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Quillen Patching for Maximal Orders

Lieven Le Bruyn.

Throughout this note, R will be a Krull domain with field of fractions

K and £ will be a central simple K-algebra. Two maximal R-orders in %,

A and T', are said to be conjugated if there exists an a € E* scuh that

A = qu.F.a. It is clear that this defines an equivalence relation on

the set of all maximal R-orders in Z; the (pointed) set of equivalence'
classes will be denoted by tR[ZJ and is called the type number of R in

2, In[4,5] the author presented a cohomological interpretation of this
invariant and calculated it in the special case : X = Mn(K] and R locally

factorial. It turned out that in this case the type number contains a

lot of information about (reflexivel} modules over R.

This fact shows that it is an arduous tash to study the behaviour of the
type number under polynomial extensions since any positive result on it
will probably shed some new light on deep module-theoretic guestions
such as the Bass-Quillen conjecture. With this short note we aim to
provide a tool which we think will be useful in such a study, namely a
maximal order equivalent of the fampus Quillen patching theocrem for
modules, cfr. [B] . Let A be any maximal R t]-order in Z(t), then we
define

I(A) = {f € R|3 maximal‘Rf~order Fin 2 : AF is conjugated to I'[ t]¢.

Theorem 1. (Quillen patching for maximal orders)

If A is a maximal R[t]-order in Z(t), then I(A) is an ideal of R.

Proof. Clearly R.I(A) C I(A) and therefore it remains to show that whensver

f and f, are elements of I(A), so is f + f, = f,.
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- After replacing R by R A by AF etc. we may therefore assume that ?O

-FJ
and f1 are comaximal elements in R.

Choose maximal RF -orders Fi in Z such that AF o Fi[t] as RF [t] - al-
i ‘ i i
gebras. Then, we have :

(A/tA), =T
o

(A/tA)¥1 = F1

0

and hence it is no restriction to impose that FO = FF and I', =T
0

where I' = A/tA, Therefore, take R [t] - algebra isomorphisms

v, A - I [T]

Reduction modulo t gives an R, -algebra isomorphism =

i

and hence, after composing wi with the extended isomorphism

[t]: F€ [t] ~ FF [ t] we can take R1C [t] - algebra isomorphism :
i i i

such that wi reduces modulo t to the identity map of FF . With these
. 1

notations we have the following localization-diagram :

loc. loc.

A > < A
fa Fo-Fﬂ fg
wO / wl]
N
1 1
r.[t]—=> T, [t]————-——-ﬂ [t]«—-ﬂc—r Lt
fo fof
- _ ,

0: . _ - o .
where [quFO o (woij is an R$0Fi[t] algebra automorphism of
r [t].
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We claim that 6 is given by conjugation with a unit of Fjc % [t] . From
0o'1

[5] we retain that the following exact diagram is a commutative one

1

J

1—> Outcent(T, . ) — C1°(T, p ) = CLT, ) ——> 1

—

Of1 D 1 OF1
1 —>» Outcent(d 1CF[t]J—-am £ [t])-—-—-—)Cl[F m[t]]—é 1
J d
1 1

where for every maximal order © we denote with C1°(8) (resp. C1(0)) the
quotient group of the groups of divisorial ©-ideals generated by a

central element (resp. normalizing element, i.s. an element, s.t.

x.0 = ©.x) and Outcent (@) = Autcent(®)/Inn(®), cfr. e.g. [21].

Now, suppose § € Outcent [t]) then by the diagram above there

oot

*
exists a normalizing element n of FF . and a unit v € F€ - [t] such
‘ 1
0
that 6 is given by conjugation with n.y. Because 6 reduces to the
. * * *
identity modulo t we have that n.y(o) € K, so n F_F . K whence
o1
6 is given by conjugation with 7(01_1.7 =0 , i.2. with a unit of
P€ - [t] ., finishing the proof of our claim.
1

*
Becausge al(0) = 1; there exist by [ 3,v.1.3] units o € Ff [t] such that:
)

¢} .
1-FO O'F/]

If we denote by S, conjugation with the element x and Bi = c, 0 wi, then

i
we obtain the following commutative diagram :
loc. loc.
A - > A € A
FO {qu fﬂ
0 0
3 =
o ( o]F1 [01)fo 1
r.rt] 2 s or, L [t] et rolt]
.FO‘ 4 ‘FO.‘F/I ~ 'F,I




To finish the proof of the theorem, fo and F1 are comaximal elements of

R and therefore the front and rear square of the diagram below are pullback

diagfams. The existence of an R[t ] -algebra isomorphism A > T'[t]

amounts essentially to the fact that the pullback construction is a

functor.
Armm— A
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“—
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In the next theorem we aim to refine this result in the special case

that 2 = Mn[K].

Theorem 2: If R is any Krull demain and A is a maximal R[t] -order in

*k
Mn[K[tJJ, then I(A) = R,

Proof.

By the foregoing theorem, I(A) is an ideal of R and hence X(I(A)) =

{P € Spec(R) : I(A) ¢ P} defines an open set in the Zariski topology

(1)

on Spec(R). IFf X (R), the set of height one prime ideals of R, is

contained in X(I(A)), then we are done. Therefore, suppose p € X[q](RJ
such that I(A) € p., Because A is a maximal order in MoKCEdD,

A=FE (M} for some reflexive R[t]- module M, cfr. [1] . Because

ndR[t]
R [t is a regular ring of global dimension two, A = End (M)
is an Azumaya algebra since Mp is a reflexive and hence projective

Rp['t]-module. By Seshadri's theorem, cfr. e.g. [ 3]. MD is free and

therefore A =M (R [t]).
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This entails that there exists an element alt) &€ GLn[K[tJ] such that

1

A]:J = alt) . Mn(Rp[t]].a[t). From this one deduces by localizing

further that

A= att) (R[t].
n p

o[ t] alt)

[t]]'

A = alt) "M R[E] ) .alt)
q n g

(1

for all g € X (R[t]) such that g "R= 0. By a standard argument as

in the proof of [5, Th. 2.6.] one can extendthese equalities to an open

subvariety X(J) of Spec R[t] for some ideal J of R[t]and such that

ity {ge x M RreD : gNRrR = 0} € X

(R} € X(3) N Spec(R) C X(I(A)).

L kk k4 Kn (1)
Therefore, suppose that J =P, * L. 0% P [t] for some Py € X

¢ x (R[] € X(), then X
(R)
*k
all different from p, then J N R ¢ p.
*k
So, take f € (J N R) \p, then

A= on(t]~1

] M R[]0 a(t)

(1) (

because X[J**] N X (R{tD = X{J) N X 1J(R['t]] and this entails

*k : :
that F[X[J],QA) = I"(X(J ),QA) because B is a Krull domain.

Therefore, I(A) ¢ p for any p € X(q][R], finishing the proof. .

It follows from the theorem above that in case R is a Dedekind domain,
any maximal R[ t]-order in Mn[K[tJ) is conjugated to some I'[t] where
' is a maximal R-order in Mn[KJ. Therefore, we recover the classical

Bass-Serre theorem cfr. e.g. [ 3] which states that every f.g. projective

R[t]-module is extended from R in case R is a Dedekind domain.

Theorem 2 does not hold for maximal orders in arbitrary central

simple algebras, even if we restrict attention to Azumaya maximal orders.




Let k be any field and A a finite dimensional skewfield over it, then
A[t] is a maximal k[t]-order in £ = A(t) such that every left ideal of
A[t] 1is free entailing that tk[_thJ = 1. However, by a result of
Ojanguren and Sridharan, cfr. e.g. [ 3], there exists a f.g. projective
left ideal of 4[t,s] which is not free, say L. It is clear that A = Or[LJ
is a maximal k[ t,s]-order (even Azumaya) which is not conjugated to an
extended one, and therefore I(A) is a proper ideal of the Dedekind

domain k[ t].
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