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0. Introduction.

In their fundamental paper on maximal orders[ 4], M. Auslander and

0. Goldman studied the structure theory of maximal orders in two specific
situations : over Dedekind domains in arbitrary central simple algebras
and over regular domains in full matrix rings.

Whereas L. Silver [25] and r. Fossum [7] generalized some results to
maximal orders over normal (resp. Krull) domains, M. Ramras [21,22,23 ]
continued on the path taken by Auslander and Goldman, i.e. the study of
maximal orders (prefarably with finite global dimension) over regular
local domains in arbitrary central simple algebras.

Renewed interest in this rather restricted but important class of
maximal orders came witﬁ the publication of two recent papers by

M. Artin [2], [3] . The first deals with the Zariski local structure
of maximal orders over a smooth surface (i.e. the study of the number
of conjugacy classes) whereas the second describes the étale local
structure of the Brauer-Severi scheme associated to a maximal order
over a Dedekind domain. Smooth (or strongly regular) maximal orders were in-
troduced and studied jointly with M. Van den Bergh [15] in an attempt
to grasp the contents of [2] . Later, it turned out that for this class
of maximal orders one can easily describe the étale local structure

of the {(weak) Brauer-Severi scheme.

In this paper I have chosen to restrict attention to smooth maximal
orders in guaternion algebras in order to make matters as concrete as
possible. Further, it sometimes simplifies notation considerably while
preserving the heart of the more general arguments which will appear
elsewhere [14] [415].

Much of what follows is joint work with M. Van den Bergh.




1. Smooth maximal orders in guaternion algebras

In this section we will introduce smooth maximal orders and study their
Zariskil local structure in guaternion algebras. Since the definition
differs slightly from that of strongly regular orders in [15] we will

briefly recall both definitions.

Let A be a tame order over a normal domain R, i.e. a reflexive R-order
such that Ap is hereditary for every height one prime p of R, in some
central simple K-algebra Z, K being the field of fractions.

Let D = {D ’Dn} be a set of Weil divisors of A, i.e. a set of

qree
divisorial A-ideals, then we define the Rees ring of A associated to

the set of Well divisors D, A[D] to be the Z[n)—graded subring of
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These Rees rings were first introduced by F. Van Oystaeyen in the Z-
graded commutative case [ 27 ] and were subsequently generalized in e.g.

[11,12,18] .

Definition 1. [15] with notation as above. A is said to be a strongly

regular order iff there exists a set of Weil divisors D such that A[D]
is an Azumaya algebra over a regular center and every Di € D is an

invertible A-ideal.

For a more intrinsic characterization of strongly regular orders and
the relation to the other regularity conditions, the reader is referred

,p_ 1}

to [15] . Let us now turn to the archetype-example : let PC ={p1,... n

be the finite set of height one prime ideals of R which ramify in the

maximal (!} order A with ramification indices say {81""'en} and let




p=1{P "’Pn} be the uniquely determined height one prime ideals of

17"
A which lie over the ramified central primes. It is now fairly easy to

(n)

compute the center of A[P ] It turns out to be the Z -graded subring

REP] of K [x1,x;j...,xn,x;1] whose part of degree (m1,...,mn] is given by
m m
1 n
(=] [=—] m m
= ®Tw,.xp N 1 n
R[P] [m1,...,an (p,l ¥ p ) Xg o ves Xn
where [%~] denotes the least integer >-% .

Throughout we will assume that the maximal order A satisfies :

[th) i For every height one prime ideal p of R there exists an étale

extensions Rp = S{p) which splits Z.

This condition is always satisfied in case the residue fields XK (p) are
perfect, cfr. [ 24].

The main application of the graded construction given above to the theory
of maximal orders satisfying [Et1) is that it basicly reduces guestions
about these rather arbitrary maximal orders to graded guestions about
graded reflexive Azumaya algebras [18] i.e. graded algebras A over a

graded normal domain S such that
opp *k ~
AR A = END_ (A
( S ) N S[ )

where the tensorproduct and ENDS[A) is graded in the obvicus way (cfr.
[18]) and the isomorphism is gradation preserving. This fact follows

from :

Proposition 1 : [121, [13]

With notations and assumptions as above, we have :

(1) : A[P]is a graded reflexive Azumaya algebra with center R [P ] which
is @ normal domain.

{2} : there is an equivalence of categories between left reflexive A-mo-

dules and graded reflexive A [P ] - modules.




(3) : if every Pi € P is an invertible A-ideal, then there is an equivalence
of categories between A-mod and A [P ] -gr, the category of all Z(n)—graded

left A[P] -modules.

Definition 2 : A maximal order A over a regular domain R is said to be

smooth iff A is strongly regular with respect to the set of Weil divisors P.

Using Prop. 1.3. it is clear that both smooth and strongly regular orders
have finite gleobal dimension. If A 1s a maximal order over a regular
local domain of gldim(R]) < 2 every Pi € P is invertible because F’i is a
reflexive R- module, hence free whence projective as a A-module by [ 21,
Prop.3.5]. Let us give an example due to M. Van den Bergh showing that

a strongly regular maximal order need not be smooth.

Example 1 : let R be the affine cone «IXx,Y,21/ (XY—ZZJ, then the
classgroup of R is Z/2.Z and is generated by the ruling p = (Y,Z).

Let A be the reflexive Azumaya algebra over R

(2 )
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and let D = ( 1 ) = A, then A[D] 1s the Z graded
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A= EndR(R ® p)

ring :

which 1s readily checked to be an Azumaya algebra with a regular center

1
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Therefore, A is strongly regular but not smooth since R is sihgular.

From now on, we will restrict attention to smooth maximal orders over
a regular domain R in a guaternion algebra Z. First, we aim to study the

Zariski local structure. For simplicity's sake we will assume that




height one prime ideals of A lying over ramified prime ideals are
generated by a normalizing element. However, we do not know whether this

condition is always satisfied.

Lemma 1 : If A is a smooth maximal order over a regular local domain R

in Z, then # P < 2.

Proof.
Let n = # P, then, because A[P]is a Z[n]—graded Azumaya algebra over
R[P], which is a graded local domain with unigque graded maximal ideal

m{P}= £ mR[P]_ + Z RIPI, whereG=Z(n] and H=2Z®...22 Z,

0EH  reg\H
we must have that A[P1/A[P].m[P]is aZ ™ -graded central simple
algebra of dimension 4 over the Z(nJ—graded field

-2 2 -2
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Because everyprime ideal Pi’ 1< 1i<n, is supposed to be generated by
a normalizing element, an easy calculation shows that

oo

A[PI/A[P].m[P]l= @ A/(Am+P,l+...+Pn) Xq »+eX'n

D<ij<2 n

the isomorphism being one of graded R/m [xf,x'z,...,xi,xgz] -modules.

Calculating dimensions on both sides yields :

S 2 BN
(F1) 4 =2 .dlmR/mEA/[Am+P1+...+PnJJ

This eguality immediately implies that n < 2;

This lemma also holds for smgoth maximal orders in division algebras of
dimension pz, p a prime number. Therefore, it seems toc me that for high
(= 3) dimensions, smooth maximal orders are only a first approximation
for "nice” regular maximal orders.

If dim(Z) # p2 one can have a worse ramification divisor. E.g. it is

perfectly possible to have smooth maximal orders over regular local




domains of dimension 4 in central simple algebras of dimension 186 with

4 central ramified height one primes, each having ramificaticn index 2.
Let us recall the definition of & set of regular divisors with normal
crossings [10] . We say that a set of Weil divisors D = {Di; i€ 1}

has strictly normal crossings if for every prime ideal g € R lying in

U supp(Di) we have : if Iq = {i; s € supp[Di]}, then for i € Iq we have
that Di = i div(xi,x) with X3 A € Rq and {(xin)i’x}FOPm part of a regular
system of parameters in Rq. We say that the set D = {Di’ i € I} has normal
crossings if for every g € U supp(Di) there exists an étale neighbourhcod
Spec(S) of g in Spec(R) such that the family of inverse images of the
{Di;i € I} on S have strictly normal crossings. Finally, a divisor D of

R is called regular at g € supp(D]) if the subscheme D of Spec(R]} is

regular at g. The divisor D is called regular if it is regular everywhere.

Lemma 2 : If A is a smooth maximal order over a regular domain R, then

PC is a set of regular divisors with normal crossings.

Proof.

Let Pc = {p1,...,pn}, then by lemma 1 we know that for every prime ideal
m € Spec(R), N, = {i<i<nlme supp(pi]} < 2.

Let us first consider the case : Nm = 1. Then R [P ]m must be a regular
and graded domain. After a possible renumeration we have :

1

RIPI =R [{p, B Ix00 X X T

so we may assume that :

Rep X Per x e R © (p) Xo (pIX° o x> e

is a regular graded domain which is graded local with unigue maximal
graded ideal

he o m_ X Ze RX "en o (p)_Xxe (pm) X e ...




By a result of [15], this is equivalent with
r.dims . (A/8°) = gldim(R )
g+ CiMa /4 & m

Calculating (m)2 gives us :

® ) . ® @ . &
m X {m +D) (mp) X {(m +p]p X

(#7: (n?+p) " 'p X
m
and therefore

/) & m/mlep [X2,X72) e r/m [ X2, X 21X
‘o 2 -2
as graded R/ = R/m [ X",X 7 ] -modules. Hence, we must have :

. 2 - . a
dlmR/m(m/m +p) gldlm(Rm] 1

and this is equivalent to saying that (p) ¢ m2, i.e. m is a regular
point on the subscheme determined by (p}.

Let us now turn to the case : Nm = 2. Again, after a possible
renumeration, we have :

-1 -1
R[{p,al}l [x3,><3 sees X X ]

iR

R [P]m
s0 we may assume that R = R [{p.q}}m is a regular domain which is graded

local with unigue maximal ideal M :

m g e g e m e pg e mpq

& @ ® ® ]
P g © g e q e pg e pg
® ® ® ® ®
mp_ o R e m @ p ® mp
® e ® ® ®
-1
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® ] ® ® ®
-1 -1 -1 -1 -1 -1




Again, calculating tm32 gives us :

A mg e Ag © mpg ©  Apg
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where A = m2+p+q, R = Rm and we have omitted all powers of X1 and X2.

From this description it follows that :

/e = m/m2+p+q [xf, xgz,xg,xézl
2 -2 .2 -2
@
R/m [X3, X, 5X5.%T %,
2 -2 .2 -2
@
Rm [X5, X, %X, %°T %,
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the isomorphism being one as graded R/ = R/m [xf,x1 X2,X£2]—modules.

hence, we must have :
dim (m/m2+p+q) = gldim (R/Rm)-2
"'R/m

or equivalently that {p,q} is a part of a regular m-seguence in Rm. In
particular it follows that m is a regular point on the subscheme determined

by {p) (resp. by (g)). Finally, [ 10, lemma 1.8.4.] finishes the proof.

Definition 3 : If R is a regular domain with field of fractions K, if

Z is a quaternion algebra over K and if PC is the set of ramified height
one primes of R in Z, we say that R has a regular ramification divisor
with normal crossings in £ iff PC is a set of regular divisors with
normal crossings s.t. for every m € Spec(R). Nm {as defined in the proof

of lemma 2) < 2.




Using the proofs of lemma 1 and 2, one can prove :

Proposition 1 : If A is a maximal order over a regular domain R in a

guaternion algebra Z, then A is smooth iff :
(a). R has a regular ramification divisor with normal crossings in Z.

(b). For every m € Spec(R) one of the following cases occur :

CASE 0 : N_ =0, i.e. A is Azumaya over R
m m m
CASE 1 ¢: N =1 and dim (A/Am+P) = 2
m R/m
CASE 2 : N_ = 2 and dim (A/Am+P+Q) = 1
m R/m

where P (resp. Q) is the height one prime of A lying over the ramified

central prime p (resp. qgJl.

Let us give a geometric interpretation of Cbndidition (a) for a maximal
order on a smooth surface. Let {pq,m,pn} be the ramified height one
primes, then each p, can be viewed as a curve on the surface. Nm < 2

then says that there are no three such curves which intersect at one
point. Furthermore, each curve must be nonsingular and in an intersection
point of two curves the tangent lines may not coincide.

As we will see later, CASE 0 (resp. 1,2} corresponds to CASE 1.1.(i)
{resp. (ii), (iii)) of [2 ], whereas CASE 1.1 (iv) cannot oceur as a
smooth maximal order.

Let us give some examples of smooth maximal orders.

Example 2: Let A = €@ [X,- ] be the skew polynomial ring over ¢ where -

denotes conjugation. It is clear that A is a maximal order with center
2

R=1IR [t] where X~ = t.It follows that P = {(X)}, so A[P] is the

Z-graded ring.

(x'z)x;2€B (><'1t3><;1 °A® (X)X, @ [xzjxfew.

and R[P] is the Z-graded ring :

-1, -2 -1 2
@
{t )X,I ®R X,] ®R @ (t) X1 ® (t) X,]
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For every prime ideal g # (X) € Spec R[t], A.q is Azumaya over Rq

whence A [P ] q is Azumaya over Rq. In the ramified prime we have :

dimIR[t 1/ (t)(c.t [(xy,=170x0) =dim‘IR (@ =2

i.e. case 1. So, A is smooth over R.

o 7 ~ ‘ =1 - 2
Further, R [P][t)/t[P] () = ]R[t,],’(:,| ] where t1 = % X1 and
AlP] [t]/A [PI1t [P %t] is the Z-graded central simple algebra

_,/l]'

_.’l . _
¢[Y1,Y,], 1 with Y, = XX, over RE,.t,

1 1

Example 3 : Let R be a regular local domain of dimension 2 and suppose
x and y generate the maximal ideal m. Let £ be the guaternion-algebra
(x,y)k and let A = R[1,i,j,i3]1, i.e. A is R-free with generators
1,1,3,1j and with relations :

.2 .2 . . . s
i" =%, j =y and 1j =+l

In [20] it was checked that A is a maximal R-order. Clearly PC ={({x),(y)}

which is a set of regular ramification indices with normal crossings.

Further, A[P] is a Z ® Z-graded ring which can be visualized (omitting

powers of X1 and X2) as :

(17%5%) e 17 15% e 3% e (i.j2] ° (1%5%)
® ® ® ® ®
(17%5) o 4(1—13') ° (53 © (i5)  © (i%3)
® @ <) @ @
i e wly e A o (1) e (19
® @ ® ® N4
- - - - - —_ 2 -
G725 e w iy he gThe wih e 557
o & ® ® @
(172 _2] ® (1_1j—2] ('_2) ® [1J_2] o (i 3—2]
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and its center R [P ] is the Z @ Z-graded ring which looks like :

i e ) ® (xy) o (xy)
& 2] <) 23 @
1o eyl ® (xy) ® (xy)
® ® & ® ®
xh e g e R & (x) ® (x)
D [¢] 3] 53 2]
xh e R e R e (x ® (x)
2] ;] 233 D 5]
-1 -1 -1 -1, e -1, e -1
x v ) @ (y ) @& (y ) (xy ) (xy )

and dim (A/Am + (1) + (3}) = dim (R/m) =1, so A is a smooth maximal
R/m R/m

R-porder of cass 2.

-2 2 -2 o _.
4 Y2, ] where Y,1 = J.X,I and Y2 JX2.

Whereas A[P]1/ A[P] ml[P] is the Z @ Z-graded central simple algebra:
-1
10 9

R/m corresponding to the fact that A is gquasi-local with maximal ideal

Further, R[P]/m[P] R/m [Yf, % Y;

-1 . _ 4 ‘
R/mlY Y2,Y2 ] with Y,]Y2 = Y2 Yq. Its part of degree (0,0) equals

M= (1,35).

Example 4 : Let F be any field with characteristic unequal to 2. Let

R=FI[X,Y] (X, Y) where X and Y are indeterminates over F. Then R is regular
local of dimensions two and has field of fractions K = F(X,Y). Let Z be

the guaternion algebra (X,1+YJK and let A be the R-free order R [1,1i,3,13 ]
then A is a maximal order [ 20, p. 471. Then P = {(i)}, PC = {(x)} and

(x) ¢ m?, Because dim (A/Am+ (1)) = dimF(F ® F}) = 2, A is smooth. Further

R/m

R[P]/m[P] =F [Yf,v'

12] where Y1 = iX, and A[P]/ A P]ImI[P] is

1
the Z-graded algebra

-2
1

-1
1

ae

> ,
(F @ Fe][Y,l,Y 9 ] I"IZ(F[Y,],Y 1)
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where ¢(a ® be)l = a® - be and a is given by

-1 0
al1 e 0) =( alD ® €) = ( )
0 1

1 0

o)

8 1
a(Y1) = (Yf . )

Therefore, A[P]/ A[P]Im{P] is a Z-graded central simple algebra over

2
/]

(F ® Fe) corresponding to the fact that A is not gquasi-local. Each

FILY, Y;Z J However, the part of degree O of A[P]/A[P] m[P] is semisimple
factor corresponds to one of the two maximal ideals of A lying over
m = (X,Y)

M1 = Ali,3-1) M2 = Ali,j+1)

Having characterized smooth maximal orders over regular domains in
guaternion algebras, we will now study their Zariski local structure,
i.e. the number of conjugacy classes over a regular local domain. One
of the basic ingredients in this study is a result of Grothendieck [8 ]

on descent of modules. For convenience, we state that theorem here :

Theorem [8,2.5.8] Let R be a Noetherian (semi) local ring, A a finite

R-algebra and let Mq, M2 be finite left A-modules. Let R = S be a

faithfully flat morphism with S. Noetherian. If l"l,| ® s = M2<® S as left

A® S-modules, then IVI1 = M2 as left A-modules.

Using the above theorem, we will have to compute the conjugacy classes of

the extended orders A QRRSh where A is smooth over R and RSh denotes

the strict Henselization of R cfr. [17] or[23].

Case 0 is easy : if one maximal orderiA over R in Z is Azumaya, then

every other smooth order say I' is Azumaya too. Since Br(RShJ =0,

A® RSh = VE(RSh) =I'e® RSh and by descent A =T as R-algebras, yielding

that A and T are conjugated.
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Before treating the other cases, let us recall the definition of the
graded Brauer group as introduced by F. Van Oystaeyen in the Z-graded
case in[261].

If T is any Z(nJ

-graded ring, then a graded Azumaya algebra over T is
an Azumaya algebra over T admitting a Z[n)—gradation extending the
gradation of the center. Two graded algebras I' and £ are said to be gr-

equivalent if there exist finitely generated graded projective T-modules

P and Q such that there exists a degree preserving isomorphism

ENDT[Q]

T

' ENDT (P) = Q®T

where the rings ENDT[—J and the tensorproducts are eguipped with the
natural gradation, cfr. e.g. [18] . The set of gr-eguivalence classes
of graded Azumaya algebras forms a group with respect to the tensor-
product, Brg[T], called the graded Brauer group of T.
If T is a Z-graded Krull domain it was shown by S. Caenepeel, M. Van
den Bergh and F. Van Oystayen [ 6] that the natural (i.e. gradation-
forgettingl) morphism Brg[T) = Br(T) is monemorphic. Their argument can
easily be extended zo the Z(n)_graded case.
S. Caenepeel [5] calls a graded local ring R (i.e. having a unigue
maximal graded ideal) gr-Henselian if every finite graded commutative
R-algebra B is graded decomposed, i.e. when it is the direct sum of
graded local rings. In the Z-graded case it turns out that a graded local
ring is gr-Henselian iff its part of degree zero is Henselian, [5].
This result can be generalized to Z(n)—graded rings. Furthermore, if R
is gr-Henselian with maximal graded ideal m then the natural map :
BréR ~ BréR/m

is monomorphic by a similar argument as in the ungraded case.

Lemma 3 : If A is a smooth maximal order over a regular local domain R in

a quaternion algebra Z, then




_./|4_

(1} in case 1, RSh splits Z.

(2) in case 2, RSh does not split 2

Proof.

h
AlP]® R RSh is a graded Azumaya algebra over RSh [P]l=R [P:lgkRS .

rSh [P] is gr-Henselian because the part of degree zero (or of

(G,0) is Henselian, with maximal graded ideal mSh [P].

. h o 2 -2
(1) In this case RS" [P 1/ n®" [P ]is the graded field R®"/m® [Y5.Y, ]

where Yf = pr. Now,

T-@mirls, rR®M /A [Ple, REMmSh [P ]

is a graded central simple algebra of dimension 4 over RSh/mSh [Yf,Y%Z] .

Calculating the part of degree zero of T it turns out that Fo need to

h of dimension two. Because RSh/mSh is

sh/mshe Rsh/msh

be an algebra over RSh/mS
‘ sh , sh . F oo

separably closed and char(R™ /m ) # 2, we must have I' = R

as algebras. hence T contains zero divisors and therefore

2 Y—Z]]

= A sh, sh
I‘_MZ(R /m [Y,!.,I

{(cfr. also example 4). Finally, using the injectivity of the map

Br® RN [p] > Brf R [P 1/ " [P ] it follows that

AL[P1®R®" = END P
RT [P
for some graded f.g. projective RSh [P]- module P. Calculating parts
h

of degree zero on both side yields that A 8% R®" is an order in a

matrixring.

(2). In the second case, RSh [P] /mSh [P] is @ Z ® Z-graded field

sh, sh 2 -2 .2 -2 2 2 Z2 _ 2
R /m | Y1,Y1 Yo Yy 1 where Y1 = pX,I and Y2 = q X2. Now,
T-m[r] or®M /7 (a[p1@ RN [P ]
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is a Z ® Z - graded central simple algebra of dimension 4 over

sh, sh 2 -2 ,2 -2 = = =
T ;T
R™ '/m [Y1’Y1 ,Y2,Y2 ] . The homogeneous parts F[o,o)’ (0,1 (1,0

and P[1 1) are all non-zero and have therefore all dimension one. It

follows that T = R®"/m®N and
(0,0)

IR

2 2
(aY, ,bY.)

1727 sh, sh 2 =2 2 =2
R™"/m [Y1’Y1 You Y, 1

*
for some a, b € (RSh/mShJ . Because RSh/mSh is separably closed and

char(RS"/m™y # 2, T = (Yf,yé) so T = r%M/mSh | Y,I,Y,_lq,Yz,Y;] 1 with

Y1Y2 = —Y2Y1 (cfr. example 3). Using the norm, it is easy to check
that T has no zero divisors. Therefore I is a non-trivial element in

Brg(RSh [P] /mSh [P]) and hence A ® RSh cannot be an order in a

matrixring, finishing the proof.

Proposition 2 : (Zariski local structure in case 1)

All smooth maximal orders over a regular local domain in a guaternion

algebra are conjugated.

For any smooth maximal order A in case 1 we know by the proof of lemma
3 that
Afp] ® RN = Enp (P)
Rsh [P]

for some f.g. graded projective RSh [P Fmodule P. Because RSh [P]is

graded local, P is graded free; i.e. of the form :
p=r[p] (0,1 @ R [P (0,)

where oi € Z and RSh [P ][0iJ is the graded RSh [P] - module determined

by taking for its homogeneous part of degree o : RSN [P ](oi)a =

= RSh [P] o o Therefore,

h

A[P] ®R® EMZ(RSh[P](o )

1492
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where the part of degree o of the ring on the right side is given by

the formula :

Rsh [P] Rsh [P]

h o (x+01—02

MZ(RS [P] 3(01,02) =
@ sh sh

R [P] @t -0, RT [P]

o
A straightforward computation shows that up to a graded isomorphism the

Gi may be chosen to be 0 or 1. Since all isomorphisms above were

gradation preserving :

So, we are left to show that all rings which can oceur in such a way

are conjugated.

%
o 0 1
1
Rsh Rsh
sh
0] MZ(R ) sh
p R
/ﬁsh .
1 M (RSN
sh _sh 2
R R

Since A was supposed to be ramified, only the cases o, # 02 can occur

1

(o 1 ) ( R ) (0 1 )_ RS RSN )
1 0 rRE" RS \1 o p g%

Grothendieck descent finishes the proof.

and clearly :

Proposition 3. (Zariski local structure in case 23

All smooth maximal orders over a regular local domain in a guaternion

algebra are conjugated.
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Proof.

By Lemma 3 we know that A [P ] cannot be split by an étale extension of
R. Nevertheless, since A[P] is a graded Azumaya algebra over a graded
local domain, A[P] can be split by a gr-étale extension of R[P]
(where gr-étale is defined in the obviocus way). If we denote by

S = R[X]/(x*p), then

(x%q) e X'y e (@ e (gX) e (gx)
& -] <] 53] 2}
(x%q) e X d) e (@) e (gX) e (qX°)
® [ [} ® ®
(X% s (x1 & s e X1 o (X9
@ 3] @© 5] @
(X% e X" e S o (X)) e (X9
D 2 2] @ 2]

x % e x'g1 & (g

is such a gr-étale splitting ring of A[P ], S(®). Again, it turns out
that

A ® o=
[P]® S(®) M2(5(©J3(01,023

where 0, €Z ® Z can be chosen in the set {(0,0),(0,13,(1,0), (1,1)}.
We will first show that they are all graded isomorphic to M2[S(¢J] with
the usual gradation.

An easy computation shows thaf :

10 1 0
M @ =
5(S(®3)((0,0)(0,13) ( ) M, (S(®)) ( _1)

0 X2 0 X2

' 1 0 1 0
M,(s(®))(0,0), (1, =
5 (S8 J,(1,0)) ( ) M2[8(®)] ( _1)

0 X1 0 X1

1 0

1 0
M, (S(2))((0,0), (1,1))=
) 3, (1,1)) (D ) X)Mzcs@n(o x”“x”)
172 1 72
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Now, by a graded version of Grothendieck descent [15], A [P ] is graded
isomorphic to I' [P] for any other smooth maximal R-order T' in Z. This
isomorphism is given by conjugation with a unit o in 2 [Xq,xgq,XZ,X£1]
and because this graded ring is a domain o is homogeneous i.e.

&1 B2 1

o =0 X, X,” with ¢ €2 . Finally, it follows that I' =0 A o,

finishing the proof.

Corcllary 1 : Let R be a regular domain and Z a quaternion algebra which
contains a smooth maximal R-order A. If I' is any maximal R-order, then

SF = {p € SpeC(RJ|Fp is smooth} is an open set.

Proof.

Let QA.(resp. QTJ denote the structure sheaf of the R-algebra A (resp. I')
over Spec(R). If p € Spec(R) such that FD is smooth, then Ap = ol 0_1

*
for some ¢ € £ . This equality carries over to a small neighbourhood

of p, finishing the proof.

What can be said about the codimension of this set ? Clairly, if p is
an height one prime of R, then p € Sp- In view of [20; Th.5.4] the only
height two primes of R which do not lie in Sp are prime ideals p such
that there are two prime ideals of A lying over p. If I' is a projective
R-order, then by [21, Th.2.2 ] this fact also holds for height three

primes.

Corollary 2 : If R is a regular domain and if A is a smooth maximal R-
order ina quaternion algebra X, then there is a one-to-one correspondence
between conjugacy classes of smooth maximal R-orders in £ and elements

1 . .
of HZar (Spec(R], AutA)where Aut, is the automorphism scheme of EA'
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2. Brauer-Severi schemes.

Let us first sketch the general problem. Let A be an order over a normal
domain R in a central simple algebra X of dimension nz, then one can

define a functor F, from the‘category of all commutative R-algebras

A

to the category of sets :

F Comm AlgR‘9 Sets

A H
which associates to an R-algebra A the set of all left ideals of

A.@k A which are split projective A-modules of rank n. The main problem
is now to determine whether this functor is representatable. By this

we mean the following: does there exist a scheme‘ggA over Spec(R),

called the Brauer-Severi scheme of A, such that for every commutative
R-algebra A there is a natural one-to-one correspondence between elements

L of FA[AJ and scheme homomorphisms wL from Spec(A) to §§A making the

diagram below commutative :

=N
! -~
oo~
P ¢
~
~
~
Spec (A} s> Spec(R)
“n
where wA and ¢ are the structural morphisms. Therefore, one could view

the Brauer-Severi scheme of A to be a scheme parametrizing the commutative
R-algsbras A which split Z. A first step in this study usually consists
in determining the étale local structure of this Brauer-Severi scheme,
i.e. suppose that a point x € Spec(R) has an étale neighbourhood S

which splits Z, then one tries to find a representation of the functor

FA ®s * Comm A.lgS - Sets

This étale local structure has been determined in several cases
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- Grothendieck [ 8] has shown that the étale local structure of the
Brauer-Sévéri scheme of an Azumaya algebra is 332"1

- Artin and Mumford [1] calculated the Brauer-Sévéri scheme of a
maximal order over a smooth surface in a famified guaternion algebra
with & regular ramification divisor.

- Recently [3], Artin calculated the étale local structure of the

Brauer Sévéri scheme for a maximal order over a Dedekind domain.

If one restricts attention in the first case to Azumaya algebras over
regular domains, it turns out that all rings for which there exist Brauer-
Severi schemes in. the litérature are smooth maximal orders. Therefore,
one could ask whether the functor FA is reﬁresentable‘For any smooth
maximal order.

In this section we will prove a result which can be viewed as a first
step towards this goal. We will represent FA when restricted to some
nice subcategory é‘of all commutative R-algebras, including all étale
or even smooth extensions of R. b will be the full subcategory of
Comm AlgS consisting all all R-algebras A such that A[P]=R [E’]@% A
is a regular domain.

Let us start by proving the key lemma which translates everything in a

graded guestion. Denote by Fi the functor

g .

Fa 'zl@ﬁ R[P] - Sets
which assigns to an algebra A[P]lwith A € b the set of all graded
left ideals of A[P] ® A which are graded split projective A[P] -

modules of rank n.

Key Lemma : If A is a smooth maximal R-order and if A E.é: then there
is a natural one-to-one correspondence between elements of FA[A] and

elements of Fi[A).
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Proof.

We claim that the maps below establish the claimed one-to-one

correspondence.
. > =8
v, 1 FpLA) > FRlA) L L®[A®A](A[P]®AJ
. 8
v, ¢ FR(A) > FALA) M My

where e is the identity element of the grading group. Because AlP1®A

is a graded ring, W1 and ¢2 clearly give a one-to-one correspondence
between left ideals of A ® A and graded left ideals of A[P]® A.

Because A [P]® A is a graded Azumaya algebra over the graded regular
domain A [P], gr.gldim (A[P]® A) << whence gldim (A®A) <

using the eguivalence of categories between (A® A)-mod and (A[P] ® A)-gr.
Tts follows that A ® A is a regular order over A.

Because splitting and projectivity are local conditions, we may assume

from now on that A is regular local.

Now, let L € FA[A]. We claim that L is split as a left A ® A-module.

Consider the exact sequence of left A® A-modules :
0>L>A®A~> (A®A) /L0,

Because L € FA[A), this seguence splits as a sequence of A-modules.
Therefore, (A ® A)/L is a left (A ® A)-module which is free as an
A-module. Using regularity of the A-order A ® A, this entails by

[ 20, Prop. 3.5] that (A ® A)/L is projective as a left (A ® A)-module,
finishing the proof of our claim.

But then it is clear that ¢1(L] is a graded split projective A[P]® A-
module. Finally, an easy localization argument shows that ¢1[L) has
rank n.

The proof that WZ maps elements of Fi(A] to FA[AJ is easy and is left

to the reader.




Our strategy in order to represent the functor FA is now easy to grasp.
First, we will represent to functor Fi by a graded scheme. Graded schemes
are defined formally in [ 14 ], but any intelligent reader can only come
up with one possible definition of them, so we will skip it here. We
believe that the proofs and examples given below give a better idea

what graded schemes are than any formal definition. Representing Fi by

a graded scheme is relatively esasy, because A[P] is a graded Azumaya
algebra so we have to mimic Grothendieck's arguments [ 8] in the graded
case.

Afterwards, we will form out of this graded scheme a usual scheme which
represents EA.
All graded schemes which appear in this paper have the pleasant property

that their part of degree & is a usual scheme.

)

Example 5 : Let R[P] be the Z(n‘—graded ring defined in § 1 associated

to a set of height one primes {pq,m,pn} and ramification indices

Z(nJ and H = 91 Z .9 en Z. There is a natural

{eq,m,en}. Dencte by G

one-to-one correspondence between Spec(R) and Specg[R [P]D, the set of
all Z(n)—graded prime ideals of R[P] with the induced Zariski topology.

% Spec(R} = Spec (R[P]; mbk 2 mRI[P] o * Z R [F’]T =ml[P]
g o< TEBM

Y. Specg[R [P]3} > Spec(R);M Me

2
where e = (0,..,0). The maps 0, actually define an homeomorphism. Moreover,

for any m € Spec(R) we have :

g ~
(R[P]rn[Pfe'_Rm

It follows that the part of degree e of the affine graded spectrum of

R[P]is isomorphic to Spec(R).
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A : a graded representatiocon of F%
From now on we assume that A is a smooth maximal order over a regular

domain R in a guaternion-algebra Z. We will treat the two ramified cases

separatly:

CASE 1 ¢ P = {p} and dim

R/m(A/Am+P] = 2
It follows from lemma 3 that there exists an étale extension S of R

which splits Z. We first represent thé functor :
2 .
FA@S : b ®S [P]— Sets.

by a graded scheme over SPEC® (S [P]1), i.e. we will define a graded
scheme‘z? such that for any S-algebra A in_éLthere is a natural one-to-ocne

correspondence between elements of Fg (A) and graded scheme homomorphisms

A®S
SPECE(A [P] == — = = — - X8
¢A ¥

SPECE(S [P T)

where ¢ and ¢A are the structural morphisms.

In § 2 we calculated the structure of A[P]® S
A[P]® S = M2(s [P](0,1)

Therefore, if A is any Z-graded S [P ] ~algebra if we denote A[P]® S
by ' [P], then

rrpl®aAs M, (A} (0,1)
hence our aim is to represent the functor

H ) ->
G gr Comm AlgS [P] Sets
which assigns to a Z-graded algebra A the set of all split projective

graded left ideals of MZ[A][D,1J of rank 2.
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Take such a graded left ideal L € G(A), then

= &
L 911L 822L

and because all matrixelements eij are homogeneous, it follows that 911L
is a graded submodule of A ® A(-1) which is split projective of rank 1

because

e., e,. L=e,. L
Ji 11 33
Conversely, if M is a graded split projective submodule of rank 1 of

A ® A(-1), then

= ®
L M 821 M

is a graded split projective left ideal of rank 2 of MZEA)(D,1]. Therefore

it will be sufficient to represent the functor
4 g _ e -
brassq[U, 1) :gr-Comm AlgS [P] Sets.

which assigns to a Z-graded R [P] algebra A the set of all graded split
projective rank one submodules of A © A(-1). As in the ungraded case we

will do this by representing the subfunctor Gr%, i=0,1, of Grass%(o,—ﬂl
which assigns to a Z-graded R [P ] -algebra A the set of all the elements

ME Grass%[D,—1) such that the composite morphism {(which is gradation

preserving)

("2 u
Al-1) ety A ® A(-1) ———y M

is an isomorphism. Here ¢, ¢ A—=>A® A(-1) and ¢, 00 A(-1) > A e A(-1)
are the natural gradation preserving injections and u is the uniguely
determined gradation preserving splitting map for M. Suppose we have

a situation :

Ao A(-1)
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such that v o wi is an isomorphism and let w be its inverse and v = w o u
which satisfies v o wi = 1A(—i]'
Conversely, suppose we have a gradation preserving morphism v which

satisfies v © ¢i= then it 1is clear that

PYSESE
M=A¢®@® A(-1)/Ker(v]

is an element of Gr?[A). One can therefore identify Gr%(A] with the set

of gradation preserving split morphisms of wi. Therefore, if one defines

mappings
a, ¢ HOM (A @ A(-1),A(-1)) = HOM, (A(-1},A(-1)) sa.lv) = v o o,
i A 0 A 0 i i
Bi : HDMA[A @ A[-1J,A(—i))o - HDMA[A[_iJ,A(—iJ]O;Bi(VJ = 1A(—i]

then Gr%(A) can be viewed as the kernel of the couple [ai,ﬁi].

We claim that the functors

. . ® - -4
Ay + gr Comm Algg 1 = Sets; A, (A) = HOM (A ® A(-1),A(-1))

Bi : gr Comm Algs [P] - Sets; Bi[A) HDMA(A[‘I),A[“I]%

are representable by graded schemes.
In order to proves this claim, let us pause a moment and define graded

vector fibres.

Interludium : graded vector fibres.

)

Let A be a Z(n -graded commutative ring and let E be a graded A-module.

The tensor algebra T(E) = i§1 (®1E3 is given the natural Z[nlngradation,i.e.
@) = 3 E ®.9QEF
v ) (]
G +.40 =Yy 1 m
1 m

The symmetric algebra over E, S(E) is obtained W(E) by dividing out the

homogeneous (!) twosided ideal generated by the elements x ® y - y ® x,

(n)

x and y in E. Therefore, S(E} admits a natural Z ' ~"-gradation.

By the universal property of S((E) it is now fairly trivial to check that
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(n)
gvery gradation preserving A-linear morphism E - B, B being a Z -graded

commutative A-algebra factorizes uniquely in

£ty sE)—E5B
wherel is the natural map and g is a graded A-algebra morphism. Further,
one verifies easily that for graded A-modules E and F, there is an
isomorphism of graded A-algebras between S(E @ F) and S(E) ® S(F) where
the tensorproduct is graded as usual.

The graded vector fibre VE(E) of the Z'™

-graded A-module E is then
defined to be the graded affine spectrum SPECE(S(E)). Note that VE(E)
is a graded SPECB(A)-scheme which represents the functor HOM_(E 8%—,-]8,

e being the identity element of Z[n]. Let us give a typical example :

Example 6 :

let ¢ € Z[n], then there is an isomorphism of graded A-algebras between

S(A(0)) and A[t] where t is an indeterminate with degree -o

- Z(n)

More generally, let Uq,m, N

, then

S[A[oq] ® ., 0 A(on]) = A[X - ,xn]

17
where deg[XiJ = -0,
Clearly, we are now in a position to to represent the functors Ai and
Bi defined above. The functor Ai is represented by the graded scheme

VE(S[P] (i) ® S[P] (i-1)) whereas the functor B, is represented by

VE(S[P]). More specific :

A wms SPECE(S [P1IX,Y 1) deg(X) = 0  deglyY) = 1

A, wwd SPECE(S [P]IX,Y]) deg(X) = -1 deg Y = O

1
B A SPECE(S [P]1IX1) deg(X) = O
B~ SPECE(S [P ][V ] deg(Y) = O

The maps o, then correspond to the graded scheme morphisms :
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o = £ :oEc® s[PIIXY] > SPECES[P1IXI

a, - f, . spEC® s [P1IX,Y] ~ SPECES[PIIY]

arising from the natural algebra inclusions, whereas the maps ﬁi correspond

to the morphisms

8 > g 1+ sPEC®s[PIIX,Y] - SPECBs[PI1[X]

B, = g, spEC® s [PI1IX,Y] = sSPec® [P1IY]

coming from the graded algebra map sending X to 1 (resp. Y to 1).

g

Therefore, the functor Gro is represented by the kernel of the followlng

diagram of graded scheme morphisms

f
0

SPEC® S [PIIX,Y ] s SPECE s [P1[X]

&o

spec® S [PTIX,Y]

Tt isfairly easy to verify that this kermel equals VE(X-1) = sPEc® s [P1[Y]

g

where deg(Y) = 1. Similarly, the functor Gr1

is represented by the

kernel of the diagram :

.F
spec® S [P I X,Y ] mmme—y SPECE S [P 1[Y]

g4
sPEC® s [P1IX, Y]

which is egual to v8(y-1) = speC® s [P1[X] where deg(X) = -1. Having
that the subfunctors Gr? are representable by graded schemes over
sPec® s [P], we will now glue them together in order to represent
Grass% {(0,-1).

First, we aim to compute the fundamental modules for the subfunctors

Brf . That is an element Mo € Grass%[ﬂ,-1) (s{pPliYy}l) and

m, € Grass% (0,-1(S [P]1[X]) such that for every graded commutative
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S [P ]algebra A the natural one-to-one correspondences between

HOM(SPECE (A), sPECE(S [P1[Y])) and Gr§ (A) and between

HOM(sPECE (A),SPECE(S [P 11X 1)) end Gr%(/\) are given by assigning to
. y 24 X~ g *

a scheme morphism y, T' (SPEC®(A),¥ EMO]] resp. T'(SPEC®(A),¥ (Mqll-

An easy computation shows that :

1R

M (s[pllyles[pPllY]l (-1)/(-y,ns[P1lY]

o S[PIIY] O

IR

(s{Plixines[rPlIx1)/70,-X3s[P}[XxX])(-1)

M

, =S [PIIX](-1)

see [ 14 ] for a detailed computation.
The open set of spec®s [P]1[Y ] over which we have to glue sPEcEs [P 1Y ]
with SPEC®S [P][X ] is the set for which the composed map ¥ is an
isomorphism.,

s[pllyl@ e sfpP]llY] (-1

ykoey JY, s [P1IVY]

STPIIY] (-1) — — e > M

Now, Y(S [PlIY] (1) =Y S [P}[Y] (D), thus x®(Y) is the desired open
set.
Similarily, x®(X) is the open set of SPECSS [P1[X] for which the

composed morphism 7'’

s[rPllyl@es[P]lYl-1)

Xxf—-xe 0
ay’
SIPIIYI O o e e e e 5 M,
is an isomorphism. Concluding :
Proposition 4 : The functor Fiﬁﬁs is represented by a graded scheme

GRASS%io,—ﬂ over SPEC® S [P ] which is obtained by gluing SPECEs [P1[Z],

1

deg(Z) = 1, together with spec® s [P] [2—1] over SPEC® s [p1iz,z 'L
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The scheme GRASS%(D,—1] can be interpreted as the graded one-dimensional

projective space over S [P].

Above, we mentioned that the part of degree zero (or e) of a graded
scheme 1s often a usual scheme. In particular, the part of degree

zero of the graded scheme GRASS%(D,—1) is the S-scheme which is obtained

by gluing Spec(S [P] ) with Spec(S[P1_ ) over Spec(S[P]). This
=pec] >0 =ReC) <0 =RET

scheme is never regular !

Example 7 : Let A =C[X,-]then S can be taken to be A [t ]t = X2.

In this case, the part of degree zero of GRASS%[D,—1) is the scheme

obtained by gluing two affine cones (i.e. Spec T [x,y,t] /(xz"ytJJ

over the complement of a ruling.

CASE 2 : P = {p,g} end dim, _(A/Am+P+Q) = 1.

It follows from lemma 3 that there is no étale extension of R which

splits Z. However, one can find an étale extension R1 of R such that

A® R =R _® R,i®e R1j ® R,1j with i2 = p and j2 = g. Moreover, there

1 1 1 1

. . 2
exists an extension S = R1 [X]/ (X"-p)} which splits Z and such
that the ring S(®) defined in the proof of proposition 3 is a graded
gtale (and even Galois) extension of R1 [P], in particular S(®) is

graded regular. This entails that

[A®R1] [P]® S(®) = MZESUI’JJ(O,I,O )

2
Further, a small computation show that the Oi’s may be chosen to be

e or (0,1). The case that 01 = 02 = g cannot occur since this would

entail that

[R,l [PDle,e)

A G
Ao = (0] =
R1 [P] Mz[S( J)(e,e) M2

Therefore we may may assume that U1 = g and 02 =0 = (0,1).
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Our first objective will be to represent the functor :
g :
FS : gr Comm AlgS(¢] - Sets

which assigns to any graded commutative S(®)-algebra A the set of all
split projective graded left ideals of rank two of MZ(A)(B,UJ. As in
case 1 it is readily verified that this problem is equivalent to finding

a representation of
Grass%[e,—o] : gr Comm Algs[é]'*Sets

Mimicing the arguments of case 1 in the Z ® Z-graded case one can prove.

Proposition 5 : The functor Fg {or Grass%[e,OJJ is represented by a

graded scheme GRASS%(B,UJ over SPECgS[Q) which is obtained by gluing

SPECE®S(®) [Z ], deg(Z) = 0, together with SPEC®S () [2_1] over

sPEC®s (@) [2,Z7)

.

By graded Galois descent, one can then find the graded scheme over

SF’ECgR,I [P] which represents the functor

& gr Comm AlgR = Sets

1P
which assigns to a graded R [P ] -algebra A the set of all graded
projective split left ideals of A1 [P]l® A of rank two. A concrete

computation of this graded scheme can be found in [14] .

B. a representation of FA.

We will restrict attention here to case 1. If one has an explicit form
of the graded scheme over SPECgR1 [P ] representing the functor £2 in
case 2 one can easily mimic the argument below.

It AE QS’ then it follows from the key lemma that there is a natural
one-to-one correspondence between elements of FAﬁBS[A] and graded

SPECES [P ] -scheme homomorphisms from SPECEA [P ] to GRASS%(U,—1J.
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Now, any such graded scheme morphism
o : SPECBA [P] = GRASS%(D,—1)

is determined by graded S [P] - algebra morphisms :

¢, + S[PI[Z] » A[P]

0. :s[P11Z ] »AIP]

2
such that their localizations (v,). and (¢212_1 yield the same graded

S [P] -algebra morphism

¢, ¢ SIP] (2,271 »A[P]

Clearly, ¢, is completely determined by ¢1(Z] EAI[P h = A.p. Therefore

1

there is a natural one-to-one correspondence between S [P ] -algebra
morphisms from S [P][Z] to A[P] and S-algebra morphisms from
S[X,Y] 7/ (X-pY) to A.

Similarly, ¢. is completely determined by yztz_q) eAalrPl, =A.

2

Therefore there is a one-to-one correspondence between graded S [P] -
algebra morphisms from S [P ] [2_1] to A[P] and algebra morphisms

from S [ x'q] to A.

Finally, there is a one-to-one correspondence between graded S [P] -

1

algebra homomorphisms from S [P ] [Z,2 '] to A[P]and S-algebra

1, Y}/ (X-pY) to A. Therefore, if X denotes the

"

morphism from S [ X,X
S-scheme obtained by gluing Spec S [ X,Y 1/ (X-pY) with Spec S [ X
over Spec S [X;X—1,Y] /(X-pY), then there is a natural one-to-one
correspondence between graded SPECgS [P]-scheme morphisms from
SPECEA [P] to GRASS%(O,-1) and Spec(S)-scheme morphisms from Spec(A)

to X.

Theorem 1

In case 1 the étale local structure of the scheme representing the
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functor Fa is the scheme obtained by gluing Spec S[Y] with Spec S[Z]

over Spec S [Y,Z2]1/ (p YZ-1).

The scheme BS’A over Spec(R) which is obtained by étale descent from
the S-scheme X is called the (weak) Brauer-Severi scheme of A and it
represents the functor FA.

If one can compute the full Brauer-Severi scheme of A, BSA, we
conjecture that there is always an open immersion BS'A -> BS,. Let

A

us conclude this paper with an example :

Example 8 : (cfr. ex 2 and ex. 7). The scheme X over Spec @ [t ] has

fibers which can be visualized as

degenerating to a pair of distinct affine lines.

.a family of conics,

The étale local structure of the full Brauer-Severi scheme was computed

by Artin. Its fibers can be visualized as a family of conics, degenera-

ting to a pair of projective lines meeting transversally at one point,
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,-P’L
. S . . . . 1
It is fairly easy to give an open immension of X in BSA ® AC' The weak

Brauer-Severi scheme misses one point corresponding to the left ideal

of rank two L in

a a
A®¢[t]/(tJE( )
(t)/(ty «a

where
0 C
[_:
2
(tl/t) 0O
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