, = P, X, = X,.P, follows and from X, P, X,-1 = P,, X,-1.P,. X, = P,
it follows that there exist elements X, u € P, = A such that 1 = X, )\ X,-; and
1= X,-1.p.X, , ie. each X, is invertible in I'. Because X,.X,.X ;:,1, commutes
with P, == A is follows that X, X, == Cry- X, o for some unit ¢,. in Z(A).
Obviously , ¢ : G — Aut(A),7 — ¢, and ¢ : G X G — U(Z(A)),¢(r,7) = ¢r 4
define a crossed product structure such that I' ~ A[X,, ¢, c].

Lemma 3.15 :Let A be 2 p—maximal order such that both o and p are G-
invariant central localizations then L(p) is invariant under ap , the automorphism
of Z(A) induced by P € Pic(A,0) , for every P € Pic(A, o).

Proof

Put G = Pic(A,0) and let T be the divisorially graded ring A < f,0,G >
where 0 is the identity map on Pic(A, o) and f is the trivial factorset associated to
§. This allows us to prove the lemma in the terminology of G-graded rings which
simplifies matters a lot. Take J € L{p) then for everyy€ G , J’=T,.J.T,1 €
L(p).

Since p is a central kernel functor we may assume that J = A.J, where

¢ = J N Z(A). By definition of  : Pie(A, 0) -+ Aut(Z(A)) we have that J.T', =

I'y.04(J). Consequently, we obtain : I'y.J.'y-x = I').Is.ap-1(J) € L{p). Since
Ty Ty € Lo) , ap-1(J) € L{p) follows for every v € G.

Lemma 3.16 : Let A be a p — maximal order such that ¢ and p are as
before and moreover p is a perfect localization , then @,(P) € Pic(Q,(A)) for
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every P € Pic(A,0).

Proof

Because Q4(A) = Q5(A) and Q;(P) o~ Qi,(A) QA P, Q,(P) == P QaQy(A) it
will be sufficient to establish that P @4 @,(A) == Q,{4A)®a P. Note that p'-torsion
and p" torsion of a twosided A- module is the same because p.f == 0 for some
I € L(p) is equivalent to ap(I).p = 0 and we know from the foregoing lemma that
ap(I}) € L{p). Now, if z € Q}(P) then we can write z = 35 p; ® ¢; where p; € P,
i € Q5(A). There exists an ideal J € L(p) such that J.g; C A for all g;. Let @ be
a representant of [P]™* in Pie(A, o) then ag(J).2 C piJ ®¢: C 1pi®@J.qi C P
where we use the canonical identifications A @, P = P = P @, A. Consequently
, 2 € Q,(4) @1 P = QL(P).

Conversely, if y € @L(P) then y € P @1 @,(A) (with identifications as before)
follows by means of a similar argument. Therefore, from @o(P @4 @) =~ Q,(Q Qa
P) =~ A it follows that Q,(P ®a @) = Q,(A) ®a P @41 @ = Q,(P) Q4 @,(Q) =
Q, ®q,(») @,(@) where we use the fact that @,(A) @4 @,(4) = Q,(A) because
A — @Q,(A) is an epimorphism in the category of rings. Furthermore, the fact that
Q,(PY®rQ,(Q) is p- torsion free entails : Q,(P)QaQ,(Q) = @,(P)Rq, (1) Q(Q)-
Therefore, we obtain at last : Q,(A) ~ Q,(P QA Q) =~ @, g, (1) @,(Q) and
similarly : @ ,(4) =~ @,(QRAP) == Q,(Q)R @, (1) Qo(P)- Thus, @,(P) € Pic(Q,(A).

Proposition 3.17 : Let A be a maximal order over a Krull domain R , let
G be a group and & : G —» Pic(A,0) a groupmorphism and f a factorset associated
to ®. Consider the divisorially graded ring ' == A < &, f,G > . Then @?(T') is
a crossed product algebra of the form X{X,, ¢, ¢] where % is the classical ring of
quotients of A , ¢ : ¢ — Aut(Z) is a grouphomomorphism and ¢ : G X G — U(K)
is a 2-cocycle.

Proof

In the case that A is 2 maximal order over a Krull domain R, L{p) is the filter
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of all twoisided ideals of A and by Posner’s theorem : @,(A) = ¥. Because T is a
central simple K-algebra , Pi¢(X) = [S]. Applying lemma 3.15 and the prop 3.14
the result follows.

Remark 3.18

(1) : We leave to the reader the verification of the fact that in all examples
given in section b. the imposed conditions on ¢ and p are indeed satisfied.

(2) : Note that I'  @,(T). Indeed , if J.z == 0 for some z € T’y and J ¢ L(p)
then J.I'.z.T' == 0. Hence, J.(I'.2.T'), = 0 yielding that (I'.z.T"). = 0 because A is a
prime ring and therefore Q,(I'.2.T") = 0 which is impossible since T', is o-torsion
free. Thereforee we may write ' = 3" I, X, C Q,[X,, ¢, c] where for each r € G
s Ir is a twosided A- submodule of @ ,(A).

(3) : We may replace Pic(A,0) by Picent(A,o). In that case, X, commutes
with the center of @,(A) hence ¢, is inner , say ¢,(\) = a,.\.a;"! for some a, €
@p(A). Change of variables : X, — a7 and correspondingly changing ¢ — 1o,
and ¢ — ¢’ with ¢’ equivalent to ¢ , we see that in the case of Picent(A,c) we may
assume that X, commutes with @,(A) and then T' = §_ I, . X, where 7 - I, defines
a grouphomomorphism G' — D,(A). It is this situation that we will generalize in
the following definition :

Definition 3.19 : Let A be a p — maximal order and G an arbitrary
group. Let there be given a grouphomomorphism ¢ : G — Aut(A) such that L(p)
is invariant under each ¢(r) and a 2-cocycle ¢ : G X G — U(Z(A)). We construct
the crossed product @,(A)[X, ¢, ¢]. Now, consider a map ¢ : G — D,(A) and look
at the Abelian group :

E <I>(T).Xr C Qp(A)[Xr: $,¢]

The condition that this set will be a sui)ring of the crossed product can be expressed
by : ®(7).¢,(®(7)) C ®(7.7). A further condition, assuring that the set will be a
divisorially G-graded ring is that : Q,(®(r).¢.(®(7))) = ®(r.7).

If these conditions are satisfied then we write A(®, ¢, ¢) = 3_ ®(7).X, with ring
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structure induced from the crossed product Q,(A)[X,, 4, ¢|, and we call A(®, ¢,¢)
the generalized Rees ring associated to @, ¢, ¢ over A.

Proposition 3.20 : In the situation of Prop. 3.17 where we assume
moreover that T' is 2 p.i-ring , then : T = } I, X, C Z[X,, ¢,c| with I, € D(A)
for each r € G.

Proof

First repeat remark 3.18.(2). Then consider 7 € G and look at the subring
generated by X, and X,-1 over ¥ in Z[X,,¢,¢]. We claim that there exist a
natural number € N such that ¢# is inner in ¥ | say ¢7(z) = a,.z.a; ! for some
a, € L.

If ¢, is in the torsion part of Aut(X) then our claim is true. If ¢, is not a
torsion element then r is not a torsion element of G since ¢ is 2 homomorphism.
Let ¢(r) be the restriction of ¢ : G X G — U{Z(A))to < 7> X < 1 > U(Z(A)).
Since < r >o2 Z it follows that ¢{r) ~ 1. Therefore, the ring generated by X,
and X,-1 over T is isomorphic to L{X,, X, ¢,]. The latter is by assumption a
p.i-ring and therefore (cfr. [d5]) ¢, has finite order in Aut(Z)/Inn(X), finishing
the proof of our claim.

Define for each 4,7 € G :

19 =LNnéL)N..N¢2INK

Tt is obvious from the definition that I!,") is 1 ~invariant.

Therefore, L.(I%, N A) C A Indeed , from L, Xy lp2X,: =

Ly $y(I-1 .y 4-1. X, it follows that L;.¢,(l,-1) C A =T,. However, I("_)l NAC
Z(A),ie I (7_)1 N A commutes with I, and thus we obtain : J.I, = L. J ~ A with
J=A (1(‘" M A).

Note that ¢,',( ~1)MA 52 0 and hence J is a nonzero ideal of A , so it foliows
from the fact that J.I, is a nonzero ideal of A that I, € 7(A). If @,(1;) D I, , say
¥ € Qully)— I, and y € Q,(A) , then y € Q,(A(®)) in @,(A)[X,, 6,c] = Q,(A(®).
Since Q,(A(®)) = A(®) it then follows that @,(L,) = I, and thus I, € D,(A).
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Proposition 3.21 :HT'=A < &,f,G > as in Prop.3.17 is a p.i-ring ,
then I' is a generalized Rees ring A(®, ¢, ¢) if G is mapped into D(A) bu .

Proof
Follows directly from Prop.3.17 , Prop.3.20 and def.3.19 . In this case ® is
even a grouphomomorphism and this allows us to use the following

Proposition 3.22 : If A(®,¢,¢) is a generalized Rees ring then & is a
groupmorphism if and only if ¢.(I,) C L, for all r,y € G.

Proof
From Q,(I, X1, X, )= I, X, , it follows that :
Qollr-$:(Ly)-Cr,y-Xr 7) = QolLr.$- (1) -Xr.
If & is a groupmorphism then the foregoing reduces to :
p-(Ly) = I Lo=La+lL,=1I,

Conversely, if ¢,(I,) C I, then we find : Q,(I;.1,) = L.y ie. I x I, = I, ., ,
proving that & is a group homomorphism.




. : normalizing Rees rings

In this section we investigate a special type of generalized Rees rings, the so
called normalizing Rees rings. Let us fix notations and hypotheses for this section
as follows.

Let G be a torsion free Abelian group. Let & : G — D,(A) and ¢ : G — Aut(A)
be group homomorphisms , where A is a p — maximal order, and let ¢ : @ X G —
U(Z(A)) be a 2-cocycle. Now we assume that for every 7 € G ,8(r) = ¢, is defined
by ¢,(z) = ar.z.a7! for all z € A where a, € N(A) = {z € Q,(A) : Az ==zA €
7).

Under these conditions the generalized Rees ring A(®, ¢, c) is said to be a
normalizing Rees ring. If no ambiguity is possible then we write this ring as
A(®) and Q,(A(P)) = Q,(A)[X:,¢,¢c|. Tt follows from proposition 3.22 that for
a normalizing Rees ring we always have that I, = ¢(7) is ¢.,-invariant for every
9 €EQG.

In this section we aim to investigate whether A(®) is a relative maximal order
(with eventually the ascending chain condition or divisorial ideals contained in
A(®)) with respect to some suitable p(®) whenever A is a p — maximal order (with
eventually the ascending chain condition on divisorial ideals contained in A).

Throughout, we will assume that A(®) is a p.i.-ring , this may be documented
by giving necessary and sufficient conditions for this to happen but we only hint
at the problem in the special case of normalizing Rees rings, here.

Recall that a torsion free Abelian group may be ordered. By this we mean
that there exists a subset S of G (called the set of positive elements) such that
e € 8, § is multiplicatively closed and for every o € G either a = ¢ ,a € §
or &~! € §. The linear ordering of @ is then defined by @ < g if and only if
o~ 1.8 € 6:1f I is an idenl of A(®) and v € @ ; then we define :

C) = {2 € Qy(A) : £~ = r.X, for some i € I}

—~

where for every element z € A{®) , ™ is the homogeneous component of highest
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degree in the homogeneous decomposition of z. Since we have assumed that ¢lr) e
Aut(A) for all 7 € G, it follows that C,(1) is a twosided A-submodule of Q,(A).

Lemma 8.28 :If I is an ideal of A(®) , then the following statements are
equivalent :

(1) :Forallre @, C(I) € %,(A);

(2) : Celd) € L(p).

Proof

(1) = (2) is obvious .

(2) = (1) : for each ¥ € G we have that : C(h X I,X, =
Ce(I).$e(l,).co,y. Xy Since §. leaves elements of Dy{A) invariant and since ¢, , €
U(Z(4)), we deduce from the foregoing that : Ce(I).I, C C,{I) C I,. Since both
extremes are in %,(A) , so is C,(I).

Corollary 3.24  : L(p(®)) = { ideals I of A(®) such that for all y € G ,
C,{I) € 7,(A)} is a multiplicatively closed filter.

Lemma 3.25 : For every ideal J of A(®) such that C.(I} € L(p) : we have
1 Qo{(C,(1)) = Qo(c’e(l)j—r)"

Proof
From [L-1.I;.C(l) C I-1.Cy(I) © C,I) it follows that

Qolly—1 L,.C(I)) = Q,(CD) C Qo(ly-1.Co(I)) C Q,(Ce(I)). Therefore,
Qo(Ce(l)) = I,-1 % Q{C,(I)). Note that we have used the fact that the I, are ¢,-
invariant in the foregoing argument. Now, commutativety of Dp{A} entails finally

that : Qo (Ce()) * I = Qo(C41)) , ie. , Qu(Cull).I,) = Qo (C(I)).

‘We will now recall the following lemma :
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Lemma d4 :If A is a graded ring of type G satisfying the identities of n
by n matrices such that its center Z(A) is a graded field (i.e. every homogeneous
element is invertible), then A is an Azumaya algebra.

Proof

The multilinear Razmyslov polynomial cannot vanish for every homogeneous
substitution for the variables (since otherwise it would vanish on A). The hypothesis
on the center of A then entails that the Formanek center of A equals Z(A) and
therefore A is an Azumaya algebra.

Theorem 8.27 : Let A be a p — maximal order and suppose that A(®)
satisfies a polynomial identity , then A(®) is a p(®)-maximal order , where p(®) is
defined as in Corollary 3.24 .

Proof

Because A(®) is a graded p.i-ring , its graded ring of quotients, QI(A(®))
is obtained by inverting central homogeneous elements and it is a G-graded
simple Artinian ring in the sense of [58],[58°]. The graded version of Weddenburn’s
theorem (cfr. [58] Th.1.5.8) yields that Q9(A(®)) o~ M,(A)(£) for some G-graded
skewfield A and 5 € G* defining the gradation by

(Ma(AYE)is = A, o

where & == (ry, ..., 7,,) From lemma 4.2 of [58] it follows that Z{Q?(A(®))) = Z(A)
is a graded field graded by the group H = {y € G : A, NZ(A) # 0}. The foregoing
lemma then entails that @9(A(®)) is an Azumaya algebra over Z(A).Because H is
again a torsion free Abelian group , it follows from Prop.3.2 of [2] that Z(A) is a
compieteiy integraiiy closed domain yieiding that Qé (A(<I>)) is 2 maximal order.
Now, consider J € L(p(®)) and suppose that J.g ¢ J for some g €
Q(A(®)). Then, QI(A(P)).J .9 C Q9(A(®)).J and QI(A(D)) is 2 twosided ideal og
Q7(A(®)) yielding that g € Q9 (A(®)). Hence we can find a decomposition of ¢ into
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homogeneous components say g == gq,, X+t ¢,,. Xy, withny < ... < 7. The
relation J.g ¢C J then yields :

(%) : Ce(J)-$elgr,) C Ce.(J)

By the definition of L(p(®)) it follows that C,(J) € Zo(A) for all vy € @, so we
may deduce from (%) above that : Q4(Ce(J)).¢.(¢x,) C Qo(C:,) , or , equivalently
s ¢e((I-r,.) € Qa(oe(J))ml # Qs(C', ('I))

By Lemma 3.25 this means that ¢.(g,,) € I,, and by proposition 3.22 gr, €
I,,. Now, replacing ¢ by g — gr, X, and repeating the foregoing argumentation
one finally arrives at g € A(®) and therefore (J :, J) = A(®) . The equality (J
J) = A(®) can be established in a formally similar way.

Corollary 3.28 :If A is 2 maximal order and if A(®) is 2 normalizing Rees
ring satisfying a polynomial identity , then A(®) is again a maximal order.

Proof

1t is clear that A is a maximal order in ¥ if and only if A is a p~—maximal order
with respect to L(p) the filter of all nonzero ideals of A. Clearly , L(p(®)) is in this
case the filter of all nonzero ideals of A(®) and this finishes the proof.

Theorem 3.29 : Let A be a p — maximal order such that A satisfies the
ascending chain condition on divisorial ideals contained in A and let A(®) be a
normalizing Rees ring satisfying a polynomial identity. If G satisfies the ascending
chain condition on cyclic subgroups then A(®) is a p(®)-maximal order satisfying
the ascending chain condition on divisorial ideals contained in A(®).

Proof : (adapting notation as in the proof of theorem 4.5)

Q9(A(®)) is an Azumaya algebra over its center Z{A) which is a graded field
graded by a subgroup H of G. Since H also satisfies the ascending chain condition
on cyclic subgroups we know that Z(A) is a factorial domain { by corollary 3.4 of
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[2]). Since @Q7(A(®)) is an Azumaya algebra , divisorial ideals correspond bijectively
to divisorial ideals of the center and consequently every divisorial ideal of Q9(A(D))
is generated by a central element.

Now, if {4,;n € N} is an ascending chain of divisorial A(®)-ideals con-
tained in A(®) then the ascending chain {Q-(@7(A(®)).4,);n € IN} becomes
stationary in Q9(A(®)) , i.e. there exists a natural number »’ € IN such that :
Qo(Q?(A(®)).4,') = Q(Q(A(®)).A,,) for every m > n’. On the other hand, the
fact that A satisfies the ascending chain condition on divisorial A- ideals contained
in A entails that there exists a natural number n" € N such that : Q. (C.(Apn)) =
Qo5(Ce(Am)) Let N be sup(n’,n") and take k 2 N. Since Q,(—) is a localiza-
tion in degree ¢ , @,(Q9(A(®)).~) = Qo (Q9(A(®)).~). Therefore, if g.AN C Ay
then ¢. An.Q9(A(D)) C Ar.QI(A(D)) = AN .Q9(A(®)) follows. But An.Q9(A(®)) =
Q?(A(®)).c for some ¢ € Z(A), and Q?(A(®)) is a maximal order in Q(A(®)) , hence
q € Q(A(P)) follows.

Write ¢ = ¢,, X, +...+¢-,.X,, Withr; < ... < 7,. The relation q.AN C Ap
then yields :

Gr, P, (CG(AN )) c e, (Ak)
Note that we have assumed that A was a p — maximal order wich satisfies a
polyromial identity. Therefore p is a central kernel functor and since the ¢, are
induced by normalizing elements they leave elements of the center of A invariant
yielding that p is ¢, invariant. Note also that A4, € D,(2)(A(®)) implies that 4,, €
L(p(®)) i.e. that C.(A,) € L(p). Because of these remarks () yields :
(+4) : 21, Q(CL(AN)) € Qo(C, (1)

By assumption on N , @,(C.(4AN)) = Qo(Ce(Ar)) and applying lemma 3.25 to
this equality then yields : @4(C,(4r)) = Q,(C.,(4N)).

From (%+) and again using lemma 3.25 it follows that g, € I,,. Replacing ¢q
by ¢ — ¢,,.X,, and repeating the same argumentation , We obtain that ¢ € A(®).

Therefore; (Aw 1 Ax) € A(P) whence AR * Ay € A(®) and thus also Az &
Ap follows. But then A; = An and this finishes the proof.

Corollary 8.30  : If A is a maximal order over a Krull domain and if A(D)
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is a normalizing Rees ring which satisfies a polynomisl identity , then A(®) is also
a maximal order over a Krull domain.

Proof

A. maximal order over a Krull domain is a relative maximal order with respect
to the filter of all nonzero ideals such that it satisfies the ascending chain condition
on divisorial ideals contained in it. The result now follows immediatly from the
foregoing theorem.

Remark 3.31  : A normalizing Rees ring A(®) C @Q,(4)[X, ¢,¢c] will be a
p.i-ring if ¢ has the following property :

Vr€G ,3ny, €EN:cryn gy == Cyn qr
Up to changing the variables in @,(A)[X~,d,¢], replacing X, by X’ = a;1.X,

where a, is the normalizing element of Q,{A) inducing ¢, in @,(A) ; we get an
imbedding of A(®) in Q,(A)[X;’,1,¢’] where :
Crpyr = - b(07) Gy r oy r

with a51.¢,(a;") = a7'.a7'. The statement of the remark becomes now rather
straightforward to verify.

In the non-normalizing case one has to add the condition on ¢, that some
power of ¢, is inner in Q,(A), for every r € G. This can be proved by using the
restriction technique as in proposition 3.20 in order to get rid of the cocycle.

d. : some remarks on class groups.

Throughout this section A will be 2 p—maximal order satisfying the ascending
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chain condition on divisorial A-ideals contained in A ; ¢ and p will be central kernel
functors which are G-invariant. Notations will be the same as in the preceding
section . The set of p(®)-divisorial ideals of A(®) which are graded submodules of
Q?(A(®)) will be denoted by D} (4 (A(®)).

Proposition 3.832 : The map x : Dy(A) - DZ(¢)(A(<I>)) defined by sending
L - L(®) = Q,(A(®).L) is an isomorphism of groups.

Proof

First let us check that L(®) is an ideal. Since D,(A) is an Abelian group,
L commutes with each I, and therefore we only have to check that L.X, is in
Qo(A(®).L). Now, LX, = X,.(X7'.L.X,) = X,.a;!.La, where a, € N,(A)
induces ¢,. Since A.a, and A.a;! are in D,(A) we have that Q,(A.a7l.L) =
(Aa7Y) % L = L+ Aa;! = Qy(L.a;?). Hence, L.X, C Q,(A(®).L) follows. From
L € 7,(A) it follows that there is an I € L(p) such that I.L and L.J are in
L(p). By lemma 3.9 and corollary 3.24 , Q,(A(®).I) € L(p(®)) and moreover :
Qo(A®) ). Q0 (A®).L) = (DQollr 1) X.), (D@0 L)Xy C DRull51.L).X5 C
A(®) while A(®).I.A(®)LA®) = D.q5lpd.1,.LL5.X 1445 is in L(p{®)) and it
is contained in I{®).L{®). This entails that I($).L{®) € L(p(®)) and similarly one
shows that L(®).I{(®) € L{p(®)). There exists an ideal J € L(p) such that J C L
, hence J(®) C L(®) and J(P) € F,(A(D)).

If L(®).f C A(®) then Q7(A(®)).f C Q9(A(P)). But @¢(A(®)) is » maximal
order therefore f € Q7{A(®)) so we may write f = Y, fr.. X, with fr, € ¥ and
o < oo < Tp. From K(®).f C A(®), L.f,. C I, follows,ie. f,, €L *+k, . This
means that L(®).f,, C A®) and f,, € (L{(®) : A(®)) what proves that (L{®) :,
A(®)) is a graded A(®)- submodule of @7(A{®)}). Furthermore :

(L(Q) Y MB))e = {f X, FED : Qo L} X £ X C I.X, ¥ree}

={fX. feE .L4{f}X, CLX, reG}

={fX.,J€EL, Lg.(f}C A VT E G},
in the latter set , we have L.¢.(f) = L.f C A, but since (L :, A) is divisorial it
is also ¢, invariant (see the first paragraph in this proof), hence ¢.(f) € (L :; A)
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and therefore (L{®) :y A(®))e = (L :r A).X, follows. It is now evident that (L(®))**
is a graded A(®)-submodule of Q9(A(®)) which is a divisorial A(®)-ideal with part
of degree ¢ exactly equal to L.X,.

Hence, L(®) = (L(®))** and L(®) € D? o(2)(A(®)). Similarly, one verifies that
for any B in D4)(A(®)) we have B, = J.X, for some J € D,(A) such that
Qo(B) = J(®). Since x is clearly a groupmorphism we only have to show that
Q,(B) = B for every B € D p(q,)( (®)). Actually, it will suffice to establish that

= (H :; A(®)) for any ideal H of A(®) is such that Q,(B’) = B’.

We bhave H,X,B.,X, C I, 4X,, with the obvious notation.
Since Qo{l;.X;4) = I.,X,, and since o is central it follows that
H; X:.Qo(B’y Xy) C Iy Xr.q, hence Qo(B’1.X,) C (H :» A(®)), or Q,(B) =
B’.

Let Py2)(A(®)) be the subgroup o Dy(4)(A(®)) consisting of principal ideals
generated by a normalizing element of N,q)(A(®)) and let P p(¢)(A(¢)) be
the subgroup of P,(4)(A(®)) consisting of the principal ideals generated by an
homogeneous normalizing element in Nyq)(A(®)).

Proposition 3.33 : For any L € D,(A) the following statements are equiv-
alent :

(1) : L(®) € P (A(2))

(2) : There exists a divisorial A- 1deal Bel m(<I>) such that L = B.z for some
s N, |

Proof

(=12 : Snppose L€<I>) = A(<I>) ,.X, where z,.X, E N,(.p)([i(t})) then
AX, 2, X, = z,._X AX, ie. A ¢,(A ¢,(z,)) Cer = Ty A Crie- Therefore, Az, =
z,.A since A(®).z, € Dya)(A(®)), i.e. 2, € N,(A). Furthermore, L{®), = L.X, =
Is.$pr(2y).0 01 ;. X = I,—1.2..X, (actually one may take X, = 1).Hence L =
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(2) = (1) : ¥ B € Im($) then B = I, for some 7 € G. We claim that B(®) =
A(®).X,-1. Indeed A(®) X1 = Q,((A(®).X,-1)..A(®)) = Q,(I,.A(®)) = B(&).
Finally, if L = I,.z for some z € N,(A) , then L(®) = Q,(A(®).I,.2) =
Qo(A(®).1;).2 = A(®).X,-1.z , hence L(®) € Pz(q,)(A(‘b))‘.

Theorem 3.34 :If we define : Cl,(A) = D,(A)/P(p)(A) and Cll (o) (A(®)) =
Dy o) (A(®))/ P () (A(®)) then we have the following relation :

Clo(A) = Clj 4 (A(®)) © x(Im($))

where x : D,(A) — Cl,(A) is the canonical morphism.

Proof
The morphism of proposition 3.32 yields an exact sequence :

1= x(Im(8)) — Cl,(A) — Cll4)(A(®)) = 1

where the last morphism is derived from the one of proposition 3.32 by formation of
classes,using proposition 3.33. Exactness of this sequence follows from the foregoing
results and the morphism CI,(A) — C’lz(q,) (A(®)) may be split because taking parts
of degree ¢ in Dg(q,)(A(@)) yields a splitting morphism :

C13(0)(A(®) - Oy (A)

Recall that we have assumed that p is a central perfect kermel functor.
From the foregoing section we retain that Q,[X;,¢,¢] is a relative maximal
order with respect to the kernmel functor p~ where L(p~) = {I ideal of

Q.,(\)[X,, 4, c]; Ce(I) = Qp(A)}

Proposition 3.35 : Under the same assumptions as before , the following
exact sequence is split exact :

1 = D7(a)(A(®)) = Dp(a)(A(®)) = Dp~ (Q,(A)[X+, 8, ¢]) — 1
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Proof

Let o™ be the kernel functor associated to p™ in the usual way and consider
P € P(p™) (see the first section for notations). We claim that P NA(®) € P(p(®)).
That PN A(®) € L(p(®)) follows from the fact that @,(C.(P NA(®))) = C.(P)=
Q,(A) and therefore C.(P N A(®)) € L{p). That P N A(®) is is a prime ideal is also
obvious since it is a central ring extension. Now, first we check that a p™-divisorial
ideal of Q,(A)[X~,¢,¢| , I say , has the property that I N A(®) is a p(®)-divisorial
ideal of A(®). Since A(®) is a relative maximal order satisfying the ascending chain
condition on divisorial ideals, the divisorial closure of any ideal is given by letting
Qo(#)(—) act on it. Now, Qu(e)(I NA(®)) = 1IN A{®) because , if J.z C A(P)NT
for some ideal J € L(0(®)) and z € Q,(A)[X,, ¢,¢] , then A(®).z = Qo) (J).z C
Qo(0)(I N A(®P)) yields that z € A(P) and so we have to distinguish between the
following two cases :

first case : J; € L(p(®)) , then Q,(A)[X,,4,¢]J.2 C I and from
Qp(A)[X7, ¢, ¢].] = Q,(A)[X~, 8, c] it then follows that z & I N A(D).

second case : Jy & L(p(®)) , then J” = Q,(A)[X,,,¢].J € L({o™),(because
firstly, J* € L(p™) C P for some P € P(p™) then J C PN A(®) € P(p(®)) , =
contradiction) hence J”.z C I and also Q,~(J’).z < [, i.e. z € I and hence z €
A(®)1. Now, knowing that PNA(®) is divisorial we may derive from this fact that
PNA(®) € P(p(®)) for if PNA(P) were not 2 maximal divisorial ideal contained in
A(®) then PN A(®) C Py where Py € P(p(®)). But then P = Q,(A)[X,, 4, el.(PN
A(®)) is properly contained in the divisorial ideal P Qp(8)[X7,¢,¢] = P’y and
this will lead to Q,(P’1 N A(®)) = A(®) and thus P; = A(®), a contradiction.

Exactness of the sequence in the statement of the proposition is now easily
verified. The splitting morphism :

Dﬂ - (QP(A) [XT) ¢x c]) - (D) (A(q)))

is obtained by intersecting down divisorial ideals of Q,(A}[X, ,¢] to A(D).

Let OOl (A(®)) and CClyq)(A(®)) be defined by COWq(A®) =
D5 a)(M(®))/C P54y (A(®)) and CCly()(A(®)) = Dp(a)(A(P))/C Py (A(®)), where
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c P§(¢)(A(¢)) is the group of principal ideals in A(®) generated by one
homogeneous central element , C Po()(A(®)) is the group of principal ideals in
A(®) generated by a central element.(Note that this C'C! coincides with the central
classgroup CI° mentioned in the introduction for maximal orders).

Lemma 3.38 : There is 2 natural inclusion :

OO ) (A(®)) = CClyqa)(A(®))

Proof

We only have to verify that a graded divisorial ideal generated by a central
element is actually generated by an homogeneous central element. Since the group
G is ordered Abelian and torsion free this can easily be done by standard methods
in graded ring theory.

Theorem 3.37 : Let A be a p — maximal order with the ascending chain
condition on divisorial ideals contained in A , then :

COly()(A(®)) 2 CCL4(A(R)) ® CCL~(Q,(A)[X,, 8, c])

Proof
From the following split exact sequence :

1= D353 (A®)) > Dy(ay{A(®)) > Dy (@,(A)[X., 6, ¢]) — 1

and utilizing the foregoing lemma we deduce the following exact diagram :
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1 1

1
' i 1)
1 = G’P?,I(A(@)) = OP~(A®) ~ CP(QyA)[Xr y¢))
g . l l
i = Dp(¢)i“(‘1’)) = Duay(A®) = D (@A) Xmoye) > 1
¥ ’ l l
1 "Clﬁ(dl),(“‘l’)) ~ CCl)A(®) = CCi~(Q,A)X 6, c])
1 ' '
1 1

where exactness of the first row is easily checked and then exactness of the bottom
row follows.

Because CCl4)(A(P)) — CClys)(A(P)) is a monomorphism we may
apply the snake lemma to the bottom two rows and derive from this that
CCly)(A(®)) — CCL~(Q,(A)[X;, ¢, ¢]) is epimorphic and may be splitted ; thus
yielding the desired result.

Remark 3.38

(1) : It L(p) = L(A—0) then Q,(A)[X, ¢, c] is nothing but T[X,, ¢, c] and every
divisorial ideal of this ring is generated by a central element because L[X,, ¢, c] is
an Azumaya algebra over a factorial domain. Then CCHQ,(A)[X,, ¢,¢]) = 1 and
therefore CCI 4 (A(®)) = CCly4)(A(P)).

It would be interesting to know wunder which conditions
CCl,~(Q,(A)[X,, ¢, c]) vanishes.

(2) : If A is a p — maximal order such that Cl5)(A(®)) — Clya)(A(P)) is
monomorphic , then a similar argumentation as before can be applied to the
normalizing class groups. One then obtains :

Cly@)(A(®)) == Ol 4)(A(®)) @ Clp~(Q,(A)[ X7, ¢, ¢])
{3) : In general, we have an exact sequence :
1= Ker(x) = CClya)(A(®)) = Clya)(A(P)) — 1

where Ker(x) is a torsion group.
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4 : UNIVERSAL BIAGEBRAS ASSOCIATED WITH ORDERS

0. introduction

In [76] , M.E. Sweedler associated to every algebra A over a field K a univer-
sal measuring bialgebra My (A4, A) and its cocommutative pointed subbialgebra
Hpc (A, A). These objects may be used in several domains , e.g. to obtain a beautiful
Galois theory , cfr. [77].

Over arbitrary commutative rings , these constructions cannot be generalized
and one has to restrict attention to Galois objects , as introduced in [15] , in
order to get a more or less satisfactory Galois theory. However, the condition
of being a Galois object, puts severe restrictions on the ringextension. A lot of
‘nice’ extensions , e.g. the integral closure of a Dedekind domain in a finite Galois
extension of its field of fractions , do not necessarely fit into this Galois-object
framework , as an example due to Janusz [31] shows.

Therefore, it would be interesting to extend Sweedler’s construction to a nice ’
class of rings , e.g. Dedekind (or Krull) domains. And in this chapter we put the
first steps in this direction.

In the first section we show how one can associate to any algebra A which is
finitely geneated as a module over a Dedekind domain D , 2 universal measuring
bialgebra Mp(A4, A). Our constructions are similar to the ones in [76] , modulo
some technical difficulties , stemming from projectivity conditions. In fact, the
main reason why one can generalize the field-case constructions to algebras over
Dedekind domains is that any finitely generated torsion free J-module is projec-
tive.

In the second section we restrict attention to the case of orders in central
simple K-algebras & where K is the field of fractions of D. We mainly study the
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relation between Mp(A, A) and Mg (5, X). It turns out that H}(A, A) (the pointed
irreducible cocommutative component of the identity) is a (not necessarely finitely
generated) D-order in H (2, Z).

Along the lines we also prove a generalization of the classical Skolem-Noether
result on automorphisms and derivations of central simple algebras.

Several examples have been included to illustrate the connection between Hopf
primes (i.e. prime ideals p of D such that Hp,(Ap,Ap) is an order in Hx(Z, X))
and noncommutative valuation theory.

In the third section we present a method to generalize most results of the first
two sections to (reflexive) orders over Krull domains. The main idea behind this
generalization is that a Krull domain behaves itself like a sheaftheoretic discrete
valuation ring (on X)(R) with the induced Zariski-topology and with the inverse
image of the structure sheaf under the continous map X (V(R) -+ Spec(R) on it).

In section 4 , the obtained bialgebras are used to obtain a Galois theory for
Dedekind (and Krull) domains , which is , resembling the Galois theory of the
corresponding field of fractions.
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a. construction of Mp(A, B).

Throughout, D will be a commutative Dedekind domain. First, we will as-
sociate to a pair of finitely generated projective D-algebras A and B (note that they
need not be orders) a universal measuring D-coalgebra Mp(4, B). Our construe-
tion runs along the lines of M.E. Sweedler [76] modulo some technical difficulties
mainly stemming from projectivity conditions.

The main problem in generalizing Sweedler’s construction to the ring case is
to find a suitable substitute for A°(cfr. definition below). However, when D is a
Dedekind domain, this problem can be succesfully solved.

Definition 4.1  : Let A be any D-algebra ,

A° = {g € A" : Ker(g) contains an ideal I : A/I is finitely generated and
torsion free }.

Remark 4.2  :A° is a D-submodule of A® = Homp(4, D). Clearly, A° is
closed under scalar multiplication. The sum of any two elements of A° is again in
A? since A/INJ — A/I1 @ A/J is an inclusion and therefore A/I N J is again
finitely generated and torsion free.

Proposition 4.3 : Let A,B be projective D-algebras and f €&
Algp(A, B),then :

(%) + The dusl mapop £ ; * + B' — A" sends B° in A° A

(b) : The map A* @p B' — (A®p B)® restricts to an isomorphism 4° ®p
B° ~ (A®p B)°

(¢):If M : AQpA — Ais the multiplication map then M~ (4°) C A° ®p A°
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Proof

(2) : It is easy to show that if 5 € B® has J C Ker(b"), then Ker(f*(6")) D
F71(J). Purther, A/'f_l(J ) — B/J is an inclusion and therefore it is finitely
generated and torsion free.

(b) : Let K be any ideal in AQp B such that (AR p B)/K is finitely generated
and torsion free. Let I = {a € A: a ® 1 € K} then A/I is finitely generated and
torsion free , because (see part a) it is the inverse image of K under the algebra
map a — a® 1 of Ato AQp B. Similarly ,if J ={b€ B:1®b€ K} then B/J
is finitely generated and torsion free. Note that AQp J + I @p B C K and by
[12] , A.IL.59,Prop.6 , we have :

AQ®pB/{A®p J +IQp B) =~ A/I ®p B/J

therefore AQp B/(I ®p B+AQp J) is again a finitely generated and torsion free
D-module. This follows from the fact that if A’ and B’ are finitely generated torsion
free over a Dedekind domain D ,then A~ I, .. pl, , B ~J1D..DJ, with I;
and J; fractional ideals and therefore A’Qp B’ ~ P(I;Qp J;) = §(J;.J;) and the
latter is thus finitely generated and torsion free. Now, suppose that ¢ € (AQp B)°
with K C Ker(c'), I,J as above. Then ¢" factorizes through A/I ®p B/J. That
is, there exists a unique C” such that the diagram below is a commutative one :

AQ®p B -~ D
1 el

-

A/IQp BjJ

Thus, " € (A/I ®p B/J) ~(A/)' @p (B/J)" (D is a Dedekind domain and
[12] , AIL80,cor.1 . Via this isomorphism , write C* = Y D} @ E; with D} €
(4/D)" and E; € (B/J)". In particular , for a € A/I and b € B/J we have :

<C,a@b>=) <Dia>.<E;b>

Now, if ¢1,¢» are the naturalk projections 4 — A/I and B — B/J then the
commutativity of the diagram above comes down to :

@):<¢,e®b>=<C",41(a)Q@¢2(b) >= Y < D}, 61(a) > . < E;, $2(b) >
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Now, let d; = D};0¢; , then d; € A° because I = Ker(¢1) C Ker(d;). Similarly,
e; = E:o0py € B°. (2) then becomes ¢’ = 3~ d;Qe; , thus (AQp B)° C A°QpB°.

Conversely, if d° € A° (resp. ¢ € B°) with I C Ker(d") : A/I is finitely
generated torsion free (resp./ < Ker(e') : B/J is finitely generated torsion free)
then AQpJ +I®p B C Ker(d” @ ¢') and AQp B/{(AQp J +I®p B) is
finitely generated and torsion free. Therefore, 4° ®p B° C (A®p B)°.

(¢):Fora* € A%;a,b€A: < M (a"),a®b >=<a’,ab >.1f I C Ker(a")
such that A/I is finitely generated and torsion free, then AQp I +1@p A C
Ker(M™(a")) and AQ®p A/(AQ®p I + I ®p A) is also finitely generated torsion
free. Thus, M (4°) C (AQp A)°® = A° Qp A°.

Now, define A = M~ | A°: A° -» A° ®@p A° and ¢ : A° — D by €(a’) =<
a‘,l >.

Proposition 4.4 : (4%, A,¢) is a D-coalgebra.

Proof
Similar to a result of M.E. Sweedler [76].

If A and B are projective D-algebras and f € Algp(4, B) , then Prop.4.3.a
above states that f* | B° is 2 map from B° to A°. Denote f° = f* | B°. A diagram
chase shows that f° is a coalgebra map. For any D-algebra 4, A’ is aleft A-module
with scalar multiplication defined by the rule < 5 — a.', e >=< a', a.b > for
a' €A, abc A The right action is defined by < ¢* « b,a >=< a",b.a >.
These definitions make A" into a twosided A-module.

Proposition 4.5 : Let A be a projective D-algebra . For any f € A" the
following statements are equivalent :

(a): feA;
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(b): M*(f) € A° ®p A° ;
(): M (f)ed @p 4’ ;
{d) : A~ f is finitely generated torsion free ;
(e) : f « A is finitely generated torsion free .

Proof

(2) = (b) : since M"(4°) C A° ®p A° (Prop.4.3.(c))

(b} = {c) : trivially

(¢) = (d) : let M (f) = S a; ®b; where a;,b; € A”. By the definition of
M" we have :

< f,a.b >=Z <a;a>.<bi,b>

Hence, b — f = Ya;. < b;,b > , thus (4 — f) C D.g} +...+ D.a}, and so it
is finitely generated. Now suppose that (4 — f } is not torsion free , i.e. for some
beAdeD:d(b— fyy=0thusforalla€ A:d < f,a.b >=0, but this
implies < f,a.b >=10foralla,or, b— f=0.

(d) = (a) : M = (A -+ [) is finitely generated and torsion free. Then, I =
{e € A:a - M =0} is an ideal of A with A/J is finitely generated and torsion
free (because I is the kerel of the map ¢ : A — Endp(M) given by ¢(a)[m] =
a — m. Hence, A/l —+ Endp(M) is an inclusion and thus A/I is finitely generated
torsion free). But forany e €/ : < f,a >=< a — f,1 >=< 0,1 >==0. So,
I C Ker(f), whence f € A°. This proves the equivalences (a) - (d) . Obviously
(e) = (a) follows by left-right symmetry from (d) = (a).

Proposition 4.8 :If C is a D-coalgebra such that C is a projective D-
module. Let C* be the dual algebra , then the natural map C — C** maps C to
c’e,

Proof
Let¢’ €C*,ceC and ¢’ the image of ¢ in C**. The definitions of — and of
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the multiplication in C” imply :
¢ == Zc’(l). < c‘,c’(g) >

. Thus, C* — ¢’ is finitely generated

The injection A° — A" induces a map A"® — A°". Define $:A— A tobe
the composition map A — A" — A°". Note that ¢ is an algebra morphism.

Proposition 4.7 : Let 4, C be projective D-modules ; A a D-algebra and
C a D-coalgebra , then there is a natural one-to-one correspondence between
Algp(A4,C”) and Coalgp(C,A°).

Proof

Given f € Algp(4,C") , let ¥(f) € Coalgp(C, A°) be the composite map :
C — C*° =5 A° where the map on the right is f°.

If g € Coalgp(C,A°) , let x(g) € Algp(A, C") be the composite map : 4 —
A°" — C" where the morphism on the right is ¢°.

It is easily verified that x(9(f)) = f and P(x(g)) = g , since

()e): A= D;a —< fla),c >
x(g)(a) : C — D;e —»< g(c),a >
In the above propositions we showed that {--)° has the required properties

in order to complete Sweedler’s construction, this time for finitely generated
projective Dezlgebras:

Definition 4.8 :If V is 2 D-module, a pair (C, ¢) where C is a D-coalgebra
and ¢ : C — V' a D-module morphism , is called a cofree coalgebra on V if for
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every projective D-coalgebra C’ and D-module morphism f : C’ — V there is a
unique coalgebra map F making the following diagram commutative :

c’ = C
\,/
It is clear from the definition that if C exists , it is unique up to D-coalgebra
isomorphism.

Theorem 4.9 :If V is a finitely generated projective D-module , then the
cofree coalgebra on V exists .

Proof

Let T(V") be the tensor algebra on V* » which is a projective D-module since
V" is finitely generated projective. Let 5 : V™* — T(V") be the natural injection.
Let ¢ be the composite morphism :

$: TV Y > TV -V

where the morphism on the right is *. We claim that (T(V")°, $) is the cofree
coalgebra on V™" ~ V. Let C be 2 projective D-coalgebra and f : ¢ — V** 3
D-module morphism.

Denote by F the composite V' — V' ~ " where the right morphism
is f*. Because of the universal mapping property for 7(V") , there is a unique

-

algebra map g such that the following diagram is commutative :

(V")
t .
y* = C
Dualizing this diagram , we obtain :
(V')
LN L
T(V‘ )t C
i

v — O« ¢
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*

The vertical composite is nothing but ¢ : T(V')" — V', the top diagonal
composite is the unique coalgebra map F’ : ¢ — T(V")° corresponding to g :
T(V*) = C* (see Prop.4.7).

The bottom horizontal composite is f : ¢ — V" since there is a one to one
correspondence between Homp(C, V") and Homp(V",C") given by :

¢ ZHO”LD(C, V“) s HomD(V‘,C");f - (Va - V-u: - 0.)
where the morphism on the right is f* and :
x: Homp(V’,C") ~ Homp(C,V"");9 5 (C > C"" - V"")

where the morphism on the right is ¢°. Finally, the horizontal composite is
x(#(f)) = f. Thus, (T(V")°, ¢) is the cofree coalgebra on V'* =~ V.,

Let us recall the definition of "measuring” . Let A, B be D-algebras, M a
D-coalgebra and ¢ : M @p A — B a D-module morphism. M is said to measure
A to B id ¢ satisfies :

(1) : ¥(m ® a.0") = X $(m@) ® a).9¥(mz) @ o’);

(2): P(m® 1) = e(m).15.

Foralla,a’c A;meM.

Theorem 4.10 : Let A, B be finitely generated projective D-algebras.
There is 2 D-coalgebra M = Mp(A, B) and a D-module morphism ¢ : M Qp A —
B measuring A to B and with the following universal property :

If C is a projective D-coalgebra and (C, ) measures A to B then there is a
unique coalgebra map F : C — M such that the following diagram is commutative

Mp(A,B)®p A — B
1 //'
CRpA
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Proof '
As in M.E. Sweedler [76] , using the foregoing results.

Remark 4.11 : If Ais a finitely generated projective D-algebra , then
Mp(A4, A) has a unique algebra structure such that it is a bialgebra and 8 :
Mp(A,A) ®p A — A makes A into an Mp(A, A)-module.
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b : bialgebras associated with D-orders.

From now on we will restrict attention to D-orders, i.e. D will be a Dedekind
domain with field of fractions K , © a central simple K. -algebra and A will be a
subring of ¥ having D as its center such that K .A = 5. Remark that A is a finitely
generated projective D-module since it is finitely generated and torsion free.

First, we want to investigate the connection between M, D(A, A) (as defined in
the foregoing section) and Mg (Z, £) (as defined by Sweedler in [76]).

Proposition 4.12 : Mp(A,A) ®p K is a subbialgebra of Mg (%, ).

Proof

Let (Mp(A,A), A, €, p, M) be the D-bialgebra as constructed in the foregoing
section. We will define a X -bimodule structure on Mp(A,A)@pK in the following
way :

Ax : Mp(A,A)@pK — MD(A,A)®DK®KMD(A,A)®DK =~ Mp({A,A)Qp
MD(A7 A) ®D K

Ag(m Q@ k)= A(m) @ k

ex : Mp(A,A)®p K - K

ex(m @ k) = ¢(m).%.

and px , My as usual. It is easily verified that these maps are well defined
and that (MD(A A) ®D K,Ax,ex, bk, MK) isa K- blalgebra Furthermore, ¥ :
Mp(A, A®pA -+ Aisa D-measurmg Now define i : MD(A V@pK@xE -
Lby px(m@k @k N\) = k.k".(P(m@N)). ¥ is well defined and a K-measuring.
Applying the universal mapping property of My (E, ©) yields a unique K -coalgebra
map F such that the following diagram is commutative :
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It is now easy to check that F(Mp(A, A)®p K) is a subbialgebra of M, ®(Z,Z).
From now on, we will identify Mp(A, A) with its image in Mk (X, ).

Definition 4.18  : If C is a torsion free D-coalgebra , then :

C is called irreducible if any two non-zero subcoalgebras have non-zero inter-
section.

C is simple if it has no non-zero subcoalgebras.

C is pointed if all simple subcoalgebras of C' are free D-modules of rank one.

Lemma 4.14 :If H is a torsion free D-coalgebra and G(H } is the set of
its group-like elements (i.e. those elements & of H such that A(h) = A ® h) , then

(1) : D.G(H) is a free D-module ;
(2) : G(H) corresponds bijectively to the free subcoalgebras of rank one.

Proof

(1) : Suppose that D.G(H) is not free, hence there are gy, ..., g € G(H) such
that D.g; + ...+ D.g,, is not free. By induction on n we may suppose however that
D.gy + ..+ D.gyy is free. Thus d,,.g,, = ::; d;.g; with d,, %4 0 , then :

n—1 n—1

A(dy.gp) = ; di. Alg;) = Z d:(9: @ 9:)
1
and on the other hand we have :
A(dn-gn) = dn.gn @ gn
hence 37 d,.d;.(9:® 9:) = 3. di.d;.(9:® ;). Therefore, dy,.d; = dZ , hence d,, = d;

or d; = 0 and further, di.d; = 0 if ¥ 3£ 7 50 there is just one 4 : d; # 0. Thus,
gn = ¢; , done.
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(2) : Let H’ be a free subcoalgebra of rank one , H’ = D.h and thus there
exists an element d € D such that A{k) = d.(k Q h). Now, take h’ = d.h , then
, A(R) = B’ @ &’ , hence €(h’) = 1 and this implies that d is invertible in D.
Finally, D.R> = D.h = H".

Recall from [76] that Hx(ZX,Z) is the maximal cocommutative pointed sub-
coalgebra of Mg (X, ).

Definition 4.15 : Hp(A,A) = {m € Mp(A,A): m ® 1€ Hx(Z,2)}.

Proposition 4.186 : If L is a cocommutative pointed D-subcoalgebra of
Mp(A,A) , then L C Hp(A,A).

Proof

Let I be a simple K-subcoalgebraof LQp K ,andlet '={i€L:i®@1l¢€
I}. Then, 0 £ I’ and I’ is a D-subcoalgebra of L , hence there is a simple D-
subcoalgebra J = D.b C I’. For, consider the set of all D-coalgebras contained
in I’ , then for any such D-coalgebra , —@pK == I because I is a simple K-
coalgebra. Now, the dual algebras of these D-coalgebras are all contained in I
which is a finite dimensional K -algebra. Because D is a Dedekind domain , there
is a maximal element among the D-algebras obtained in this way ,say 4. J = 4°
yields the desired simple D-coalgebra.

Thus, J @p K = K.b C I and since [ is simple , K.b = I, therefore every
simple subcoalgebra of L@p K is one dimensional and thus L @p K is a pointed
cocommutative K-subcoalgebra of Mg (2,X) , hence LQp K C Hg(E,%). This
finally entails that 'L C Hp(A, A).

Proposition 4.17 : Hp(A, A) is pointed.
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Proof

Let L be a simple D-subcoalgebra of Hp(A,A) , then L ®p K C Hx(Z,T)
a K -subcoalgebra. Since Hx(Z,L) is pointed, there exists an element ¢ €
GH(Z,2):KgCL@p K.

Let ’={lcL:!®1€ K.g}, then L’ is a nonzero D-subcoalgebra , hence
L = I’. If we are able to prove that ¢ € L @p D, for all prime ideals p of D ,
then ¢ € NL @p Dp = L and then D.g C L is a D- subcoalgebra yielding that
D.g =L, done.

Now, L@p D, is a finitely generated free D,-module with basis say ay, ..., 0.
Now, a; = k.g for some k € K, thus A(oy) = kg ® ¢ = k'.0; ® ;. Since
L®p Dy is a Dy-coalgebra , Ala;) € LQp Dp @ LQp Dy which has as a Dp-basis
e: ® o;. Thus, finally, k! € D, , 50 g € Dy.o; C L®p Dp.

Remark 4.18 : For all m € Mk (X, L), then there exists an element d € D
such that dom : A — A, for , A= DXy + ... + D), and m(\s) = 3 ks j.0; with
ks j € K , so for all ¢ we can find a suitable d; € D such that d;.m()\;) € A. Finally,
put d = Xd;,thend.m: A — A,

Theorem 4.19 : If m € H% (X, %) (i.e. the pointed irreducible component
of Hx (%, £) with group like element 1, cfr. [76]) , then there exist a d € D, and
a D-coalgebra C C Hg{X,X) which is a f.g. D-module with d.m € C and C
measures A to A.

Proof

First, let m € C(HL%(E,X)) (for notations and properties on the so called
*wedge’-terms the reader is referred to [76]).

n=1:Then A(m) = m®i+i®m‘. We may findade D withdm : A — A.
Then, take ¢ = D.1 + D.(d.m). Then C measures A to' A , d.m € C and (C, A |
C,¢| C) is a finitely generated D-coalgebra.

n>1:Then Am) = m@1+1 Q@ m+ X n; Q m; with n;,m; €
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CF_(HL (%, ). By the induction hypothesis, we may find d;, d’; € D and C;, C
finitely generated D-subcoalgebras measuring A to A such that d;.n; € Cy; d’sm; €
C’;. Now, take C” = Y0 C;+ 3 C’;, then C’ is a finitely generated D-subcoalgebra
of Hi (%, L) measuring A to A.

Further, there exists an element ¢’ € D such that d’sm : A — A. Now, take
d=d. Xd;. Xd;and C=C"+D.dm,then O satisfies the requirements of the
theorem.

Let m € Co(H% (S, 2)) , then m—e(m).1x € O (Hk(E, D)) , so there exist an
element d € D and a subcoalgebra C with d.(m — e(m).1g) € C. Let d’.¢(m) € D,
dd' = d.d’ , then dd'.m € C. Finally, Hk (%, T) = U Co(H(Z, L)) what finishes
the proof.

Theorem 4.20 : In the situation of the foregoing theorem we have :
H}(Z,Z) C Hp(A,A) ®p K.

Proof

Let m € H(X, L), then by the foregoing theorem there is an element d € D
and a finitely generated D-coalgebra ¢ C Hk(X, E) measuring AtoAand dm €
C. By the universal mapping property of Mp(4, A) there is a D-coalgebra map F
such that the diagram below is commutative :

Mp(ML,A)@pA — A
-
CQRpA //r
Hence, we may view d.m as an element of Mp(A, A) and since dm @ 1 =
dm € Hg(Z,X) we finally get that dm € Hp(A, A). Finally, note that dm @
(1/d) € Hp{A,A)@p K.

Before we proceed with the study of the interrelation between Hg (X, %) and
Hp(A, A) we aim to prove two results on Hg (X, X) which are of some independent
interest. They may be viewed as generalizations of the famous Skolem-Noether
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theorem which states that every K-derivation and K -automorphism of a central
simple K -algebra X is inner.

Theorem 4.21 : Let B be a K-algebra and H be a pointed irreducible
K-coalgebra with unique group-like 1 such that H measures B to B . For all
natural numbers n and for all m € C}}(H), we may find a natural number k and
an injection 9 : B — M, (B) such that for every b € B ¢(b) is an upper triangular
matrix with constant diagonal element b , ¥(b);,x = m(b} and 4(b):; = p(b) with
pECT(H),l < nforall 7 <i.

Proof

‘We proceed by induction on # .

n =1 : Recall from Sweedler [76] that C] (H) = P(H) , the set of primitive
elements of H. m € P(H) implies that m is a derivation on B, therefore we have
an algebra morphism :

Pm : B — Ms(B)

()

satisfying the requirements of the theorem.

n>1:¥mecClHH),wehave Al) =c @1 +1Q ¢+ 2 p: ®g; ; with
pi,qi € CE_y(H). By the induction hypothesis we may find algebra monomor-
phisms ¥p,, %, satisfying the requirements of the theorem.

which is defned by :

¥p; : B — M, (B)
$g; 1 B — My(B)

Now, construct a mapping :

Pm : B - Mi(B)
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with k = Y (k; + I;) — 2.k + 1 in the following way : let ko = Ip = 0 and define
now :
Vo= ki + bl —2a+1

i==0 §==0
we = 4ok + ;) — 2.0

Let us now define :

Pm(O)oativgss = Ve, B)ijfor 1<i<l—1,1< 5 < 1o

Pm(B)wotiweri = Ppo+1(0)is for 1 <4 < koy1,2 < jhata

Pm(b) = b, for all 2

PO, wat+i = Ppo+1(B)1,i for 2 <4 < koyy

POt veti = Bg,(O)t,,i for 1 <6 < lpy

Pmlb)1,x = m(b)
and every other entry will be zero. It is left as an easy but boring exercise to
the reader to check that ¥, is again an algebra monomorphism satisfying the
requirements of the theorem.

Definition 4.22 : Let ¥ be a central simple K-algebra.A morphism m €
Endg (X) is said to be inner , if there exist elements a;,a’; € & such that :

m(a) =3 a;a.0’; foralla€X

Theorem 4.23 (extended Skolem-Noether theorem)
All m € Hi (X, L) are inner.

Proof

By a theorem of Kostant , Hx (%, X)) ~ K.G # Hy (X, E) where G is the set
of all group-like elements of Hx{5,X) and H}(T,X) is the pointed irreducible
coponent of 1. The group-like elements are precisely the K-automorphisms of &
and they are inner by the classical Skolem-Noether theorem. Therefore, it will be
sufficient to prove that every m € H}(%,X) is inner, If m € C,(H%(Z, X)) then
m’ = m— e{m).1g € C}(Hk(Z,T)), thus we can find a natural number & and an
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algebra morphism 9 : ¥ — M;(X) such that :

Now, 9 is an isomorphism between X (embedded diagonally in My(Z)) and P(%),
two simple subalgebras of the central simple K-algebra My (X).

Furthermore, since n;; and m’ are in C+{(HL (2, £)), ¢ leaves K elementswise
fixed , so by the Skolem-Noether theorem there exists an invertible (z;;) € My(X)
such that ¢(a).2;; = 2.0 for all a € %. For all ¢ € £ we have a.z,; = Tpi G
yielding that z,; € K for every 7. Since z;; is invertible, we can find an index 7
such that z,; 7 0. Computing on both sides the product entry (1,5) gives us :

a.zy; + Zf;; n14(a).2;; + m*(a).2n; = zy5.a,0r

m'(a) = g} (215:0 — a.215 — 32425 mai(a) z:)

Now, apply induction : C{{H%(E, X)) consists of derivations , hence they are
inner , so we may assume that all n;; are inner and thus m’ is inner too. Finally,
m = m’ + €(m).1y and therefore m is inner.

Remark 4.24  : Actually, we proved that for any m € CH{HL(E,X))
there exist elements 2o, ..., Zn, ¥1, ..., ¥n € & such that :
m(a)} = zo.a - ¢.20 + > ., (z:.6 — a.z;).y; for every a € .

In view of theorem 4.20 one could expect that Hp(A,A) is a (not necessarely
finitely generated) D-order in Hx (X, X) , i.e. Hp(4,A) ®p K = Hx (X, ). But
this is definitely not the case , even for maximal orders, as we will show in the
next example :

Example 4.25 : Let A be a skewfield finite dimensional over its center
Z(A) and let ¥ be an automorphism of A such that %" is inner , say P*(6) =
z71.8.z for all 6 € A, The ring of skew polynomials B = A[X, ] is 2 maximal
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order over its center Z(R) = k[t] where k is the subfield of Z({A) which is left
elementswise fixed under % and ¢ = z.X™, Now, for H[A,9] = Hzr)(R,R) to
be a Z(R)-order in H(A,9) = H, 2(@)(@, Q) (where @ = @,(R)) it is necessary
and sufficient in view of theorem 4.20 and Kostant’s theorem that G(H|[A, 9]) =
G(H(A, ).

G(H(A,)) is the group of all inner automorphisms of the skewfield A(X, ¢).
Equality would mean that A[X, 4] (and hence A) is globally invariant under every
inner automorphism. By the Cartan-Hua-Brauer theorem , this would imply that
either A C £(f) or A = A(X,9) , a contradiction unless A(X,9) = k(t). The
reason why things do not work is that there are elements in A(X, %) — A which
are integral over k . E.g. if A = C and if 9 is the complex conjugation , then
((X = 4).4.(X —1))/(X? - 1) is integral over R inC(X, ¢).

Remark 4.26  : G(H[A, 9]) may be easily computed : if x € G(H[A, P)) it
is easy to check that xo = x | A is an automorphism of A leaving & elementswise
fixed. If x(X) = @ X™+...+a1.X -+ag , then , x(¢) = xo(2).x(X)"* = t yielding
that x(X) == a;.X and a; satisfies the following condition :

() xo(2).01.9(@1) 92 (@1)-r " (1) =

Furthermore, xo(4(4)).01.X = x(3(6)X) = x(X.6) = 1. X x0(8) =
a1.9(x0{6)).X, whence :

(**) : V8 € A : poxo(8) = a1 (x00%(5)).a1.

Conversely, if xo is an automorphism of A leaving k clementswise fixed and if
a1 € A satisfies (*) and (**) then : x(dp. X7+ ...+ dp) = xo(dp).(a1.X)?+...+x0(do)
determines an element of G(H[A, ¢]). Therefore :

G(H[A,9]) = {(x0,81) : X0 € G(Hi(A, A)),a; € A satisfying (*) and (**)}
multiplication being defined by :
(x0,21)-{x’e,2’1) = (x0.X"0, Xo(a’1).a1)

E.g. if A =C and if ¢ is the complex conjugation , then G(H[C, #]) = {(x0,¢) :
Xo € {1, $};c€C ¢ |=1}.
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Theorem 4.27 : Let D be a Dedekind domain , K its field of fractions ,
L a central simple K-algebra and A a D-order in . If ¢ is a finitely generated
subgroup of G(Hy (X, X)), then, for all but a finite number of prime ideals P of D
we have that K.G” # Hy (%, 2) C Hp,(Ap,Ap) Q K.

Proof

Let G’ =< 41, ..., ¥n >. Each ¢; is of the form $:(z) = a7 .2.0;,Vz € =. We
may find elements d;,d’; € D, \; € A such that g; = (di/ ) 2i. If d = Pdy.d’; 74
0 then all but a finite number of P € Spec(D) do not contain d , Whence Vi :
¥i(Ap) C Ap. Thus, @’ C Hp.(Ap,Ap) and theorem 4.20 finishes the proof.

Corollary 4.28  :If H’ is a finitely generated K. -subalgebra of Hy (X, B)
then H’ C Hp,(Ap,Ap) ® K for all but a finite number of prime ideals P of D.

A prime ideal P of D is said to be a Hopf-prime for A if H, pp{Ar, AP)QK =
H (X, X). We will end this section by relating Hopf-primes for orders in skewficlds
to valuation theory.

Definition 4.29  : A subring I’ of a skewfield A is called a valuation ring
if it is invariant under every inner automorphism of A and if for every z € A
either z€ T or 2~ €T

If Ais a maximal D-order in a central K-skewfield then it is easy to check that
Ap is a valuation ring if and only if it is invariant under every inner automorphism
of A. As a consequence of this we have that P is a Hopf-prime for A if and only
if Ap is & valuation ring ; i:e: if the P-adic valuation on K extends to a valuation
on A.

Example 4.30  : Let D be a Dedekind domain such that its field of fractions
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is a global field and let A be a D-order in some central K-skewfield A. F A’ is a
maximal D- order in A containing A , then Ap = A’p for all but a finite number
of prime ideals P of D. Because there are only a finite number of valuations on X
which extend to A, there are only a finite number of Hopf-primes for A’ and A.

Example 4.31  : (cfr. example 4.25) The only valuation rings in A(X, %)
are he following :

A[X, Plxy; AIX 1, ¢‘1](X_x) ; A[X, 9]p where P is a central irreducible ele-
ment. Therefore the Hopf-primes for A{X, 9] correspond precisely to the central
irreducible elements.

E.g {(X2 +¢);c > 0} is the set of Hopf-primes in R[X?] for C[X, 9] where
% denotes the complex conjugation.

Example 4.832  : Let D = N{k[t]p; P cental irreducible } , then D is a
Dedekind domain which is not semilocal. If A is any D-order in A(X, ) then all
but a finite number of prime ideals of D are Hopf-primes for A.
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¢ : extension to Krull domains.

The ain of this section is , rather than redoing everything for Krull domains
instead of Dedekind domains , to present a method how most results of the
foregoing section can be generalized. The rather trivial {(but bandy) observation
behind this method is that a Krull domain can be viewed as a sheaftheoretic
version of a discrete valuationring. Let us make this more precise (cfr. also IL.2 for
sheaftheoretic notions) : with Spec(R) we will denote as usual the set of all prime
ideals of R equipped with the Zariski topology. On X W)(R) we put the induced
topology. It is fairly easy to check from the finite character property that this
induced toplology is merely the cofinite topology on X(}(R). On § pec(R) we put
the usual structure sheaf of R, cfr. e.g. [20] , Op . With Og) we will denote the
inverse image 1" (Og) where :

i: XOHR) - Spec(R)

is the canonical inclusion. ff X () N X(R) is a canonical open set of X(1)(R)
where I is an ideal of R , then it is not difficult to show that :

rX ()N XO(R), 0) = r(X (1), Or)

since Op is 3 sheaf of Krull domains and therefore its sections are determined by
the stalks of Og in prime ideals of height one.

Similarly, we will define for every R-module (resp. R-algebra) M (resp. A) the
sheaf of modules (resp. of algebras) oﬁ‘) (resp. oﬂ)) over XM(R) to be i (On)
(resp. i*(04)). Of course , the sheafs O(Al,,) and OS) do no longer determine M
and A completely. E.g. if M is an R-lattice , then O(Al,,) ~ 0oW,.. Nevertheless,
reflexive R-lattices and R-algebras are completely determined by their sheafs over
X ()(R) by taking global sections.

Another noteworthy fact is that for R-lattices M and N :

TXM(R), 0%)g . n) = M @ N
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‘We will now give an example how to use this dictionary , namely the con-
struction of the reflexive R-coalgebra A° (i.e. with the modified tensor product
in the diagrams defining the comultiplication and the counit) associated with a
reflexive R-algebra A.

Let 3OM (,)(0(1) 0(1)) be the sheaf of homomorphisms from 0(1) to 0(1)
{cfr. e.g. [20]) and define the subsheaf A° by its sections on an open set U :

LU, A°) = {g e T(U,HOM) | (Oﬂ) | U)/(KER(g) | U) is a vector bundle }

i.e. a locally free sheaf of modules of finite type over Og) |U.
It is rather straightforward to verify that this defines indeed a sheaf and if
we denote with A° its global sections , then we have for every p € X m(R) :

(A%)p = (4°)p = (4p)°

where {A4,)° is defined as in 4.1 . Therefore, A° is a reflexive R-module.

A sheaftheoretic analogon of proposition 4.3 is now easily derived by con-
structing the sheafmaps and a verification that the assumptions hold in every
stalk.

Again taking global sections yields that A° is a reflexive R-coalgebra.

d : some Galois theory for Dedekind domains.

In this section we apply the foregomg in order to obtain a rather satlsfactory
Galois theory for Dedekind domains. Throughout we will consider the followmg
situation. D is a Dedekind domain having K as its field of fractions, E will
be another Dedekind domain with field of fractions L such that E is a finitely
generated D-module (hence E is the integral closure of D in L).
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If (H,A,¢) is a D-coalgebra and ¢ : H @p E — E a D-measuring , then
(H®pK,Ak,ex)is a K-coalgebra and ¢k : (HQpK)QxL — La K-measuring
with :

Ak HQpK - HQpHQpK:hQ@k— AR)Qk

(3¢ :H®DK—>K:h®k—)k"€(h)

Yk (HQpK)Qx L—>L:hQ@k@Fk.e - kb’ Pp(h R e)

It is easy to check that all these maps are well defined.

Definition 4.33 : Define the fixed elements of an algebra A under a
coalgebra C' which measures A to A to be the set :

AC = {a € A| ¢(a) = P(c ® a) = ¢{c).a;Vc € C}

Proposition 4.34 : In the above situation we have : E¥ is the integral
closure of D in LH®pK

Proof

Let L’ be the field of fractions of E¥. Then I’ ¢ LH®0K  because if I’ =
d/d € I, then : $(h@K)® (¢/d)) = k/d* p(h®d) = b/ .e(h).d = e(h@k).d/"
Now suppose that L’  L¥®2K and that this inclusion is proper. Let D’ be the
integral closure of D in L*®2* we have D C E and for everyd’ €D’ hc H:

P(hQ &)= Px(h@1Q &) = ex(h Q 1).d" = ¢(h).d’

yielding that D’ C EH but this contradicts that L’ ¢ LHF®2K were proper and
therefore we obtain that I’ = LH®pK Conversely, if z € LH®2K 314 ¢ is
integral over D then z € K and for every h € H : ¥(h @ z) = e(h).z yielding that
z € E7.

Proposition 4.35 : Hp(E, E) is a D-order in Hg (L, L).
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Proof

In the foregoing section we have established the inclusion : Hi (L, L) ¢
Hp(E,E) @p K. Further, by a theorem of Kostant we have that Hg (L, L) =
K.G#H}(L L), where G is the group of group-like elements of Hx (L, L) and
.#. denotes the smashed produect , cfr. [78]. So, it remains to prove that G C
Hp(E,E).

If ¢ € G, then g is a K-automorphism of L. If ¢ € E , then there exist
elements do, ..., d, € D such that : d,.e™ + ...+ dy.e + do = 0, hence , d,,.g{e)™ +
.. + dy.g(e) + dg = 0. Since E is the integral closure of D in L we have that
gle) € E. Thus D.G is a

cocommutative pointed measuring bialgebra and by the universal property of
Mp(E, E) we then have that D.G — Mp(E, E) is an inclusion. Finally, because
D.G is pointed, D.G maps into Hp(E, E).

Now, let H C Hp{E, E) then by definition : H# Qp K C Hk(L, L) and this
entails by the theorem of Kostant that : HQp K ~ K.G(H Qp K)# H%(HQ®p
K).

Now, we are able, as in the foregoing section to prove that G(H) = G(H Qp
K).Put, H' ={hc H:hQ@1€ HY(H ®p K)}. Clearly, H! is a D-subcoalgebra
of H and H' ®p K = H'(H ®p K).

Definition 4.38  : Let E be a ringextension of D such that E is a finitely
generated D-module.

E is called a Qalois extension with Galois group @ if there is a representation
of G by D-automorphisms of E leaving D as the fixed ring.

E is called a purely inseparable extension if for every z € E there is a natural
number ¢ with zP° € D , p being the characteristic of D.

Remark 4.37 : Our definition of a Galois extension is not the same as
the one given in De Meyer-Ingraham [19] . E.g. the extension Z[v/2] of Z is Galois
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in the sense of the foregoing definition but is not in the sense of [19].

Theorem 4.38 : {Galois theorem for Dedekind domains)

Let D be a Dedekind domain of characteristic p , H a cocommutative bialgebra
measuring a Dedekind extension E of D , H C Hp(E,E), G = G(H) and H! as
above , then :

(2) : BF" is Galois over E¥;

(b) : EP-G is purely inseparable over E¥ ;

(¢c) : E and EF" @px EP-C have the same field of fractions L.

Proof

(a) : By Prop.4.34 ,E#" is the integral closure of D in LAKH®DK) Now
by a result of [al] , we know that LZk(H®pK) js 5 Galois field extension over
LH®oK Hence, there are L7 ®2K auromorphisms of LHkHS®DK) Jeaving exactly
LHE®?K fived, As in the proof of Prop.d.2 we know that all these automorphisms
map E¥ into itself. Thus, the elements of EH* which are fixed under all these
automorphisms form precisely £,

(b) : ED-G is the integral closure of D in LX-G. Now, again using a result
of Sweedler’s [al] we know that L¥ € is purely inseparable over LH®PK Jf z ¢
ED-G then there exist elements dp—1, ..., do € D such that : 2" + ...+ dy.z +dp =
0 hence there is a natural number such that z¢° € L#®2K and furthermore ,
(2™ + ... + do)P" = 0 yielding that zP° is in the integral closure of D in LH®pK
i.e. in E¥,

(¢) : Because LHx(H®pK) and [K-G gre lineary independent over LH®DK
there is an isomorphism EX * ® EP-G ~ gH* gD G, Finally, the field of fractions
of EH' ED.G equals LHk(H®pK) [K.G — |
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PART III:
THE NORMALIZING CLASSGROUP
OF A MAXIMAL ORDER :

1. INTRODUCTION :

In (commutative) algebraic geometry , divisors are used to study the intrinsic
geometrical properties of schemes , cfr. e.g. [28].

These geometrical concepts were used in a very elegant way by V.I. Danilov
, ¢fr. [17] and [18] , in order to study the relation between the classgroup of a
normal domain R and the classgroup of R[[t]] , the ring of formal power series
over it , a problem which has its roots in a conjecture of P. Samuel , cfr. e.g. [22].

The strategy he uses is the following : first, one may express the classgroup
of a normal domain in terms of the Picard groups of certain open subvarieties
of Spec(R). The next step is then to use the good functorial and cohomological
properties of these Picard groups in order to prove the desired theorems on the
open sets and afterwards Danilov pulls the obtained information back to the
classgroup. In this way Danilo was able to define a natural splitting morphism
for the inclusion :

CUR) - CIRIH)

and to give some necessary and sufficient conditions on the normal domain R in
order to ensure that this morphism is an isomorphism.

In this chapter we try to generalize some of these results to the normalizing
classgroup of maximal orders over Krull domains.

In section two we recall the constructions of the affine schemes of{”) and Ol((".)
associated to an order A , due to F. Van Oystaeyen and A. Verschoren , cfr. {83]
and [90]. Y
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Usually these schemes are quite different causing some problems with respect
to their functorial behaviour. Using a result of Chamarie’s {13] , we show that both
schemes coincide if A is 2 maximal order over a Krull domain R. Moreover, in this
case there is a good connection between these rather obscure noncommutative
schemes and the usual central scheme of the R- algebra A , cfr. e.g. [20].

In the third section we generalize the notions of Weil and Cartier divisors
to these noncommutative schemes and study their interrelation. This appraoch
enables us to generalize Danilov’s main tool , i.e. expressing the classgroup in
terms of Picard groups of open subvarieties , to the normalizing classgroup CI(A)
of a maximal order A.

Furthermore, this yields a cohomological interpretation of this classgroup and
conversely we present ringtheoretical interpretations (such as the type number and
the genera of a maximal order) to the cohomology pointed sets occuring in this
description.

In the last section we will apply this machinery to a chartacterization of those
locally factorial Krull domains R with field of fractions K for which all maximal
R-orders in M,,(K) are conjugated , as well as to study the relation between CI(A)
and CIA[[]]).
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2. : THE AFFINE SCHEME OF A MAXIMAL ORDER

This section is devoted to the construction of structure sheaves associated
to orders. The first attempt to define a structure sheaf of a left Noetherian ring
is due to Murdoch and Van Oystaeyen [56],cfr. also [83].The main advantedge
of their approach (contrary to the Golan-Raynaud-Van Oystaeyen sheaf of [27])
is that one recovers the ring by taking global sections. This fact enables us to
study the ring in a local-global manner cfr, e.g. [82]. This sheaftheoretic machinery
developes into 'non-commutative algebraic geometry,an introduction’,[90], of F.
Van Oystaeyen and A. Verschoren. In this work (mostly concerned with the p.i.
case) two types of sheaves seem to be of interest , namely the module- and the
bimoduletype corresponding to whether the localization used is localization in A-
mod or the relative localization in bi(A) , the category of Artin bimodules , i.e.
twosided A-modules M such that M = A.Zs(M) where Zx(M)={m & M :Vx ¢
A : hm = m.)\} cefr e.g. [62]. The bimodule sheaf is most likely to behave in a nice
functorial way with respect to ring extensions in the sense of C. Procesi [62], i.e.
ringextensions A  TI' such that I' = A.Z,(T'), whereas the module sheaf contains
more information than the former.

We will briefly scetch the construction for an R-order A over a Krull domain
R in some central simple K-algebra £ , for more details the reader is referred to
[90]. As a topological space we take Y = Spec(A), the set of all twosided prime
ideals of A equipped with the usual Zariski topology. That is, a typical open set is
of the form Y(I) = {P € Y : I € P} for some {twosided) ideal Jof A . On Y we
define a presheaf of rings O™ in the following way

Ty, o N ={qex:3Le L(I): Lg C A}

where L(I) = {L <;A:3J < AT C radJandJ C L} . If this filter defines an
idempotent kernel functor , then I'(Y (1}, Of(‘c)) = Qr(A). Of course, restriction
morphisms are inclusions.
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The following facts are now easily verified :

(1) :0(") is actually a sheaf of maximal orders ;

{2) : the stalk of OEXM) at a point P equals Qa—p(4) , the Murdoch-Van
Oystaeyen localization at a prime ideal P, ie. @Qap(A) = {g€ £ :3I <5 A
I Z P,1.gCA};

(3) : the ring A may be recovered as the ring of global sections , i.e.
I'(x,0{) = A.

Lemma 2.1 :If A is 2 maximal R-order in ¥ and if U is an open set of ¥
such that X(A) C U, then T(U, 0§) = A.

Proof For any P € X((A),A C T'(U, 01")) C Qa-p(A) , whence A C
I, 0"y ¢ N{Qa_p(A); P € XM(A)}, so we are left to prove that this inter-
section equals A . ‘

Solet g € M{Qa—p(A); P € XM(A)}, then for any P € X () there exists an
ideal Ip such that Ip.g C A, whence }_ Ip.g C A . Finally, Y Ip is an ideal which
is not contained in any minimal prime ideal and therefore A.g = (3 Ip}tg C A
whence g € A. Note that I4 = (I: A): A .

Important notational remark 2.2 :

Some caution is in order if A is not Noetherian , for then the filters L(I} need
not be a priori idempotent. We will recall here Chamarie’s approach to bypass this
problemn , see [13] Chap.IV and Chap.V for more details :

If £3(0) is a multiplicatively closed filter of non-zero twosided ideals of A ,
then one can define :

- Ay ={zeX | € (%(o): 1z C A}

If we define a filter of right ideals L(07), to be the set of all essential right ideals-

then by [13] lemme 4.2.2 this filter is idempotent and A(,) = Qor(A).
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In a similar way we may define an idempotent filter of left ideals L(a') such
that A(g) = Q:(A).
By abuse of notation we will then denote :

QU(A) = A(o’)

It is clear that whenever L%(¢) C L%(7) , then L(0”) C L(r") and L(¢*) C L({7)
‘which is necessary in order to have a well defined restriction morphism.

As mentioned before, the assignment Al—(Y,0{"™) does mnot have nice
functorial properties in general. Even if f : A — I’ is an extension of rings in the
sense of C. Procesi , then this extension does not induce in general a morphism
between the ringed spaces (Y, 0"9) and (Yr, 0{"9)). This flow may be avoided
by introducing so called bimodule structure sheaves O%. These sheaves are con-
structed by means of bimodule localizations as in [62]. Nevertheless one can define -
0% roughly to be the sheafification of the presheaf with sections A.Z,(I'(U, Of{'c)))
on the open set U and these bimodule sheaves have a functorial behaviour with
respect to extensions. The next lemma (which is essentially due to M.Chamarie)
is therefore of erucial importance for the functorial properties of Cartier and Weil
divisors defined later on.

Proposition 2.3 :If A is a maximal R-order, then Of\m) ~ 0% .

Proof :Clearly , O%is a subsheaf of O,(\’w) , therefore it is sufficient to check
that their stalks are isomorphic at every point P & Spec(A). Now, Qa_p(A) =
A ® R,where p = PN R, R the center of A , yielding that @s—p(A) = Q% »
finishing the proof.

Remark 2.4
If A is a maximal R-order , then one can define the structure sheaf of a
divisorial A-ideal A , 05{”) in 2 similar manner. For any open set Y{I) we have
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a multiplicatively closed filter of twosided ideals L(I) and associated to it the
idempotent filters of one-sided ideals L(I7) and £(I*) defined above. By [13] , proof
of lemme 4.2.2 , we know that @;-(4) = Qn(4) is a divisorial ideal of @ (A).
Again, by abuse of notation we will write : k

) Qr(4) = @Qr-(4) = Qr-(4)
and take for the sections of og“" on the open set Y (1) :
(), 057 = Qr(4)
Again, restriction morphisms will be inclusions. of;‘“) is readily checked to be a
sheaf of divisorial ideals with stalks Qs— p(4).

Although Weil and Cartier divisors associated to A must be defined on these
noncommutative structure sheafs, we will usually benefit from the relation between
OXM) ‘and the central scheme of A, Op , given below which simplifies matters a
lot.

With Or we will denote the usual structure sheaf of R over X = Spec(R)
and O, denotes the structure sheaf of A over X = Spec(R) as defined e.g. in
[20].Before studying upon the relation between Of{”) and Oh , let us recollect the
definition of the direct image and the inverse image of a sheaf , cfr. e.g. [26].

Let X and Y be two topological spaces and let f : X -» ¥ be a continous
morphism. Let 4 and B be two sheaves {of groups, of rings,...) over X and Y
resp. We call a homomorphism from A to B compatible with f every continous ~
morphism g (of groups,of rings,...) from the étaled spaces A to B such that the
diagram below is commutative :

A4 — B
{ !
X — Y
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We say that g is an f-homomorphism from A to B. In [26] it is proved that for given
X,Y,f and B, there exists a sheaf (of groups, of rings,...) over X, f7(B), and an
f-homomorphism f*(B)} — B such that every f-homomorphism A -~ B factorizes
through a homomorphism of sheaves (of groupes, of rings, ...) 4 — f° (B). f(B)
is said to be the inverse image of B. .

Let f: X -+ Y be a continous morphism between topological spaces and let
A be a sheaf (of groups, of rings,...) over X. We can define a sheaf {of groups,of
rings,...) , f+(A) over Y by taking for its sections :

LV, f(A)) =T(f71(V), 4)

for every open set V of Y. It is straightforward to check that f+() is actually a
sheaf. f+(A) is said to be the direct image of 4 under the continuous morphism f
- The assignment : A|—f+(A) is a covariant functor from the category of sheaves
(of groups, of rings,...) over X to the category of sheaves (of groups, of rings, ...)
over Y,

Now, the ringextension B C A induces a continuous morphism i : ¥ — X
defined by i{(P) = PN R.

Proposition 2.5 :If A is a maximal R-order in a central simple K -algebra
Y ,then with notations as before :

(1) : 4 (0n) = 04 ;

(@) : (00 ~ 04 .

Proof
It follows from the result of M. Chamarie cited above that :

Qrap(A) = Q¥=p(A) = AR,

where p = PN R. Therefore, +(0,) is a subsheaf of 05\"") and all their stalks are
isomorphic , whence 4+(0y) = 0{"). Similarly, 0, is 2 subsheaf of i*(0{"™) and
all their stalks are isomorphic, finishing the proof.
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3 : CARTIER AND WEIL DIVISORS OF MAXIMAL ORDERS

In this section we will introduce Cartier and Weil divisors associated to a
maximal R-order A and study their relation. In the third subsection we will present
a ringtheoretical interpretation of some cohomology pointed sets which appear in
this study.

(1) : CARTIER DIVISORS :

a. :+ Cartier divisors on noncommutative schemes

Throughout this section, A will be a maximal R-order in a central simple K-
algebra ¥. We will consider the following two sheaves of not necessarely’ Abelian
groups.

A : The sheaf of units , 4" , which is defined in the obvious way , L.e.
IV, U™ = U@V, ul")) for every open set V of ¥ and restriction morphisms
are inclusions. It is straightforward to check that %{™ is indeed a sheaf.

B : The sheaf of normalizing elements , .NX"”) , which is defined by :
IV, NN = NOV,00) = {g € = : T(V,00)).q = ¢T(V,00))} and

restriction morphisms are inclusions.
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In order to check that ¥ 1(\'“’) is a sheaf , we need the following technical result

Lemma 3.1 : Let A be a maximal R-order and let L(¢6) C L(r) be two
multiplicatively closed filters of ideals of A and g € N(Q,(A)) then ¢ € N(Q.(A)).

Proof

Passing from ¢ (resp. 7) to o! (resp. ¥) as defined in the remarks 2.2 and 2.4
‘we may suppose that the filters of left ideals L(a’) C L{r") are both idempotent. -

By a result of Chamarie’s (proof of lemme 4.2.2) we know that the localization
maps @,:(.) and @Q,(.) induce groupepimorphisms :

Qoi() : D(8) = D(Qx(4))
@x() : D(A) — D(Q,(4))

Throughout we will use the notation described in 2.4 .

Therefore, if ¢ € N(Q,(A)) then there exists a divisorial A-ideal M such that
Qo(M) = Q4(A).g, , s0 it will be sufficient to prove that Q,(M) = @,(A).q . Let
z € @,(M) then there exists an ideal I € L3(r) such that Ix C M C Q.(M) =
Qc(A).q. Clearly, q being a normalizing element of the Goldie ring Q,(A), q is
invertible in ¥ whence : I.2.g7" C @s(A) C Q,(A),i.e.z.qg' € Q,(A) and thus
T € Qr(A)q

Conversely, if ¢ € @-(A) then 1.z C A for some ideal I € L2(r) whence
Izg C Aq C Q.(M) C @,(M) finishing the proof.

Proposition 3.2 : N&"c) is a sheaf of groups and the stalk of N X’“’) at a
point P equals N(@x~p{A)).

Proof :In view of the foregoing lemma , .Nf\"c) is a presheaf which is
clearly separated (since all restriction morphisms are inclusions).Therefore we are
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left to prove the gluing property. So, let {U;;2 € I} be an open covering of U
and let ¢ € T'(U;, NXM)) for every ¢ € I. Then, ¢.T'(V,0,) = ¢.(NT(U;, O4)) ==
N(g.T(U;, 0p)) = N(I(Us, Or)-q) = I'(V, Op).g whence g € T(V, O).

Finally, let us calculate the stalk of Nf\m) at a point P. Clearly, (N{*p C
N{Qa-p(A)) by the foregoing lemma. Conversely, let ¢ € N(Qa—p(4)) , then
there exists a divisorial A-ideal M such that QA p(M) == Qs—p(A).g. Therefore,
(Oa)p = Qa—p(A).g and likewise (Opr-1)p = Qa—p(A).g~!. Choose a neigh-
borhood V of P such that ¢ € T'(V,0p) and ¢g* € I(V,Op-1). Then,
g~ .T(V,04).g C ¢ 1.I(V, Opr) C IV, Op) whence I'(V, 04).¢ C ¢.T(V, O4) and
likewise .I'(V', Ox) C TV, Os).gyielding that g € I'(V, Nj(‘"c)), finishing the proof.

If R is a commutative Krull domain, Ng is of course the constant sheaf with
sections K , the nonzero elements of the field of fractions K of R. If A is not
commutative , N ,(\"c) is not necessarely constant as the following example shows :

Example 3.3 : Let A =C[X, —] where - denotes the complex conjugation
. Then A is a p.i. Dedekind ring with center R[X?2]. In [79] it is proved that
{z* + c;¢ > 0} is precisely the set of those prime ideals of R[X?] such that the
valuation extends to a valuation in@(X, --). This implies that for the corresponding
prime ideals of A , (N ("c))p = C(X,--). Now, suppose N} (n) wwere constant , then
N(A) =C(X,—) . Combining results of [38] and [39] this would entail that every
localization at a prime ideal is a valuationring, a contradiction .

Later on we will show that &9 is not 2 constant sheaf unless all maximal
R-orders in ¥ are conjugated.

Clearly, u"“) is a normal subsheaf of N (ne) , so we can form its quotient

sheaf C{™ = N{™) /U™ which is a sheaf of abelian {!) groups because for any
maximal R-order A, D(A) is abelian so [N(A), N(A)] C U(A) and this entails that
[N&nc) N(nc)] u(m:)

In analogy with the commutative case, we define :
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Definition 3.4 : A Cartier divisor on Y is a global section of the sheaf
C,(\'""). Thinking of the properties of quotient sheaves, one sees that a Cartier divisor
on Y can be described by giving an open cover {U;;4 € I} of Y and for every i € I
an element n; € I'{U;, .NX"’)) such that for all i,jinI: n,-‘.n;'l eTU:NT;, Uf{‘c)).

A Cartier divisor is said to be principal if it is in the image of the natural
map I(X, N - 1(x, ¢,

Two Cartier divisors are linearly equivalent if their quotient (which is defined
locally) is principal. The abelian (!) group of Cartier divisor classes on Y will be
denoted by CaCI(Y), the Cartier classgroup of Y.

Thus CaCl(Y) is determined by the exact sequence :
I(X, N7) - T(X, ) — caci(y) — 1

In a similar manner one can define the Cartier classgroup of an open subvariety
Uof Y, CaCl(U), by the following sequence :

(v, ¥ | U) - oV, | U) - CeCliU) = 1

In case R is commutative , CaCl{U) is nothing but the Picardgroup of the open
subvariety U , cfr. e.g. [28] .

We will now briefly discuss the cohomological and functorial properties of
these CaCl(U). Before relating the Cartier classgroup to cohomology let us extend
some wellknown definitions to sheaves of not necessarely Abelian groups.

For proofs and more details on non-Abelian cohomology we refer the reader
to [25] and [52].

Let § be a sheaf of groups on a topological space Y and let U = {U;;4 & I} be
an open covering of Y. A 1-cocycle for ¥ with values in § is a family {g;;;4,5 € I}
, 945 € T(U; N U;, ) such that for every triple ¢,5,k € I :

(9:5 1U: 0 U; N U (gje | Us NU; N U) = (g | Us N U3 N T).
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Two cocycles g and ¢' are cohomologous if there is a family {hiyt € I} with.h; €
I'(U;, §) such that :

0 = (he | UsNUj).955.(h; | U; N U;) 2.

This is easily checked to be an equivalence relation and the set of cohomology
classes is written H'(Ux,§). It is a pointed set with a distinguished element
{9:j:%,7 € I where g;; = 1 for all i and j }. The pointed set H(X, §) is then
defined to be limH'(Ux, §) where the direct limit is taken over all open coverings
of Y . The main result in this setting is :

Proposition 3.5 :[25,52] : To any exact sequence of sheaves of groups
1— G1 -+ G — Gn — 1 there is associated an exact sequence of pointed sets

1 I(X, §1) » I(X, §) - I{X, Gn) —

- H'(X, §1) » H'(X, §) » H'(X, G)

Applying this result to the exact sequence of sheaves of groupes:
1 U o N o e 51 it is straightforward to deduce the following

Proposition 3.6 :If A is a maximal R-order , then :
(a) : 1 CaClfY) — BY(X, UL - B (x, N9
{(b) : If U is an open set of Y , then :

1 CaClU) — BY(V, UL | U) - B\, N9 | 1),

If R is commutative , CaCl(Y) = Pic(R) . Now, if A is a maximal R-order we
can define Pic(A) to be the quotient group of the group of invertible A-ideals by
the subgroup op those invertible A-ideals which are generated by a normalizing
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element. Pic(A) is ,of course, an Abelian group. In order to relate Pic(4) to CaCl(Y)
we have to impose a technical condition on A :

Definition 3.7 : A maximal R-order A is said to be locally weak-factorial
iff Pic(Qa—p(A)) = 1 for every P € Spec(A) .

Proposition 3.8 : If A is 2 locally weak-factorial maximal R-order , then
Pic(A) = CaCl(Y) .

Proof : Let M be an invertible A-ideal , then Qs—p(M) is an invertible
Qa—p(A)-ideal for every P € Y . A being locally weak-factorial this entails that
Qr—pr(M) = Qu_p(A).np for some np € N{(Qa—p(A)). As in the proof of Prop.
3.2 one can lift these equalities to a neighborhood Vp of P and it is clear that
{(Vp,np)} determines a Cartier divisor on Y.Thus, we have a well defined map
from I(A), the group of invertible A-ideals , to Cart(Y) , the group of all Cartier
divisors on Y , which is readily checked to be a groupmorphism. Furthermore ,
the induced morphlsm Pic(A) — CaCI(Y) is monomorphie. Let us check that it is
also epimorphic.

If {(Vi,n:)} determines a Cartier divisor on Y , then we can find a finite
number among the V; , say {Vi,...,V;,} such that ¥ = U,_IV {because Y is
quasi-compact). Now, if ¥; = X(I;) , then @y, (Pir*.*P, Tk %) = Qr.(A).n; for
every i . Thus we can find a divisorial A-ideal M such that for everyi =1,

» 0t Qr,(M) = @r.(A).n; and furthermore : T'(V;, Ong) == I(V;, Op).m; for every
t€{l,..,n}

l'i‘i.nal.l‘y, we have to check that M is invertible. Consider éM-x ; then in
every stalk one obtains : Qr~p(M™1).Qs p(M ) = Qa~p(A) whence M—1. M =
NQA-pP(M.M™) = Qr-p(M)Qs_p(M~) = NQs_p(A) = A finishing the
proof.
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This is probably the proper place to state some questions about the splitting
of prime ideals in maximal order rings. If Kdim(A) = 1 (i.e. if A is a Dedekind
prime p.i. ring), it is well known that there are no prime ideals of the center
which split up in the ring, i.e. A is so called Zariski-central cfr. [85]. For arbitrary
maximal order , it is known [13] that height one prime ideals satisfy the unique-
lying-over property with respect to the center (A may therefore be called ’divisorial
Zariski central’) but in general A is not Zariski central. The first example of such
a situation was constructed by M. Ramras [64]. He gives a maximal order over a
regular local ring of global dimension 2 such that there are exactly two maximal

ideals lying over the central radical.

First, we will present another method for constructing split- examples. The
remarkable (?) thing about this class of examples is that the problem reduces
entirely to commutative field-theory. Let A be any maximal order and suppose that
P € Spec(A) lies uniquely over its center C (it follows from [13] that this property
is equivalent with : C{P) satisfies the left and right Ore- conditions). It is rather
easy to verify that the fiber of the extension A — A[t] in P equals Spec(Q(A/P)[t]
whereas the central fiber in p = PNC equals Spec(Q(C/p)[t]. Therefore, the fiber in
P does not split up over its center if and only if Z(Q(A/P)) is 2 purely inseparable
field extension of Q(C/p). Split-examples are now easily constructed :

Take A =C[X,~] and P = (X) , then A/P =C and C/p = R. Let f(t) be
an irreducible polynomial over R which splits up overC , e.g. £2+1 = (£ +1).(t—1)
, then (X, £+-4) and (X, t--4) are two prime ideals of A[¢] which lie over the central
prime (X?2,# + 1).

QUESTION A : If A is 2 maximal order with center C and let p € Spec(C).
Are there only a finite number of prime ideals of A lying over p ?

QUESTION B : If A is a maximal order , Py, P, € Spec(A) such that P,nC =
P, N C. Under which conditions on A does this imply that pid(A/P;) = pid(A/P;)
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It is quite easy to construct counterexamples to question B :
Let A be a divisorial R-ideal which is not invertible for some commutative
Krull domain R and comnsider the maximal R-order :

R R A
AzEndR(REBRQ)A)z(R R A
A1 A1 R

and take a prime ideal P of R such that A.A~! C P, then it is clear that :

P P A
P=|p P 4
-1 A1 R

R kR A
PB=| R R A)
V-t e

are prime ideals of A lying over P and furthermore :

pi.d.(A/P) = 2;pid(A/Ps) = 1

Let us now turn to the functorial properties. Let A be a maximal R-order in
a central simple K-algebra ¥ and let I' be a maximal S-order in a central simple
L-algebra ©. Now, suppose that :

¢:A-T

is a monomorphic ringextension in the sense of C. Procesi , then it follows that
#(R) C S and that ¢ can be extended to a ringmorphism :

$:X >0
From [62] we retain that :

ig : Spec(l) — Spec(A);i4(P) = ¢~(P)
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is a continuous morphism. Furthermore, it follows from [90] that there is a mor-
phism of ringed spaces :

(24, 4) : (Spece(T), O{J"i) — (Spec(A), Osz'

This means that A : OF — (ig)«(0¥) is a morphism of sheaves of rings over
Spec(A). So, in particular we have for any open set U of Spec(A) the following
commutative diagram :

| ‘ 1
r — T@Gg'(U), 0F)

where the horizontal morphisms are the restrictionmorphisms which are central
extensions .

These facts entail that A(U) is a ringextension in the sense of Procesi and of
course we have that A(U) = & | I'(U, OY). Furthermore, A induces a morphism
between the sheaves of groups :

A UL - (g)e(ufr?
and ® induces a morphism between the sheaves of groups :
®: NED s (5)0 (M)

Combining all these facts it is fairly easy to verify that for every open set U of
Spec(A) , there is a canonical groupmorphism :

CaClU) — CaCli;*(U))
Therefore, in particular we obtain a groupmorphism :

¢ : CaCl(A) — CaCl(T)
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b. : Cartier divisors on central schemes

Let Op denote the usual structure sheaf of the maximal R-order A on X =
Spec(R). Then, clearly one can define :

A : The sheaf of units ; O} in the obvious way , i.e.
I(V,03) = U(T(V, 0p))

for every open subvariety V' of X = Spec(R) and restriction morphisms are
inclusions.

B : The sheaf of normalizing elements , N, , which is defined by :
T'(V, Ma) = N(T(V, Oh))

and restriction morphisms are inclusions. As above one can prove that N, is
actually a sheaf.

- Furthermore, in view of Prop. 2.5 it is now quite easy to verify :

Proposition 3.9 :If Ais a maximal R-order in a central simple K-algebra
¥ , then with notations as before :

(1) :90(03) = U ;4" (@) = 0}

(2) = io(Ma) = N 5 ° (V) = Wy

Similarly, one can define the sheaf of Cartier divisors of A on X = Spec(R)
to be the quotient sheaf :
Ca= Na/Og
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and the Cartier classgroup of an open subvariety ¥V of X = Spec(R) CaCl (V)
will be defined by the exact sequence below :

TV, Ny | V)= T(V,Ca | V) = CaCl (V) — 1
and again it is rather trivial to verify :
Proposition 3.10 :If A is a maximal R-order in 2 central simple K -algebra
¥ , then with notations as before we have :

(1) s e(Ca) = ) 5 47(C) = a
(2) : CaCl (V)= C’a.O'l(z"‘(V)) for every open subvariety ¥ of Spec(R).

These facts will enable us to restrict attention to the central schemes which
are usually easier to handle.
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(2) : WEIL DIVISORS :

Having defined what Cartier divisors are , let us now look at Weil divisors.
Again we will introduce them first on the noncommutative schemes and afterwards
we will show that it is enough to study them on the central schemes.

a : Weil divisors on noncommutative schemes

If U is an open set of ¥ = Spec(A) , then we will denote by X)(U) the set
X (1)(A) NU, ie. the minimal nonzero prime ideals of A lying inside U and with
Div(U) we_denote the free Abelian group generated by the set X W(U). E.g. in
the case that U =Y , then Div(U) is nothing but D(A) , the group of twosided
divisorial A- ideals.

The assignment U — Div(U) defines a flabby sheaf (i.e. a sheaf such that all
the restrictionmorphisms are epimorphic) on ¥ which we will denote in the sequel
by Df\m) . There is a canonical sheafmorphism :

é: Ngnc) N Ds\nc)

defined in the following way : if 5 € T(X(I), N{*9) , then Q;(A).n is a divisorial
Q1(A)-ideal. Using the notation of 2.4 and lemme 4.2.2 of [13] we know that :

Q1(-—) : D(A) — D(Qr(4))

is epimorphic with kernel the group generated by X' W) N Lier) it follows that
Q1(A).n = Qp(Py)*r*..*@ (P where P; € X()(A) N X (I). Clearly , the maps :

ér : DX (D), N7 - T (D), D)
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such that ¢r(n) = 3 k;.P; are well defined groupmorphisms. compatible with
the restriction morphisms , i.e. if X(J) ¢ X(I), then the diagram below is a

commutative one :

IO, ) = T,
{ i
T¥ ()N - 1), 057
where the vertical morphism are the restriction morphisms.
Lemma 3.11 : If Ais a maximal R-order in X , then the following sequence
of sheaves on ¥ = Spec(A) equipped with the Zariski topology is exact :

1= ugnc) - NS\M) - DJ(\’W)

Proof
For every prime ideal P of A we have the natural map described above :

¢p : N(Qa-pP(A)) — D(Qr--P(A))
and it is straightforward to check that its kernel equals U(Qa—p(A)) , finishing

the proof.

Definition 3.12 : A Weil divisor on an open subscheme U of ¥ = Spec(A)
is an element of Div(U) and C{(U} , the classgroup of the open subscheme U , is
defined by the sequence :

1 -1, Ul | U) = T, X9 | U) - Div() - D) > 1
Of course, if U = Y , then CI{U) = Ci(A) , the Chamarie- or normalizing-

classgroup of the maximal R-order A , i.e. CU(A) is the quotient of D(A) by P(A)
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, the subgroup of those divisorial A-ideals which are generated by one element ,
which is then of course a normalizing element.

Having related the classgroup to Weil divisors and the Picardgroup to Cartier
divisors (at least whenever the Picardgroup coincides with the cohomological
Picardgroup) our next aim will be to find a relation between CYU) and CaCl(U)
for certain open sets U of ¥ = Spec(A). The diagram of sheaves of groups below
is exact and commutative :

1 — ugnc) — Ns\nc) — Cl(xnc) - 1

{ i !
1 — uknc) —y N&nc) — DS\'M)

where 1 : Cf\m) — DX’C) is the induced morphism. By taking sections on an open
subscheme U we obtain that the diagram below is a commutative and exact one
of groups :

1 - Ul - U, N = Cart(U) - CeCl) - 1

i { ! i)
1 = rE,uldy - N - Di(U) - CUU) - 1

where 8(U) : CaCi(U) — CYU) is the induced morphism. This morphism which
arises here from sheafmanipulation seems to have been overlooked even in the
commutative case for non-Noetherian Krull domains. In every proof known to the
author one uses the fact that ¥ = Spec(A) is a (locally) Noetherian space in order
to determine a Cartier divisor on an open su'bvanety UofY by a finite covering
which is necessary to determine $(U). It follows from the above argument that
this presents no real problem. But let us give another, more constructive and less
sheaftheoretic proof of this :
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Proposition 3.13 :If A is a maximal R-order in ¥ and if U is an open set
of Y = Spec(A) , then there is a natural monomorphism :

P(U) : Cart(U) — Div(U)
which induces a monomorphism :

8(U) : CaCl(U) — CHU)

Proof

Let a Cartier divisor on U be defined by the set {(Vz, n:)} where V; is an
open subset of U and n; € T(V;, N™). Note that for any ideal T of A , X M) -
(XW(A) 1 X(I)) is a finite set since I contains a normalizing (even a central)
element , say n and of course we have X (A.n) ¢ X (/) and furthermore, X()(A)--
(XW(A) N X (A.n)) is clearly a finite set. Therefore we can choose a finite number
among the V;’s , say Vi, ..., V& such that :

XOWNU = XDA) V) U... u(XDA) Vi)

Since a Cartier divisor depends only on X()(A) " U it is therefore determined by
{(Vi,n:);1 < i < k}. The proof proceeds now as in the Noetherian case , cfr. e.g.
Hartshorne [28].

The next proposition investigates when the monomorphism :
8(U) : CaCl(U) — CUU)

is actually an isomorphism. We say that A is locally factorial in an open subscheme
U of Y = Spec(A) if and only if CHQa—p(A)) = 1 for every P U.

Proposition 3.14 :If A is a2 maximal R-order in ¥ and if U is an open
subscheme of ¥ = Spec(A) , then :

8(U) : CaCl(U) ~ CIU)
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is an isomorphism if and only if A is locally factorial in U.

Proof

Suppose that A is locally factorial in U and let ), ;. P; € Div(U). f A =
P7**..*Pg*, then Qa—p(A) = Qa—p(A).n, for some n, € N(Qa—p(A)) for every
P € U. Similarly, @s-p(A™?) = Qa-p(A).n;'. Now,take a sufficiently small
neighborhood Vp of P such that n, € I'(Vp, o‘“)) and n;1 € I(Vp, 04<)) , then
it is fairly easy to verify that n, € T'(Vp, N ("c)) and therefore {(Vp,np)} defines a
Cartier divisor on U such that its image under 9(U) equals 3 n;.P;

Conversely, suppose that §(U) : CaCl(U) -+ {(U) is epimorphic , or equiv-
alently that 9(U) : Cart(U) - Div(U) is epimorphic. Let P € U and take 4 €
-D(@a—p(A)), then A = Qa—p(P1)™*...*@s—p(Pi)™ for some P; € XDA)NU.
Let {(Vi,n;)} determine a Cartier divisor on U such that its image under ¢(U)
equals Y ;. P;. If P € V; , then this implies that A == Q4—p(A).n; showing that
Cl{Q@a—p(A)) = 1, finishing the proof.

" Therefore, in particular , if A is locally factorial in ¥ = Spec(A) , then ClA) =
CeaCl(Y) and we obtain a cohomological interpretation of C'I(A). Unfortunately be-
ing locally factorial is a rather restrictive condition on A. Therefore, one would like
to extend the foregoing proposition to a larger class of rings, e.g. those for which
Pie(Qa—p(A)) == 1 for every P € Y. The next result presents a noncommutative
generalization of Danilov’s main tool :

Theorem 3.15 :If A is 2 maximal R-order in & and if Pie(Qa—p(A)) =1
for every P € Spec(A), then there exists a filtered family of open subsets {U;} of
Y = Spec(A) such that :

ClA) = lim CaCUU)
—_—
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Proof
For any divisorial A-ideal A; we will define the set :
U; = {P € Spec(A) : Qa—p(A;) is an invertible @a—p(A) -ideal 1
First, we claim that that U; is an open set in the Zariski- topology. For, if
Qa—p(4:).Qa-p(A71) = Qa-p(A), then there exist elements f; € Qa—p(4;) and
g; € @a—p(A7") such that 3° f;.9; = 1.

All these elements live on a sufficiently small neighborbood ¥p of P. Now, let
P, € Vp , then Qa—p,(4:). Q2 p(A71) is an ideal of @A—p,(A) Which contains 1
, therefore P; € U; , finishing the proof of our claim.

Furthermore, for every divisorial A-ideal A; , X W)(A) C U; , yielding that
Div(U;) = D(A). Also, it follows from lemma 2.1 that I'(Us;, Uf{w)) = U(A) and
T(U;, N")) = N(A). Therefore, CL(U;) = CI(A) for every U; , so there is a canoni-
cal monomorphism by Prop.3.14 , CaC¥(U;) — CI(A) yielding a monomorphism

im CaClU;) — Cl(A)
‘We are left to check that this map is epimorphic and in order to do this, it is
clearly sufficient to check that the morphism :

lim Cart(U;) —» D(A)

sy
is surjective. Therefore, let A; € D(A) , then by the definition Qa-p(A;) is inver-
tible for every P; € U;. Since we have assumed that Pic(@x—p(A)) = 1, this means
that Qa—p(A;) = Qa-p(A).n, for some normalizing element np € N {Qa-p(A)).

Again, for every P one can extend this equality to some open neighborhood Vp of
P and {(Vp,np)} describes an element of Cart(U;) , finishing the proof.

In the next section we will show how one may weaken the condition :

Pic(Qx-p(A)) =1

for all P € Spec(A). Instead of taking the direct limit over the special set of open
sets U; , it is clear that :

Cl(A) = lim CaCi(U)
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where the direct limit is taken over all open subschemes U of Y = Spec(A) such
that X((A) C U.

These results provide us with a cohomological interpretation of the classgroup.
‘We will now investigate the functorial properties of Weil divisors.

Let A be a maximal R-order in a central simple K-algebra ¥ and let I’ be a
maximal S-order in a central simple L-algebra 8. Now, suppose that :

¢:A—-T

is a ringextension in the sense of C. Procesi , then it follows that ¢(R) C S and
that ¢ can be extended to a ringmorphism :

$:¥ -0

Therefore,
ig : Spec(I') — Spec(A)

is a continuous morphism. Furthermore, we impose that ¢ : A — I' satisfies pas
d’éclatement , i.e.

k(1 (P) < 1
if A#(P) = 1. This entails that there is a morphism of sheaves of groups :
DX~ (i) (01"

which is defined in the following way. Let Y1(J) be a typical open set of Spee(T)
and let i3 (Yp(J)) = Ya() , then there is a ringmorphism :

I(¥a(), 05f9) = Q1{4) - N(¥r(4), 0fF) = Qu(1)

(using the notation of remark 2.2) which satisfies pas d’éclatement. Therefore ,
this morphism induces a natural morphism on the divisors (cfr. part I) and we
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obtain :

D(Q1(4)) - D(Q.(I)
1 !

rEm oY) - rEe), o)
and the composite bottom morphism yields the desired morphism of sheaves of
groups over Spec(A) .
Moreover, this morphism makes the following exact diagram of sheaves of
groups over Spec(A) into a commutative one :

1 — ugnc) — N&"c) — wa)
i ! i

1 = (i) (UP) = (i) (NI = (5g)e (D)

and consequently there is for every open set U of Spec(A) a canonical
groupmorphism :
ClU) — Ci(iz (V)

Therefore, in particular we obtain a groupmorphism :
Cl(A) - CcUI)

if 'we take U = Spec(A).
{b) : Weil divisors on the central schemes
Again, let 04 denote the usual structure sheaf of the maximal R-order A on

X == Spec(R). Then, one may define a sheaf D) of groups on Spec(R) by taking
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for its sections on an open subvariety U of X = Spec(R) the free Abelian group
generated by the prime ideals of X (*)(A) lying over the prime ideals in XD(R)NU.

The classgroup of A on the open subvariety U of X = Spec(R) will then be
defined by the exact sequence :

1 T(U,04 |U) = TU, Na | U) > T(U, P4 | U) = Cle(U) = 1
In combination with the results on Cartier divisors on the central schemes it is

now easy to prove :

Proposition 3.18 :If A is a maximal R-order in a central simple K-algebra
3, then with notations as before we have :

(1) : ix(Da) = DL ;5" (05)) = Da

(2) : CL(U) = Ci{i~(U)) for every open subvariety U of X = Spec(R).
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(3) : RINGTHEORETICAL INTERPRETATION :

The cohological interpretation of the normalizing classgroup as presented in
the foregoing section has the advantadge that one can now apply cohomology-
theory (i.e. mainly a lot of exact sequences) to the study of the behaviour of this
classgroup under ringextensions.

On the other hand, this approach has two major disadvantadges :

(a) : Translating our questions in terms of cohomology pointed sets, one seems
to lose grip on what actually goes on.

{b) : We have not been able to prove for a sufficienctly large class of maximal
orders {e.g. the Noetherian ones) that they are locally weak-factorial.

In this section we avoid both problems for maximal orders by :

(a} : presenting a ringtheoretical interpretation of the cohomology pointed
sets lim H'(U, 0}) and lim H(U, Mp);

(b) : extending Theorem 3.15 .

The main result of this section is :

Theorem 3.17 :If A is 2 maximal order over a Krull domain R , then the
following sequence is exact :

1 CUh) — Bm(H(U, 0})) - lim(H'(U, 44)) — 1
where the direct limit is taken over all open sets U of Spec(R) such that X(U(R) ¢
U.

The proof follows immediatly from the three propositions below. Let us first
extend some classical definitions to orders over Krull domains.

One of the main obstacles in 2 noncommutative normalization- theory is
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presented by the fact that maximal orders are (usually) not unique. Therefore
one could ask whether it is possible to construct all maximal orders from a given
one.

Clearly, conjugation defines an equivalence relation on the set of maximal
orders and the set of orders conjugated to A is of course described by the set
£*/N(A). By tg(Z) we denote the set of equivalence classes of maximal orders
over R in I. (tg(X)) is said to be the iype-number of I over R.

Now, we will extend some classical results of Roggenkamp [71] on genera of
lattices to the case of orders over Krull domains.

So, A will be an R-order in some central simple K- algebra £. If M and N
are two torsion free left A- modules which are divisorial R-lattices. Then M and
N are said to lie in the same genus , notation M v N , if and only if M, >~ N,
as left A,-modules for every p € X )(R). We will write :

G(M) = {N € A—mod a divisorial R- lattice : N vV M}

and with g(M) we will denote the pointed set of left A- module isomorphism classes
in G(M) (the distinguished element of g(M) will of course be the class of M).

‘We will now relate G(M) to idéles in X. Recall that an idéle in ¥ is a family
{zp;» € XW(R)} where the z, € T and for all but a finite number of p we have
z, = 1.

Lemma 3.18 : There is a one-to-one correspondence between the elements
in (M) and the idéles in X.

Proof

Let MVA , then we may assume (up to isomorphism) that .M = L. Because
both M and A are R-lattices this implies that M, = A, for allmost all p € X(V(R).
For the finitely many exceptions we have My ~ Ay ie. My = Ap.ap for some
element a, € X. Taking a, = 1 if Mp = A, we can define the map :

P : G(M) — iddlesp(X)
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by : (M) = {e,;p € X ((R)} . First , we claim that this map is injective , for
, if (M) = p(M’) , then M = NM, = NM’, = M’. Furthermore, ¢ is also
surjective , for , given an idélein %, {a,;p € X (1)(R)} , we will define M, == A,.a,.
Let A’ = N{Ap;ap, = 1} , then N = A’N M, N ... " My, where {p1,...,pr} are
the finitely many height one primes for which the corresponding ap £ 1 ,is a left
A-module which is a divisorial R-lattice such that N, = M, for all p € X)(R)
since B, is a flat R-module and hence tensoring with R, commutes with finite
intersections.

Definition 3.19 : Two iddles in £ , {ap;p € XO(R)} and {by;p €
X (W(R)} are said to be equivalent if and only if :

¥ ({ap;p € XO(R)}) = 47 ({850 € XV (B

Hence there is a one-to-one correspondence between elements in h(A) and
equivalence classes of idéles in ¥.

Proposition 3.20 :If A is 2 maximal order over a Krull domain R , then
the following sequence of pointed sets is exact :

1— Cl(A) = B{A) > tr(Z) > 1

Proof
The map of pointed sets :

¢ : CI(A) > h(h)

is of course given by sending the class [I] of a divisorial A~ideal I to the isomorphism
< I > of I in h(A). This map is a monomorphism of pointed sets , for , if < I >
=< A > then one can extend the left A-module isomorphism I — A to a X-linear
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isomorphisxﬁ ¥ — 3 showing that I = A.n. Because A is 3 maximal order and
I is a twosided divisorial A-ideal this entails that » is a normalizing element , so
[I] =1 ir CI(A). Further, the map of pointed sets :

P : h{A) = tr(%)

is given by sending an isomorphism class << A > of a left divisorial A-ideal A to
the conjugacy-class of :

O0,(A)={zeX: Az C A}

in £p(X). Let us first check that this map is well-defined. f < A >=< B >
then by an argument as above , A = B.z for some z € ©*.This entails that
z71.0,{B).z C O,(A). Finally, because O, (A) and O,(B) are both maximal orders,
this inclusion is an equality and therefore they are conjugated.

The sequence is exact in &(A). For, if O,(L) = z1.A.z for some z € &" then
, because A = 2.0,(L).27* C O,(L.z™) and A is 2 maximal order , O,(L.z7!) =
A showing that Lz™' is a twosided divisorial A-ideal. Therefore, < L >=<
Lz~' > and Ker(y) C I'm($) and the inverse inclusion is of course trivial since
2 does not depend upon the choice of the representative.

Finally, we have to check that ¢ is epimorphic. So, let ' be a representative of
a class in tp(X). Then it is fairly easy to check {cfr. e.g. Fossum [21]) that (A :, I)
is a divisorial R-lattice which is a left A-ideal and a right I'-ideal , entailing that
Or((A :r T)) == T because I' is 2 maximal order and clearly I' C O,((A :, ')},
finishing the proof of the proposition.

Note that the sequence above is merely an exact sequence of pointed sets. So,
in general one cannot conclude from this sequence that when all the sets occuring
are finite that the number of isomorphism classes of left A-ideals is the product of
the number of elements of Cl(A) with the number of conjugacy-classes of maximal
orders. The main problem is that Cl{A) does depend upon the choice of A. In the
table below we will present some examples of such situations. We take X to be a
quaternion-algebra over @ and A a maximal Z-order in ¥ with prime discriminant
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p. h will denote the class- number (i.e. the number of elements of A(A)) , ¢ will
be the type-number (i.e. the number of elements of Ty (X)) and hy (resp. hy) will
denote the number of conjugacy classes of maximal orders having CU{T') =~ 1 (resp.
CiTy~Z/2.%) :

&
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31

37
41

43
47
53
59
61

67
71

73
79
83
89
97
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‘We will now give 2 cohomological interpretation of the pointed sets A(A) and
tr(X)

Proposition 3.21 :If A is a maximal order over a Krull domain R then :
h(A) =~ lim HY, (U,0}|U)
—_—

where the direct limit is takenr over all open subvarieties U of Spec{R) such that
XW(R)y CU.

Proof’
Let L be a left A-ideal which is a divisorial R-lattice , then L™! == (L:, A) is
a right A-ideal which is a divisorial R-lattice. By O (resp. Op-1) we will denote
the structure sheaf of L (resp. of L™1) over Spec(R). For any p € X(W(R) , it is
clear that :
(OL)p = Lp = Ay.ap

because A, is both a left- and right-principal ideal ring. Similarly, one obtains :
(Op-1)p = (L") = “;I'Ap

Now, take a neighborhood V;, of p such that a, € I'(V,, Oz) and a;* € T(V,, Oz-1)
then it is fairly easy to check that :

(OL) | Vo =2 (Oa | V3)-0p

If we define U = U{Vp;p € XW(R)}, then {(V,,a,)} defines an element of
I'(U,£7/0}) where £° denotes the constant sheaf over Spec(R) with sections ",
Writing out the long exact (Zariski}-cohomology sequence associated to the exact
sequenee :

120,55 —2/0y—1

one finds :
I(U,27) > T(U,°/0}) — HY,.(U,04) — 1
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In this way,we associate to every left divisorial A- ideal L an element of lim
HY, (U, 0)}). It follows from the exact sequence above that the elements associated
with L and L’ coincide if and only if L = I, z for some z € T(U,%") = ¥".

Conversely, with every element of lim HY (U, 0,) we may associate in a
natural way an isomorphism class of left divisorial A-ideals by choosing an element
in I'(U, £*/0}) which generates it , say {(V,, a,)} and then defining the left Oy |
U-Ideal Oy | U locally by :

O | Vo = (0a | V;).0p

this yields a well defined sheaf and then taking its sections T'(U, 0y) we obtain a
left divisorial A- ideal because X W(R) < U , finishing the proof.

Proposition 3.22 :If A is a maximal order over a Krull domain R , then

tR(E) o hg HlZar(Ux N ' U)

where the direct limit is taken over all open subvarieties U of Spec(R) such that
XWO(R) cU.

Proof
Let T be any maximal R-order in X. With O(r.,s) (the conductor) we denote
the presheaf which assigns to an open set U of Spec(R) the sections :

I‘(U, O(I‘:,.A)) = {z € F(U, Or.z C P(U, OA)}

An easy computation shows that Op..s) is actually a sheaf of left Op-ideals
and right Op-ideals. Furthermore OTFI”-A) which is defined by its sections
R0, 532 ) = F{, G- is also a sheaf and a ieft Gp-ideal and a right
Or-ideal.

Now, let p be any height one prime ideal of R. Since both A, and I'p are
maximal orders over the discrete valuation ring R, , they are conjugated , i.e.
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8,1 .T'p.8p = A, for some element s, € ", We claim that there exists a neighbor-
hood ¥, of p such that :

7.0 | Vp)ap = Ox | V;

Both Or.,r) and 0{}1:' 5) 2re sheaves , so g, and s;l live on a sufficiently
small neighborhood V,, of p. Therefore, 8,.T'(V,,0s) C F(V,,,(O('fxl:m)) hence
TV, 005t C T(V, Otn) = TV, Ooa)™ C (spT(Vp, Op))~! =
T(Vp, On).s;! and similarly one obtains : I'(V,, Or:,4)) = 8p.I'(Vy, Or). Therefore,
our claim is proved.

Now, let U = U{V,;p € XM(R)} is an open set containing XV)(R) and
{(Vp,8p)} describes a section in I'(I7, £ /N,). Consider the exact sequence of
sheaves of pointed sets with respect to the Zariski topology :

| [P T > LU E'/NA -+ 1
Taking sections over U yields the following exact cohomology sequence :
1= N(8) = %" > DU, 5"/ M) - B, (U, Ny) ~ 1

Therefore, the section {(V}, 8,)} determines an element in H,, (U, Ni) (2nd so in
lim HY,, (U, Nj)) which is different from the distinguished element in H Yar(U, Ny)
if and only if T is not conjugated to A.

Conversely , let s € lim HY,, (U, M) and choose an open set U of Spec(R)
containing X V)(R) and an element s(U) € HY,, (U, Nx) which represents s. Using
the above exact sequence , 8(U) is determined by some section in T'(U, ="/ N,).
Such a section is given by a set of couples {(Uy, s;)} where U is an open cover of
U, s; € T(U;, £7) for every i and s7'.8; € I(U; N Uj, Na) forall4and 5. On U
we will now define the twisted sheaf of maximal orders Or | U by putting :

Or | Us = 8,.(0y | Uy).s7

. It is now quite easy to show that I' = I'(U, Or) is a2 maximal R-order in ¥ and
this finishes the proof.

153




4 : SOME APPLICATIONS

In this section we will give some applications of the theory developed above.
Using the cohomological interpretation of the type number we study the con-
jugation of maximal orders in matrixrings over locally factorial Krull domains.
In a second application we study maximal orders having a discrete normalizing
classgroup.

(1) : CONJUGATION OF MAXIMAL ORDERS :

Maury and Raynaud [50] asked the following question :

('P'rol')l"éme i2j : Let A be a maximal R-order in E. Is every other maximal
R-order in ¥ isomorphic to A (by an inner automorphism) ? If not; what can one
say about the isomorphism classes ?

In fact , in the original statement of the problem , ¥ is a skewfield. First,
we will present some counterexamples to the original question. The rest of this
section is devoted to the more general question when ¥ is an arbitrary central
simple algebra. Special attention is given at the case when £ = M,(K). It will
turn out that in this case , the isomorphism classes of maximal orders {resp. of
Azumaya-algebras) are closely related to module theoretic questions in R-mod.
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1. some counterexamples :

polynomial rings over skew fields :

If A be a skewfield of finite dimension over its center K then A[t] is a maximal
order over K [t]. Moreover, it is well known that every twosided ideal of A[t] is
generated by a central (hence normalizing) element , entailing that :

CUl(A[t) =ClAt) =1
Furthermore, E. Jespers and P. Wauters have shown in [33] that for any maximal

R-order A, Cl¢(A) =~ Ci°(A[t]), entailing that CI(Alt, s]) = 1. Therefore, it follows
from the exact sequence of pointed sets :

1 -» CYAL[L, s]) — h(A]E, 8]) = Ticps, o) (Alty 8]) — 1

that h(A[t,s]) = 1 if all maximal K¢, s]-orders in A(¢,8) were conjugated to
Alt, s]. So, in particular this would entail that every projective left ideal of Aft, 3]
would be free.

As is well known , Ojanguren and Sridharan have proved in [59] that for
evcery skewfield A there exists a projective non-free left A[t, s]-ideal, L . Clearly,
O,{L)} is then a maximal K [t, s]-order in A(t, s) which is not conjugated to Alt, s].

mazimal orders in quaternionalgebras :

As is clear from the table given in the previous section, maximal orders over
Z in quaternionalgebras over @ (with prime discriminant) ,yield another large class
of counterexamples to the original question of Maury and Raynaud.

In the rest of this chapter we will restrict attention to conjugation-problems
of maximal orders in matrixrings.
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2. conjugation in matrixrings :
njug

Recall that a Krull domain R is said to be locally factorial if R, is 2 unique
factorization domain for every p € Spec(R). In this part we aim to characterize
those locally factorial Krull domains R with field of fractions K such that all
maximal R- orders in M,(K) are conjugated and in general we will show how to
calculate the number of isomorphism classes.

By PGL,, we denote Aut(P%) , the automorphism scheme of the n-dimensional
projective space over R , i.e, PGL, is the sheafification of the presheaf which
assigns PGL,(I'(U, Or)) to an open set U of Spec(R). For more details, the reader
is referred to Milne [52].

Proposition 4.1 :If Ris a locally factorial Krull domain and if A = M, (R)
then HY, (U, Np) = HY, (U, PGL,) for every open set U of Spec(R).

Proof

If we assign to an open set U of Spec(R) the group GL.(I'(U,Or)).K" C
GL.(K) , then this defines a presheaf of groups on Spec{R). We will denote its
sheafification by GL, K *. Clearly, this sheaf is a subsheaf of Nj. First, we will
prove that all their stalks are isomorphic.

If p € Spec(R) and if £ € N(Mn(Rp)) , then M,(R,).2 = M,(A4) for some
divisorial R,-ideal A. Because R is a unique factorization domain , A = R, .k for
some k € K~ , yielding that £ € GL.(R,).k. Therefore, GL,. K" = Nj.

The following sequence of sheaves of groups is exact :

15K > GLy.K" — GLy/GLy N K" = PGL, —

where K is the constant sheaf with sections K~.
Taking sections over U yields the following long exact cohomology sequence :

1=T({U,K") - (U, Np) - (U, PGL,) — 1
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1 — B, (U, Na) = Hy, (U, PGL,) — 1

finishing the proof.

Corollary 4.2 : I R is a locally factorial Krull domain with field of
fractions K , then :

tr(Mn(K)) =~ lim HY, (U, PGLy)
-
where the direct limit is taken over all open sets U containing X ®)(R). -

Proof o )
Follows immediatly from proposition 3.22 and the foregoing proposition.

Let us now apply this result to some special classes of locally factorial Krull
domains.

{a) : Dedekind domains.

Proposition 4.3 : If R is a Dedekind domain, then all maximal R-orders
in M, (K) are conjugated if and only if the morphism :

(=) : Ci(R) —» CI{R)

sending [A] to [A]" is an epimorphism. More generally, the elements of Coker((—)")
are in one-to-one correspondence with the conjugacy-classes of maximal R-orders
in M,(K).
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Proof
By a sheaf version of the Skolem-Noether theorem, ¢fr e.g. Milne {52], the
following sequence of sheaves of groups is exact :

1— Op = GL, —» PGL, — 1
So, writing out the long exact cohomology sequence entails :
HY0 (X, 0R) = Hior(X,GLa) — H,, (X, PGLy) — H%,, (X, OF)

Now, because R is a Dedekind domain , it has Krull dimension one and hence
H%,,(U, O%) vanishes. Furthermore, by [52] we know that HY, (X,GL,) is the
set of isomorphism classes of projective rank n R-modules , a set which we will
denote by Proj,(R). By Steinitz’ result , cfr. e.g. [53] , any projective rank n
R-module is isomorphic to J; & ... @ J,, for some fractional R-ideals J; . Further,
HY, (X,0%) = Pice(R) = CUR) and 6§ : H,(X,0r) — HY%,(X,GL,) is
defined by sending [I] to [/ @ ... @ I] because § derives from the sheafmorphism
Og — GL, assigning locally the diagonal matrix diag(c) to a unit a. By Corollary
4.2 all maximal orders in M,(K) are conjugated if and only if § is epimorphic.
That is, for any fractional R-ideals Ji, ..., J,, , there exists a fractional R-ideal I
such that J1 @ ... P J. = I P ... P 1. Applying again Steinitz’ theorem we find :
J1..dy = I™ finishing the first part of the proof because every fractional R-ideal
J must have an n**-root.

As for the second part; the set of conjugacy classes of maximal orders in
M,(K) is in one-to-one correspondence with Coker(d). By Steinitz’ result two
projective rank » R-modules ;y @ ... @ I, and J1 @ ... @ Jn are isomorphic if
and only if Iy...J, = Jy...J, entailing that Coker(§) o~ Coker((—}"), finishing the
proof.

Remark 4.4 : F. Van Opystaeyen suggested the following independent
ringtheoretical proof of this result. Because M,{R) is an Azumaya algebra , all
maximal R-orders in M, (K) are Azumaya algebras , cfr. e.g. Reiner [67] or
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Roggenkamp [70]. Furthermore, the nataral morphism :
[-®rK]: Br(R) — Br(K)

is monomorphic whence any maximal R-order is of the form Endg(P) where P €
Proj,(R). Applying again the theorem of Steinitz to the condition Endg(P) =~
M,,(R) yields the same comdition on CI{(R).

Another interpretation of Proposition 4.3 is :

Corollary 4.5 :If B is a Dedekind domain with field of fractions K, then
the following sequence of Abelian groups is exact :

1 — CUR)n — CUR) — CUR) —» tp(Mn(K)) — 1

where the morphism CI{R) — CIl(R) is given by sending a class {I] to [I"].

It is now quite easy to construct counterexamples to the question of Maury
and Raynaud in the case of maximal orders in matrixrings :

Example 4.8 :Let R = %[/—<5], then C{(R) == Z/2.7Z and as a generator
we may take the nonprincipal ideal I = (2,1 ++/=5). Now, let A = Endr(R P I)
, then :

A~( Z[v-5] @J+¢ED
T2, 1+ V=) Z[/=E)

and it is easy to verify that A cannot be conjugated to Maz(Z[v—5)].

This example presents also a counterexample to the following question : in
the commutative case we know that the fixed ring of a Krull domain under a
finite group of automorphisms is again a Krull domain , does a similar result holds
also for maximal orders over Krull domains ? Let ¢ be the natural non-trivial
automorphism on Q(v/~5) and by ® we denote its extension to Mg(Q(\/:‘S) It
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is easy to verify that ¢(J) = I yielding that @ is also an automorphism of A.
Calculating the fixed ring yields :

Aq,N(z 2.,z)
T\Z Z

and this ring is definitely not a maximal order. It would be interesting to know
whether the fixed ring of a maximal order over a Krull domain is always a tame
order.

More generally, for any ring of integers B in an algebraic number field K
all maximal R-orders in M,(K) are conjugated if and only if CI(R) contains no
n-torsion. This follows immediatly from the fact that CI(R) is finite , so injectivity
of (—)" implies surjectivity and conversely.

Example 4.7 : The exact sequence of corollary 4.5 makes it possible to
compute the type number in many cases. In the examples below we calculate

T /=) (Ma@(V-m)))
in function of n and m :
m == CUZ[V/-m] = n=2 n=3
5 2 1
23 3
29 8 2 3

The asymptotical classgroup of a maximal order A , Cl(A) , which was
introduced by the author in [41] is defined in the following way :
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Let {M,(A);n € IN} be filtered by :
M,(A) < M,(A) if ne=m
and the corresponding natural morphisms :
Mp(A) — Mo (M,(A))

Clearly, all these ringextensions satisfy pas d’éclatement and hence there is a

filtered family :
{CUM,.(A));n € N}

The asymptotical classgroup is now defined to be :
Clo(A) =~ lim CI(M,(A))

For a more K -theoretic approach to this asymptotical classgroup the reader is
referred to [41].

Proposition 4.8 :If R is a commutative Dedekind domain , then :

Cloo(R) =~ CU(R) ®%Q

Proof
‘We have seen earlier that :

Ker(CYR) — CIM,(R)))

consists of n-torsion elements.
Conversely, if [I] is an n-torsion element in CI(R) then :

1. 0I~I"®.®R~R®..OR

yielding that M,,(I) is generated by a normalizing element. Therefore, the kernel
of the epimorphic morphism :

CUR) - Cloo(R)

consists precisely of the torsion elements, finishing the proof..
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{b) : locally factorial Krull domains.

‘We will need the following two lemmas :

Lemma 4.9 :If Ris alocally factorial Krull domain , then H%,,(U, 0f) =
1 for every open set U in the Zariski- topology.

Proof
Because R is locally factorial , Weil and Cartier divisors coincide, entailing
exactuess of the following sequence :

120p—=K" -Dp—1

where Dg is the sheaf of Weil divisors on Spec(R) and exactness in the Zariski
topology. Because K~ is a constant sheaf and Dy is a flabby sheaf their highér
cohomology- groups vanish. Writing out the long exact cohomology sequence then
entails that H%,, (U, Og) = 1.

Lemma 4.10 :If R is any Krull domain, then lim HY,, (U, GL,), where
the direct limit is taken over all open sets U containing X()(R) , is the set of
isomorphism classes of reflexive B-modules which are free of rank » in any height
one prime ideal of B.We will denote this set of isomorphism classes by Ref,(R).

The proof of this lemma is classical ,cfr. e.g. [52] p.134 .

Theorem 4.11 : I R is a locally factorial Krull domain then all maximal
orders in M, (K) are conjugated if and only if the map from CY(R) to Ref,(R)
sending [I] to [I @ ... @ I] is surjective,
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Proof
Consider the following exact sequence :

lim H'(U, Of) — lim H*(U,GL,) — lim HYU,PGL,) — lim H*(U, 0%)
-— —_— —

where the direct limits are taken over all open sets U in the Zariski topology
containing zer. By lemma 4.9 we know that lim H2(U,Of) = 1. Further, b
Danilov’s theorem cfr. e.g. [17] (or lemma d.2) , @HI(U, Or) = CYR) and
lim H(U, GLy) = Refa(R).

These facts imply that lim HY(U, PGL,) = 1 if and only if the map from
CUR) to Ref,(R) sending [{] to [I & ... @ I] is epimorphic .

Remark 4.12 : Of course, the condition for all maximal orders to be
conjugated is a very stringent one. E.g. if R is a unique factorization domain,
then all maximal orders in M,(K) are conjugated if and only if every reflexive
R-module (e.g. every projective R-module) is free. It is already clear from this
remark that there will be a strong connection between conjugateness of maximal
orders in matrixrings and questions like the Bass- Quillen conjecture.

As a corollary of the foregoing result , we aim to recover the following classical
result which was first proved by M. Ramras [64] :

Proposition 4.13 : If B is a regular local ring of gldim(R) < 2, then all
maximal R-orders in M,(K) are conjugated.

Proof

We have to check that HY,, (U, PGL,) = 1 where U = X(m) , m being the
unique maximal ideai of B. Now, as a special case of iemma d.2 above we find
that HY, (U, GL,) is Ref.(R). Because gldim(R) < 2 , reflexive E-modules are
projective whence Ref,(R) = Proj,(R) and Ref,(R) = Pic(R). Finally, R being
local implies that Pic(R) = Proj,(R) =1 and theorem 4.11 finishes the proof.
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Corollary 4.14 : If R is a regular local ring of gldim(R) < 2, then all
maximal B-orders in M,{K) are Azumaya algebras.

Before ending this section let us mention that M. Van den Bergh has been
able to generalize Proposition 4.8 to the higher dimensional case.

Theorem 4.15 :If R is a commutative Krull domain of finite Krull dimen-
sion , then :

Clso(R) = CUR)/Tors(Pic(R))
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2) : MALXIMAL ORDERS WITH A DISCRETE NORMALIZING
CLASSGROUP

As was already mentioned in the introduction , most of the iechnical
machinery described above was developed in order to study the relation between
the normalizing classgroup Cl(A) of a maximal order A over 2 normal domain R
and that of the ring of formal power series A[[t]] over it which is a2 maximal order
over R[[t]] by a result of H. Marubayashi [47]. Because A — A[[t]] is clearly an
extension satisfying pas d’éclatement there is a natural morphism :

Cl(A) — CIAE)])
by virtue of the results on p.143 .
Definition 4.18

A maximal order A over a normal domain R is said to have a discrete nor-
malizing classgroup if CI{A) ~ CI(A][[]]).

In this section we aim to study whether having a discrete normalizing
classgroup is a central property , i.e. we would like to answer the next two problems

Problem 4.17 :If A is a maximal order over a normal domain R having
a discrete classgroup , does this imply that A has also 2 discrete normalizing
classgroup ?

Problem 4.18 : If 2 maximal order over a normal domain R has a discrete
normalizing classgroup , does this imply that R has a discrete classgroup ?
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We will answer Problem 4.17 affirmatively as well as Problem 4,18 if the
maximal order is an Azumaya algebra. Even if A is a reflexive Azumaya algebra it
is not at all clear that Problem 4.18 should be true. The main problem seems to
be that torsion elements of the classgroup of a normal domain can be killed in a
reflexive Azumaya algebra. Some examples of such a situation are given.

Let us start by generalizing Danilov’s construction of the natural splitting
morphism to maximal orders :

(a) : the natural splitting

Theorem 4.19
If A is a maximal order over a normal domain B , then CI(A) is a direct
summand of CIA[[¢]]).

Proof
We will merely scetch the proof , details are left to the reader.
Let X and Y denote respectively Spec(R) and Spec(R[{2]]) , then :

7: 7@ — £0)

induces a closed regular immersion X — ¥ which identifies X with V(T)={P ¢
Y | (T) C P}. It is clear that j induces in & natural way morphisms of sheaves of
groups :
71 Ohgy = O4
Jo : Nagag) — Ma
and these morphisms cause the following exact commutative diagram :
1 -  CiA) — lmHYU,0,) — lmHYU, M) — 1

1 1 1
1 — ClA[R]]) — lim BY(V,04yyy) — Lm BYV, M) — 1
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Furthermore, the inclusion R — R[[t]] induce a natural morphism ¢: ¥ —» X
which induces morphisms of sheaves of groups :

i1 : 03 = Oy

iy Ma = Ny
leading to the following exact commutative diagram :
1 - Clp) =— limHYU,0,) — limHYU,M) - 1
i ! i’
1 - CIA[E]) — lim Hl(v,o,’;“,]]) = lim HY(V, Mapegp)— 1

and a carefull investigation of these two diagrams learns that the induced mor-
phism CI(A[[t]]) — CI(A) yields a natural splitting for the map CI(A) — CIA[[E]]).

In particular this theorem implies that C'I(A) — CI(A[[t]]) is 2 monomorphism.

{b) : solution to problem 4.17

Theorem 4.20
If A is 2 maximal order over a Krull domain R with a discrete classgroup ,
then A itself has a discrete normalizing classgroup.

Proof

Ffrst, we will show that A has a discrete central ciassg'roup‘. As was remarked
earlier , the cokernel of the injective natural morphism from the classgroup of
a Krull domain to the central classgroup of a maximal order consists of a finite
group which determines the ramification of height one prime ideals.

167




Therefore, we obtain the following exact commutative diagram :

1

{
1 — CUR) — Cl°(A) -+ OZjepZ — 1

i ! 1

1 = cugpy) - CFAMD) - ©ZfeqZ — 1
!
1

so it will suffice to prove that the ramification-groups are isomorphic. Let @ be
any height one prime ideal of A[[t]] , then either @ NA =0 or @ M A is an height
one prime ideal of A since B — R[[t] is an extension satisfying pas d’éclatement.
Suppose first that @ M A = 0, then the localization of A[[#]] at @ is a localization
of X([t]] and is therefore an Azumaya algebra showing that @ is not ramified with
respect to the center.

Therefore, the only ramified height one prime ideals are of the form P{[t]]
where P € X(M(A). It is easy to verify that P[[#]] is ramified if and only if P is
ramified and their ramification- indices are equal.

Therefore, DZ/[¢, 2 ~ D% /eq.Z and consequently CI°(A) == Cl°(A[f]]).

Finally, we have the following exact commutative diagram :

1

i
1 —  Outcent(Ad) - (o K - CilA) - 1

! i ¢
1 — Outcent(A[[f]]) — CEAJF) CIA[lE) — 1
i
1

Surjectivity of the natural merphism €A} — GI(A[[t]]) follows from the above
diagram , whereas injectivity follows from Th.1 , finishing the proof of the theorem.

A immediate consequence of this result is :
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Corollary 4.21
If A is a maximal order over a regular domain R, then A has a discrete

normalizing classgroup.

(c) : problem 4.18 for azumaya algebras

Proposition 4.22
If A is an Azumaya algebra over the Krull domain R , then R has a discrete
classgroup if and only if A has a discrete classgroup.

Proof
One implication is clear from the foregoing theorem. Now, suppose that A has
a discrete normalizing classgroup, then we have the exact commutative diagram :

1 1
| !

1 - Outcent(A) -3 OI(R) —3 CI(A) [ |
' ! !

1 — Outcent{A[f]]) — CUR[E]) — CuA[E) — 1
!
1

First, we claim that Outcent(—) consists of torsion elements of the Picardgroup.
For, let I be an Azumaya algebra over the Krull domain § and suppose that 7 is
a divisorial S-ideal such that I'.J = T'.n for some normalizing element n , then
ri-1 = f.n"'i and J.F! = § since for any S-ideal J we have I'.J NL=1J ,
where L is the field of fractions of §. Therefore, [ is an element of the Picardgroup
of § and moreover taking reduced norms we obtain : I™ = $.nr(n) where m =
p.4.d.(T') showing that I is a torsion element , finishing the proof of our claim.
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Now, let us show that Outcent(d) — Outcent(A[[#]]) is an epimorphic map.
If [1] € Outcent(A[[z]]) , then [I] is an element of Pic(R][[t]]). Now, for any Krull
domain R we know that the natural morphism :

Pic(R) — Pic(R[[t]])

is an isomorphism, showing that there exists an element [ly] € Péic(R) such that
Iop[t]] = I . Farther, by the injectivity of the morphism C¥(A) — CUAJJ)) it
follows that [Iy] € Outcent(A) , finishing the proof.

The difficulty in extending this result to reflexive Azumaya algebras is that
Ker(Cl(R) —+ CI(A)) consists not necessarely of elements of the Picard-group of
R.Let us give an example of such a situation :

Example 4.22
Let R be a Krull domain and let I be a representant of a 2-torsion element
in CI(R). Now, comnsider :

A=FEndp(RDI) ~ (;—21 IIZ)

then A is a reflexive Azumaya algebra over R (A is Azumaya if and only if [I] €
Pi¢(R) ). This entails that there is a well defined isomorphism :

¥ : D(R) — D(A); $(4) = (A.4)""
showing that every divisorial A-ideal is of the form :
( A Ix A)
I"tsA A
where A € D{R). % induces a morphism :

& : CI(R) — CI(A)
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which is clearly epimorphic. The class of an ideal A is killed under & if and only
if :

ADI+A)~RDpI
the isomorphism being one of R-modules. So, in particular , if we take A = I then
®([I]) = 1 because :

(I—II ‘1 I;I) B (112 R}a) B (Iljl 12)((1) 3)

where the element on the right is readily checked to be a nontrivial normalizing
element of A.

Thus, any 2-torsion element of the classgroup (resp. of the Picard- group) of
R can be killed off in the normalizing classgroup of a reflexive Azumaya algebra
{resp. Azumaya algebra) over R of p.i.d.(A) = 2.

This construction can of course be extended to higher torsion elements , for ,
if [I] € CI(R),, , then take :

A=EndgROIQGLEG.HI")
and the class of a divisorial ideal A is killed in CI(A) if and only if :
ADADND .. CUA+TI" N RPID..QHI*

So, in particular , taking A = I and [ * I*™! = R.a we know that (A.J}** is
generated by the normalizing element :

00 - a
10 0
01 0
00 - 0

Conversely; it is of eourse easy (taking reduced norms) that the kernel of the
natural map :
CI(R) — CI(A)

consists of n-torsion elements if p.1.d.(A) = n.
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