THE BASS-QUILLEN CONJECTURE AND MAXIMAL ORDERS.

by
L. Le Bruyn

August 1983 83-22




THE BASS-QUILLEN CONJECTURE AND MAXIMAL ORDERS.

Lieven Le Bruyn (%)
University of Antwerp, U.I.A.

(%) supported by an NFWO-grant.

0. The problem.

In 1955 J.P. Serre wrote in his famous article "Faisceaux Algébriques

Cohérents':

"On ignore s'il existe des k[X1, cens Xn]—modules projectifs de type fini

(k un corps) qui ne soient pas libre'.

The moral impulse behind this question is that the affine n-space Ai should
behave like a contractible space in topology and hence should only have trivial
vectorbundles over it.

In 1976, D. Quillen and A. Suslin independently proved the validity of

Serre's conjecture. Actually they proved the stronger result:

Theorem (Quillen-Suslin)

If R is a commutative regular domain of Krull dimension < 2, then any finitely
generated projective module P over R[X1, cees Xn] is extended from R.

In view of this result one is led to the following natural extension of the

original Serre-conjecture:




Bass-Quillen conjecture:

If R is a commutative regular domain of finite Krull dimension; then every
finitely generated projective module P over R[X1, cees Xn] is extended from R.
Using techniques such as Quillen induction and Quillen patching one can show

that this conjecture is equivalent to the following one:

(BQR): If R is a commutative regular local domain of finite Krull dimension,

then every finitely generated projective module P over R[t] is free.

If one supposes that P is a graded module with respect to the natural gradation
on R[t], then P is indeed free. This result was already contained in the
classical book of Cartan and Eilenberg. Another positive result about
(BQR) was proved independently by Lindel—LﬁtHebohmert and Mohan Kumar.

If R is a complete regular local domain of finite Krull dimension, then
(BQR) holds. The essential point in this case is that

R = k[[X1, cees Xn]] for some field k by the structure result of Cohen.

To deal with the Bass-Quillen conjecture in the general (equi-characte-
ristic) case, a natural ideal would be to go to the completion ﬁ of the
regular local domain R, in vohe the validity of (BQ&) and then somehow try
to make a descent to the original regular local ring R. This descent part,
however, is no easy task and so far no one has been able to carry it out
successfully.

In this note we aim to give some translations of this descent-problem in
noncommutative ring-theory, in particular the theory of maximal orders and
of Azumaya algebras. This approach has the extra advantedge that one can
now invoke ring theoretical features (such as spectra; regularity, etc.)

in order to obtain more information.




1. Descent and homogenization of maximal orders.

Let us recall some standard definitions, cfr. e.g. [5]. If R is any ring
and R[t] is graded in the usual way, i.e. deg(t) = 1, then one can build
out of any graded R[t]-module M the graded R[t,s]-module (where deg(s) = 1)
in the obvious way. If we decompose an element m € M into homogeneous

elements, say m = M+ e tmoF oL T, where deg(mi) = i; then

. . * .
we can associate to it an homogeneous element m € M[s] given by:

* k+1 1 ‘ . * . .
mo=m S e  FIMSTH Lty We say that m 1is the homogenized

element of m. Conversely, if u is an homogeneous element of Mls], say

JHler +u stP 4o uy sP where deg(u;) = i, then

U_ = U._k " e e 0
L A is said to be the dehomogenized element of u.

Now, let N be a (not necessarely graded) RI[t]-submodule of M, then by N* we
mean the R[t;s]-submodule of M[s] generated by the elements n*, n € N.

Any homogeneous element n € N* is of the form sr, n: where ny € N and

r > 0, This graded module is called the homogenized module of N.

Conversely, to a graded R[t,s]-submodule L of M[s] one can associlate

L

o = {u.; u € h(l)} where h(L) denotes the set of all homogeneous elements

of L. From [B] we retain that there is an exact functor:
E : Rit,s]-gr = R[t]-mod; E(M) = R[t,s]/(s-1) M

such that E(L) = L, for every graded R[t,s]-submodule L of some MIs] .

We will consider a faithfully flat extension of regular local rings

R € S with corresponding fields of fractions K € L. By a suitable gradation
on Mn(L [t] ) we mean a gradation which extends the usual gradation of

R[t], K[t}, S[t] and L[t]. If A is an Azumaya algebra over R[t] which is
contained in Mn(K [t]), then one can homogenize A as an R[t]-submodule of

the graded R[t]-module Mn(L [t]).




A typical example of a suitable gradation is taking an element o € GLn(L[t])

and defining the set of homogeneous elements of degree m of Mn(L[t]) to be
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the set a .tm.Mn(L),ow/

Proposition 1:

If A is a factorial Krull domain, then the following two statements are
equivalent

(1): every projective rank n A-module is free

(2): all endomorphism rings of projective rank n A-modules are isomorphic

as A-algebras.

Proof.
(1) = (2): trivial.
(2) = (1): (cohomological proof).
It follows from a sheaf version of the Skolem-Noether theorem, cfr. e.g.
[4, Iv.2.3, 2.4] that the sequence:
1>¢ ~>GL >PGL -1
is exact both in the Zariski and étale topology. We obtain:
(4) HL (L g~ Hy (X, GL) ~Hy (X, PGL) > Hp (X, &)
Ui 2!1 L L

HOX, ¢y ~HL (X, GL) ~H (X, PEL) > Ho (X, ¢)
where the two first 1somorph15ms come form [4, p. 134]. A being factorial,
Weil and Carter divisors coincide and therefore H%a X, 92) =1,
yielding the exact sequence'

1= Z (X, PGL ) *-H (X PGL ) - Br(A).
Now, H (X PGL ) is the set of A-algebra isomorphisms of rank n,

Azumaya algebras over A, whence H1 (X PGL ) classifies endomorphisms in

B of projective rank n A-modules upto A-algebra isomorphism.




Because A is factorial it follows from (+) that
1

Za
(ring theoretical proof):

1 . o
Hy (X, G-En) = H X, PQ_Ln) finishing the proof.
if P is a projective rank n A-module, then it follows from
EndA (P) = Mn (A) that P has endomorphisms tp], ooy 9 such that

= 6 = . 3 s
2 o) tpj i vs and ¢ 21 1p. One can easily deduce from this that P
has a decomposition
P =94 (P P9, (P) & ... @cpn P

into reflexive A-modules of rank one. Now, A being factorial this entails

that P is a free A-module.

Remark:

The cohomological proof given above has the advantedge that rit gives a method
to compare information about isomorphism classes (gs A-modules) of projective
rank n A-modules with information about isomorphism classes (as A-algebras)

of their endomorphism rings for arbitrary Krull domains A. In general however
this comparision will depend upon Pic(A), H%a (X, 92) and the kernel of the

natural map Br(A) - Br(Q(A)).

We will now apply prop. 1 to the case of interest to us; i.e. RC S a
faithfully flat extension of regular local rings and A will be an R[t]-
Azumaya algebra contained in Mn(K [t] ), which will be an endomorphism ring
of a projective rank n R[t]-module since Br R[t]<sBr K(t) because RI[t]

is a regular domain, cfr. [6].

Therefore, if we agssume that S satisfies the Bass-Quillen conjecture,
then one can find every R[t]-Azumaya algebra A contained in Mn(K[t])

an element a, € GLn(L [t]) such that A ® S[t] = ocl—x1 .Mn(S [t]).ap-




Theorem 2: (faithfully flat descent)

With notations and assumptions as above, equivalent are:

(1) : every projective rank n R[t] -module is free.

(2): for every R[t]-Azumaya algebra A one can find a suitable gradation
on Mn(L[t]) s.t. A" is a maximal Rlt;sl -order and (QX&.Mn(S [’c]).ouA)*

is an Azumaya algebra.

Proof.
(1) = (2): trivial.
(2) = (1): It A*.K(t,s) = EndK(t S) (V) for some finite dimensional
2 .
K(t,s)-vectorspace V, then it follows from [0, Prop. 4.2] that there is
- . - *=
a f.g. reflexive R[t,s] -submodule E of Vs.t. A EndR[t,s] (B).
R -1 X
Because ‘EndR[t,s] (B) ® S[{t,s] = A S[t,s] € (o .Mn(S[t]).@cA) and
bid _ tbid, . .
(EndR[t;s] (E) ® SIt,s]) = EndS [t,s] ((E®S[t,s]) ") is a maximal
S[t,s]-order, it follows that:

Bnd [ o (B SIt,s) = (op'.M it

e,
Hence it is a projective S [t,s]-module. S[t,s] being regular this implies
that E ® S[t,s] is a f.g. projective S[t,s]-module and by faithfully flat
descent E is a f.g. projective R[t,s]-module. This entails that A" is a
graded Azumaya algebra which represents the trivial class in Br(RI[t,s]).

It follows from the injectivity of Br® R[t,s] - Br R[t,s], cfr. [2, Prop. 2]
or [1]1 for the more general case, that A = ENDR[t,s] (P) for some f.g. ’
graded projective R[t,s]-module P.

Now, P = PO ®R{t,s] by [7, Th. 4.6] yielding that

A = EndR (PO) [t,s] = Mn (R[t,s] ) because R is a local ring.

Applying the exact functor E(-) on both sides yields A = Mn [R[t]) and

Prop. 1 finishes the proof.




2. Some possible approaches.

A first idea might be to put on Mn(L[t]) the gradation defined by conjugation
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with o, since then we have that (°°/_x1‘Mn(S[t”'°‘A)* =0, .

A
Mn(S[t,s] ).a, is an Azumaya algebra. However, for arbitrary u,, A need

not be a maximal order as the following example shows:

Example 1. (Swan, Stafford)

Let R be any commutative Krull domain and suppose that S is an overring

of R which contains an element x which is trancendental over R or algebraic
of degree = 3 so that 1, x, xz are linearly independant over R. Now choose
A= EndR[t] (P) where P is free of rank 2, then S[t] ® P = S[t] ® S[t]

but we change the base for this by the transvection

- 1 X.t
0 1 »

getting A C oc.M2 (S1t1) .oc_1 . For convenience we will look at the isomorphic
situation: 06_1.A.oc CM,(SItl). If

n a. b. . ‘
X = = ( 1 1) tte A

i=0 C. d.
i i

then we obtain that o™ '.A.a equals

n a. b. . n -c. a.-d. L1
p) ( 1 1) e = ( 1 1) Xath -

0 c. )
( 1) X2l
i=0 C. d. i=0 0 C.
i i i

n
=
= 0 0

and this representation is unique since tl, X.t‘J, xZ.tk are linearly independent
* *
over R. In order to see that A 1is not a maximal order observe that A

is free as a R[t,s]-module on:

1T 0 0 1 1 0 70 1
( );A=( );B=( )s+( )x.t and
0 1 0 0 0 0 0 O
0 0 -1 0 0 1
( ) 52 + ( ) .X.S.T .- ( ) .xz.t2
1T 0 0 1 0 0

—
1l

(@]
1l




which follows from inspection from the expression for ou_1 .A.a above.

The multiplication table is

A B C
A 0 0 s.B
B s.A s.B 0
C s2.1 - sB s.C 0

1

whence the free R[t,s]-module with basis 1, A, s '.B, C is also an order

which contains A properly.

Another idea might be to put on Mn(L [t]) the usual gradation. Then we will
see below that both A and (a/f .Mn(S [t]).a A)* are maximal orders. However,
(oal-c.Mn(S [t]).a A)* need not be an Azumaya algebra as the following example

shows:

Example 2. (Le Bruyn, Van den Bergh)

Let a, b € S such that b {"a and b is not a unit in S, then consider

a
w=f1 3t
0 1
We have
1 a a ‘ a a a2 2
-3 a(t) B(t) 1 Trt . a(t) --\-ﬁ(t)t 8(t) +Tft(a(t)—6(t)) —-;Zy(t)t
o 1 J\v® s f\o 1 v(t) §(t) +£ ty(v)

Using this form it is not to hard to calculate that (oc_‘1 M, (SIt] )oz)"r is

generated as an S[t,s]-module by the following matrices:




s 31; 0 1 -2 st —?2 £4
G = ; G = 5 G =
1 0 0 2 \o o 3 2 4
0 0 0 0
Go = ; G, = ;
5> Yo b [
1 0 0 0
Gy, = and G, =
8 0 1 9 bs at

It is now fairly easy to check that (a_1 MZ(S[t])u)* is not a projective

S [t] -module.

We will now investigate when A is a maximal order. Altough all results
remain valid for arbitrary Z-graded Krull domains and maximal orders in
graded central simple algebras, we will restrict attention herxe to the

case considered above.

Lemma 3.

* . . * .

AS’ the localization of A at the homogeneous element s in an Azumaya
algebra over R[t;s,s_1],

Proof.

Because A is a subring of the graded ring Mh(L[t]), it follows that A¥ is
a graded subring of Mn(L[t,s]). Because s is a unit of degree one in the
grade ring A; it is clear that A; = (A;)O [5,5—1], where (-)O denotes the
part of degree zero.

Now, (A;)O =3 s_k, (Af)k and further

(Af)k = {s1 A*; AE A, 1 + deg (x*) = k} and therefore any element

X € (A;)o is of the form:




-1 -n

X=A .5 V4 .o+ s kwheredeg(x ) =n.and A_ + ...+ A A.

n n. n. i n n

1 k i 1 k

. * . .
Define a map ¢ : A > (AS)O by sending A = )‘n1 ol F xnk to
™ M
v(A) = A, S ool + >‘n .s =, then ¢ is a ringisomorphism whence
1 k

(A:)O is an Azumaya algebra over y(R[t]) = R[t.s_1] . Finally,

v A; = (A:)O [5,5_1] is Azumaya over R[t,s~1] [5,5—1] = R[t,s,s_1] .

From this lemma we retain that A is a prime p.i.-ring. A" being Z-graded,
its center is also graded. Clearly, Z(_A*) » © Z(A) + R[t] whence

R[t,s] C Z(A*) C Z(A‘k),,:’r C R[t,s], whence Z(A*) = R[t,s]. The next fagct,
which was brought to my attention by T. Stafford, shows that the problem
of checking maximality of Ny actually reduces to the corresponding problem

*
for Mn‘(K[t]) .

Proposition 4.

The following statements are equivalent:
* . .
(1): A is a maximal R[t,s]-order.

(2): Mn(K[t] )* is a maximal K[t,s]-order.

&roof .

For any nonzero element x of R it is clear that (A*)x = (AX)*, showing

that A*.K[t,s] = Mn(K[t] )*. Therefore, the implication (1) = (2) is
trivial.

(2) = (1): Let T be an R[t,s]-order containing A such that r.T C A" for
some r € R[t,s], then A*.K[t,s] C Tr'.X[t,s] and

r.TKt,s] € A"Kitys] = M_(K[t]1)*. By maximality of M_(K[t])" this entails

that AN c T C M (K[t] ).




Therefore we can define the internal homogenization F(g) of r, cfr. e.g. [5].
A ¢ P‘Eg) C Mn(K [t] )*' whence A = (r(g)) showing that

F(g) C (r(g))** c A" whence A = T(g) and thus finally A = r.

In particular, if we take the usual gradation on Mn(L [t]), the A s a
maximal R[t,s]-order since Mn(K [t] f)* = Mn(K [t,s]) and a similar argument

shows that (oc-_1 M (S [t]_).ocA)* is maximal.

We will now investigate which o, can arise. With AZ () we will denote the
A
set of all A-Azumaya algebras contained in £. Clearly, U(Z) has a natural

action on A,

(£) by conjugation. Now, look at the pullbach-diagram:

- ® Sit}
r A M (L0t1))
A M _(Kit] e :
AT i ®
conj. I[1 conj.
)
M _(K[t})) x GL_(L[t]) s GL_(L[t])
Mgy " - .
- - 0 ////

e

-

- ;//—
G (KIt])

Therefore, we are interested in the following set:

BQ(S/R) = I, (A, (M_(K[t])) x GL (LIt]) = Im ¢)

R[t]
Theorem 5. (faithfully flat descent, first approach)
With notations and assumptions as above, equivalent are:
(1) : every projective rank n R[t]-module is free.

(2): Yo € BQ(S/R) : Mn(K[t] )* is a maximal order.




Proof.

Suppose that A is an endomorphism ring of a projective rank n R[t] -module
which is not isomorphic:to Mn(R[t] }, then we may suppose that A is
contained in Mn(K[t]) (upto isomorphism).

Therefore, A ® S[t] = o | M_(St]) .6 for some o € BQ(S/R).
Using Prop. 4 the homogenization of A with respect to the gradation on

Mn (L[t]) defined by conjugation with o is a maximal order and therefore

Th. 2 finishes the proof.

Theorem 6. (faithfully flat descent, second approach).

With notations and assumptions as above, equivalent are:
‘\

(1): every projective rank n R[t]-module is free.

(2): Vo € BQ(S/R) : (a'1.Mn(s [t1),0)" is a flat S[t,s]-module.

Proof.

-1
o

As in the proof of Th. 5 A® S[t] = .Mn(S [t]) .o for some
o € BQ(S/R). By Prop. 4 both R and (oc"1 .Mn(S[t]).oc)* are maximal orders
where homogenization is with respect to the usual gradation on

M_(LIt]). Therefore, (a ' M (S[t]).o)" is a reflexive S[t,s]-Azumaya

algebra which is Azumaya by [3; Prop. 3.11. Th. 2 now finishés the proof.
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