Maximal Orders Having a Discrete Normalizing Classgroup.

December 1983

83 - 32

On a Problem of R.A. Hirschfeld.

December 1983.

83 - 33

Lieven Le Bruyn (*) University of Antwerp, U.I.A.

(\star) work supported by an NFWO/FRNS-grant

O. Introduction

Some concepts from algebraic geometry such as Cartier and Weil divisors of a scheme were used in a very elegant way by V.I. Danilov [2][3][4] in order to study the ralation between the classgroup of a normal domain R and the classgroup of R[[t]], the ring of formal power series over R, a problem which has its roots in a conjecture of P. Samuel, cfr. [2][5]. The strategy he uses is the following: first, one can express the class group of a normal domain R in terms of Picard groups of certain open subschemes of the affine scheme $X = \operatorname{Spec}(R)$. The next step is to use the good functorial properties of Picard group and the fact that there is a regular closed immersion of X into Y = Spec R [[t]], to prove the desired theorems on the open sets mentioned above and afterwards Danilov pulls the obtained information back to the class group.

In this way Danilov was able to define a natural splitting morphism for the morphism :

$C1R \rightarrow C1R[[t]]$

and to give some necessary and sufficient conditions on the normal domain R in order to ensure that this morphism is actually an isomorphism. If this is the case, we say that R has a discrete class group . If Λ is a maximal order over a normal domain domain R in some central simple K-algebra Σ , K being the field of fractions of R, one can define the normalizing class groups $\mathbb{C}1(\Lambda)$ of Λ to be the quotient group of the free Abelian group of twosided divisorial Λ -ideals modulo the subgroup of those divisorial Λ -ideals which are generated by a normalizing element (i.e. an element $x \in \Sigma$ such that $x \in \Lambda$ and $x \in \Lambda$ and $x \in \Lambda$ such that $x \in \Lambda$ and $x \in \Lambda$ and $x \in \Lambda$ such that $x \in \Lambda$ and $x \in \Lambda$ and $x \in \Lambda$ such that $x \in \Lambda$ and $x \in \Lambda$

We say that Λ has a discrete normalizing class group if this morphism is an isomorphism. The main aim of this paper is to study whether having a normalizing class group is a central property, i.e. we would like to answer the following two problems:

Problem A: if Λ is a maximal order over a normal domain R having a discrete class group, doet this imply that Λ has a discrete normalizing class group.

<u>Problem B</u>: If a maximal order over a normal domain R has a discrete normalizing class group, does this imply that R has a discrete class group?

We will answer problem A affirmatively as well as Problem B is the maximal order considered is an Azumaya algebra. Even for reflexive Azumaya algebras it is not clear to the author that Problem B should be true. The main problem seems to be that torsion elements of the class groups of a normal domain not contained in Pic(R) can be killed in a reflexive Azumaya algebra. Some examples of such a situation are given.

1. The natural splitting.

Let us start by generalizing Danilov's construction of the natural splitting to maximal orders :

Theorem 1. If Λ is a maximal order over a normal domain R, then ${\rm Cl}(\Lambda)$ is in a natural way a direct summand of ${\rm Cl}(\Lambda[[t]])$.

Proof.

Let us first introduce some notation : $X = \operatorname{Spec}(R)$, $Y = \operatorname{Spec}(R)$ and $j : X \to Y$ is the natural embedding identifying X with V(T) through the map which assigns to a prime ideal p of R the prime ideal R[[t]] p + R[[t]] t. It is clear that j is a regular closed immersion. Further,

let $\frac{\theta}{\Lambda}$ [[t]] denote the structure sheaf of the R [[t]]-algebra Λ [[t]] over Y. If A is a divisorial ideal of Λ [[t]], then $\frac{\theta}{\Lambda}$ will be its structure sheaf as an R [[t]] -module. Clearly, $\frac{\theta}{\Lambda}$ is a divisorial $\frac{\theta}{\Lambda}$ [[t]] -Ideal. Because maximal orders over discrete valuation rings are left—and right principal ideal rings, we have that $(\frac{\theta}{\Lambda})_{\beta} = (\frac{\theta}{\Lambda}[[t]])_{\beta} \cdot \alpha$ for some $\alpha_{\beta} \in \Lambda$ [[t]] for every height one prime ideal P of R [[t]]. Clearly this equality extends to some open neighbourhood of P in Y. Now, let P = p R [[t]] + t R [[t]] for some height one prime ideal p of R. We claim that $(\frac{\theta}{\Lambda})_{\beta}$ is an invertible $(\frac{\theta}{\Lambda})_{\beta}$ if an invertible $(\frac{\theta}{\Lambda})_{\beta}$ is a regular embedding!) and $(\frac{\theta}{\Lambda})_{\beta}$ is of global dimansion two by [10, Prop. 5.8.]. Finally, $(\frac{\theta}{\Lambda})_{\beta}$ is quasi-local and therefore every left divisorial $(\frac{\theta}{\Lambda})_{\beta}$ is principal and by faithfully flat descent (as in the commutative case) so is $(\frac{\theta}{\Lambda})_{\beta}$.

Concluding, $\underline{\theta}_A$ is an invertible $\underline{\theta}_\Lambda$ [[t]] - ideal on some open set of Y which includes all height one prime ideals of R [[t]] as well as all primes of the form p R [[t]] + t R [[t]] for p a height one prime of R. Let U = j^{-1}(V), then U is an open set of X containing all height one primes. Suppose j_u: U \rightarrow Y is the composite of the embedding of U in X and j, then j_u'($\underline{\theta}_A$) is an invertible ($\underline{\theta}_\Lambda$ |U)-ideal, where $\underline{\theta}_\Lambda$ is the structure sheaf of the R-algebra Λ on X. But then clearly $\Gamma(U,j_u^*(\underline{\theta}_A))$ is a twosided divisorial Λ -ideal because X (1)(R) \subset U. This defines the mapping

$$j_{\Lambda}^{\star}$$
: C1(Λ [[t]]) \rightarrow C1(Λ)

It is also easy to see that j^* is a groupmorphism and that j^* yields a splitting for the natural map

$$i_{\Lambda}^{\star}: Cl(\Lambda) \Rightarrow Cl(\Lambda[[t]])$$

In particular, this theorem implies that i^{\bigstar}_{Λ} is a group-monomorphism.

2. Affirmative answer to problem A.

Proposition 1. If Λ is a maximal order over a normal domain with discrete classgroups, the Λ has a discrete normalizing class group.

<u>Proof.</u> Recall from [6] that the central class group, $CCl(\Lambda)$, of Λ is the quotient group of the group of two sided divisorial Λ -ideals modulo the subgroup of those which are generated by a central element. From [6] we retain that the natural sequence:

$$1 \longrightarrow C1(R) \xrightarrow{\mu} CC1(\Lambda) \longrightarrow \bigoplus_{i=1}^{m} \mathbb{Z}/e_{i} \mathbb{Z} \longrightarrow 1$$

is exact and that $\mathsf{Coker}(\mu)$ is a finite group determined by the ramified height one primes of Λ . Our first claim is that the following commutative diagram is exact:

For, let $c \in R$ be an element of the Formanek-center of Λ , cfr. e.g. [9], then Λ_c is an Azumaya akgebra over R_c . This entails that Λ [[t]] $_c \cong \Lambda_c \otimes_{R_c} R_c$ [[t]] is an Azumaya algebra over R_c [[t]]. Therefore, the only ramified one prime ideals of Λ [[t]] are of the form P [[t]] with P a ramified height one prime of Λ . This proves that Coker $\mu \cong \operatorname{Coker} \mu'$ as claimed. Applying the snake lemma to the diagram above we get $\operatorname{CCl}(\Lambda) \cong \operatorname{CCl}(\Lambda[[t]])$. If we denote with Oucent(-) the quotient group $\operatorname{Aut}(-)/\operatorname{In}(-)$ where $\operatorname{In}(-)$ is the group of inner automorphisms, we get the following exact commutative diagram:

Injectivity of α follows from theorem 1 whereas surjectivity follows from the diagram , finishing the proof.

An immediate consequence of this result is:

Corrollary 1 : If Λ is a maximal order over a regular domain R, then Λ has a discrete normalizing class group.

3. Problem B for Azumaya algebras.

Proposition 2. If Λ is an Azumaya algebra over a normal domain R with a discrete normalizing class group, then R has a discrete class group.

<u>Proof.</u> For any Azumaya algebra Γ over a normal domain S one has $CCl(\Gamma)\cong Cl(S)$ hance we obtain the following exact diagram :

1
$$\longrightarrow$$
 Outcent(Λ) \longrightarrow C1(R) \longrightarrow C1(Λ) \longrightarrow 1 \longrightarrow Outcent(Λ [[t]]) \longrightarrow C1(R [[t]]) \longrightarrow C1(Λ [[t]]) \longrightarrow 1

We claim that Outcent(Γ) consists of torsion elements of the Picardgroup of S for any Azumaya algebra over tha normal domain S. For, suppose that I is a divisorial S-ideal such that $\Gamma.I = \Gamma.m$ for some normalizing element m, then $\Gamma.I^{-1} = \Gamma.m^{-1}$ and $I.I^{-1} = S$ because for any S-ideal J we have that $\Gamma.J \cap L = J$ where L is the field of fractions of S. Therefore, I is an element of Pic(S) and moreover, taking reduced norms, we get

$$I^{n} = S.nr(m)$$

where n = p.i.d.(Γ), showing that I is a torsion element in Pic(S), finishing the proof of our claim.

Now, let us show the the morphism $\operatorname{Outcent}(\Lambda) \to \operatorname{Outcent}(\Lambda[[t]])$ is epimorphic. If $[I] \in \operatorname{Outcent}(\Lambda[[t]])$, then [I] is an element of Pic R[[t]]. For any normal domain R, we know that the natural morphism

Pic R
$$\rightarrow$$
 Pic R [[t]]

is an isomorphism, showing that there exists an element $[I_0] \in Pic$ (R) such that $I_0[[t]] \cong I$. Further, by the injectivity of the morphism $Cl(\Lambda) \to Cl(\Lambda)[[t]]$ it follows that $[I_0] \in Outcent(\Lambda)$. Finally surjectivity of α and the snake lemma entails that $Cl(R) \to Cl(R[[t]])$ is epimorphic, finishing the proof.

Recall from [11] that an algebra Λ over a normal domain R is said to be a reflexive Azumaya algebra if the natural map

$$(\Lambda \otimes \Lambda^{\operatorname{opp}})^{\bigstar \bigstar} \longrightarrow \operatorname{End}_{\mathsf{R}}(\Lambda)$$

is an isomorphism of R-algebras. For reflexive Azumaya algebras one can also prove that $\mathrm{CCl}(\Lambda)\cong\mathrm{Cl}(R)$ but the difficulty in extending the foregoing proposition to reflexive Azumaya algebras is that $\mathrm{Ker}(\mathrm{Cl}(R)\to\mathrm{Cl}(\Lambda))\cong\mathrm{Outcent}(\Lambda)$ does not necessarily consist of elements of the Picard group of R. Let us give an example of such a situation :

Example 1. Let R be a normal domain and let I be a representant of a 2-torsion element in Cl(R). Consider:

$$\Lambda = \operatorname{End}_{R}(R \oplus I) \cong \begin{pmatrix} R & I \\ I^{-1} & R \end{pmatrix}$$

then Λ is a reflexive Azumaya algebra over R(Λ is Azumaya if and only if [I] \in Pic(R)). This entails that there is a well defined isomorphism :

$$\psi : \mathbb{ID}(R) \to \mathbb{ID}(\Lambda); \psi(A) = (\Lambda.A)^{**}$$

showing that every divisorial Λ -ideal is of the form :

$$\begin{pmatrix} A & I \star A \\ I^{-1} \star A & A \end{pmatrix}$$

where $A \in \mathbb{D}(R)$. ψ induces a morphism

$$\Phi$$
 : C1(R) \rightarrow C1(Λ)

which is really epimorphic. The class of an ideal A is killed under Φ if and only if :

$$A \oplus (I \star A) \cong R \oplus I$$

the isomorphism being one of R-modules. So, in particular, if we take $A = I \ \text{then} \ \Phi([\ I\]) = 1 \ \text{since}$

$$\begin{pmatrix} \mathbf{I} & \mathbf{I} \star \mathbf{I} \\ \mathbf{I}^{-1} \star \mathbf{I} & \mathbf{I} \end{pmatrix} = \begin{pmatrix} \mathbf{I} & \mathbf{R}\alpha \\ \mathbf{R} & \mathbf{I} \end{pmatrix} = \begin{pmatrix} \mathbf{R} & \mathbf{I} & \mathbf{0} & \alpha \\ \mathbf{I}^{-1} & \mathbf{R} & \mathbf{1} & \mathbf{0} \end{pmatrix}$$

Where the element on the right is redily checked to be a nontrivial normalizing element of $\Lambda_{\scriptscriptstyle{\bullet}}$

Thus, any 2-torsion element of the class group (resp. of the Picard group) of R can be killed in the normalizing class group of a reflexive Azumaya algebra (resp. Azumaya algebra) over R of p.i. degree 2.

This construction can of course be extended to higher torsion elements $\text{Take [I]} \in \text{Cl(R)}_n, \text{ then let}$

$$\Lambda = \operatorname{End}_{\mathbb{R}}(\mathbb{R} \oplus \mathbb{I} \oplus \mathbb{I}^2 \oplus ... \oplus \mathbb{I}^{n-1})$$

and the class of a divisorial ideal A is killed in $\operatorname{Cl}(\Lambda)$ if and only if:

$$\mathsf{A} \oplus (\mathsf{A} \star \mathsf{I}) \oplus ... \oplus (\mathsf{A} \star \mathsf{I}^{\mathsf{n}-1}) \cong \mathsf{R} \oplus \mathsf{I} \oplus ... \oplus \mathsf{I}^{\mathsf{n}-1}$$

So, in particular, taking A = I and I \star Iⁿ⁻¹ = R α we know that $(\Lambda.I)^{\star\star}$ is generated by the normalizing element

Conversely, it is of course easy (taking reduced norms) that the kernel of the natural morphism $Cl(R) \to Cl(\Lambda)$ consists of n-torsion elements if n = p.i. degree(Λ).

References.

- [1] M. Chamarie, Anneaux de Krull non-commutatifs, thèse, Université Claude-Bernard, Lyon (1981).
- [2] V.I. Danilov, On a conjecture of Samuel, Math USSR Sbornik Vol. 10 (1970), 127-137.
- [3] V.I. Danilov, Rings with a discrete group of divisor classes, Math. USSR Sbornik Vol. 12 (1970), 368-386.
- [4] V.I. Danilov, On Rings with a discrete divisor class group, Math. USSR Sbornik Vol. 17 (1972), 228-236.
- [5] R. Fossum, The divisor class group of a Krull domain, Ergebn. der. Math. Wiss. 74, Springer Verlag (1973).
- [6] L. Le Bruyn, On the Jespers-Van Oystaeyen conjecture, to appear in J. Algebra.
- [7] L. Le Bruyn, Class group of maximal orders over Krull domains, Ph. D. Thesis , Antwerp, UIA (1983).
- [8] H. Marubayashi, Polynomial rings over Krull orders in simple Artinian rings, Hokkaido Math. J. 2(1980), 63-78.
- [9] C. Procesi, Rings with polynomial identities, Mardel Dekker (1973).
- [10] M. Ramras, Maximal orders over regular local rings of dimension two, Trans. A.M.S. 142(1969), 457-479.
- [11] S. Yuan Reflexive modules and algebra class groups over Noetherian integrally closed domains, J. Algebra 32(1874), 405-417.