FAITHFULLY FLAT DESCENT AND THE BASS-QUILLEN CONJECTURE.

by Lieven Le Bruyn (The author is supported by an NFWO-grant.)

October 1982

82-42

FAITHFULLY FLAT DESCENT AND THE BASS-QUILLEN CONJECTURE

Lieven Le Bruyn^(*) University of Antwerp, U.I.A. October 1982

(*) the author is supported by an N.F.W.O.-grant (Belgium)

0. Introduction

Bass [3] and Quillen [10] asked whether any f.g. projective $R[X_1, ..., X_n]$ -module is extended from R if R is a regular domain of finite Krull dimension. Using Quillen induction, this question is readily checked to be equivalent with the following:

(Bass-Quillen conjecture) If R is a regular local domain of finite Krull dimension , then every f.g. projective R[t]-module is free.

Lindel And Lütkebohmert [5] and Mohar-Kumar [7] proved this conjecture in case $R \simeq k[[X_1,...,X_l]]$. By the structure theorem of Cohen this settles the problem for complete regular local rings of equi-characteristic (i.e. $\operatorname{char}(R) = \operatorname{char}(R/m)$ if m is the unique maximal ideal of R). To deal with the conjecture in the general (equicharacteristic) case, a natural idea would be to go to the completion, invoke the result over the completion, and then somehow try to make a descent to the original regular local ring ([4,p.162]).

With this note we aim to present such a faithfully flat descent argument for the Bass-Quillen conjecture.

1. The tools:

A. Homogenization:

Let us recall some definitions from [9]. If R is any ring and R[t] is graded in the usual way, i.e. deg(t) = 1, then one can build out of any graded R[t]-module M the graded R[t,s]-module (deg(s) = 1) M[s] in the obvious way. If we decompose $m \in M$ into homogeneous elements, say $m = m_{-k} + \ldots + m_0 + \ldots + m_l$, $deg(m_i) = i$ then we can associate to it an homogeneous element $m^* \in M[s]$ given by: $m^* = m_{-k}s^{k+l} + \ldots + m_0s^l + \ldots + m_l$. We say that m^* is the homogenized element of m. Conversely, if u is an homogeneous element of M[s], say $u = u_{-k}s^{k+l+p} + \ldots + u_0s^{l+p} + \ldots + u_ls^p$ with $deg(u_i) = i$, then $u^* = u_{-k} + \ldots + u_0 + \ldots + u_l$ is said to be the dehomogenized element of u.

Let N be a (not necessarely graded) R[t]-submodule of M then by N^* we mean the R[t,s]-submodule of M[s] generated by the elements n^* , $n \in N$. N^* , which is clearly a graded R[t,s]- submodule of M[s], is called the homogenized module of N. Any element $n \in N^*$ is of the form $s^r.n_1^*, n_1 \in N$ and $r \geq 0$.

Conversely, to a graded R[t, s]-submodule L of M[s] one can associate $L^* = \{u^*; u \in h(L)\}$ where h(L) denotes the set of homogeneous elements of L.

From [9] we retain that one can define an exact functor:

$$E: R[t,s] - gr \rightarrow R[t] - mod; E(M) = R[t,s]/(s-1) \otimes M$$

such that $E(L) = L^*$ for every graded R[t, s]-submodule of some M[s]. For more details the reader is referred to [9].

Let us consider the following situation: if $K \subset L$ is a commutative field extension and if $\alpha \in GL_n(L[t])$ then one can put a gradation on $M_n(L[t])$ by defining the set of homogeneous elements of degree m to be the set $\alpha^{-1}.t^m.M_n(L).\alpha$. Clearly, this graded structure extends the usual gradation of K[t] and L[t]. Now, let R be a Krull domain with field of fractions K and let Λ be an Azumaya algebra over R[t] which is contained in $M_n(K[t])$, then one can homogenize Λ as an R[t]-submodule of the graded R[t]-module $M_n(L[t])$ (with the gradation defined by α).

Proposition 1 : With notations as above we have :

 $(1): \Lambda_s^*$, the localization of Λ^* at the homogeneous element s is an Azumaya algebra over $R[t, s, s^{-1}]$.

(2): Λ^* is a maximal order over R[t, s].

Proof (1): Because A is a subring of the graded ring $M_n(L[t])$, it follows from [9,p.79] that Λ^* is a graded subring of $M_n(L[t,s])$. Because s is a unit of degree one in the graded ring Λ_s^* it is clear that $\Lambda_s^* = (\Lambda_s^*)_0[s, s^{-1}]$, where $(-)_0$ denotes the part of degree zero. Now, $(\Lambda_s^*)_0 = \sum s^{-k} \cdot (\Lambda^*)_k$ and further $(\Lambda^*)_k = \{s^l \cdot \lambda^*; \lambda \in A_s^* : \lambda \in$ $\Lambda, l + deg(\lambda^*) = k$, and therefore any element $x \in (\Lambda_s^*)_0$ is of the form x = $\lambda_{n_1}.s^{-n_1}+...+\lambda_{n_k}.s^{-n_k}$ where $deg(\lambda_{n_i})=n_i$ and $\lambda_{n_1}+...+\lambda_{n_k}\in\Lambda$. Define a map $\psi: \Lambda \to (\Lambda_s^*)_0$ by sending $\lambda = \lambda_{n_1} + ... + \lambda_{n_k}$ to $\psi(\lambda) = \lambda_{n_1} \cdot s^{-n_1} + ... + \lambda_{n_k} \cdot s^{-n_k}$. It is rather trivial to verify that ψ is a ringisomorphism and therefore $(\Lambda_s^*)_0$ is an Azumaya algebra over its center $\psi(Z(\Lambda)) = \psi(R[t]) = R[t.s^{-1}].$ This finally entails that $\Lambda_s^* = (\Lambda_s^*)_0[s, s^{-1}]$ is an Azumaya algebra over $R[t.s^{-1}][s, s^{-1}] = R[t, s, s^{-1}]$. (2): From part (1) we retain that Λ^* is a prime p.i.-ring. Since Λ^* is Z-graded, its center is also graded. Clearly, $Z(\Lambda^*)_* \subset Z(\Lambda) = R[t]$ whence $: R[t,s] \subset Z(\Lambda^*) \subset$ $(Z(\Lambda^*)_*)^* \subset R[t,s]$ and therefore $Z(\Lambda^*) = R[t,s]$. Let Γ be an R[t,s]-order in $\Sigma = \Lambda^*.K(t,s)$ such that $\Lambda^* \subset \Gamma$ and $r.\Gamma \subset \Lambda^*$ for some $r \in R[t,s]$. If we denote with $Q^g(\Lambda^*)$ the localization of Λ^* at the multiplicative set of all nonzero homogeneous elements of R[t,s] , then it follows from part (1) that $Q^g(\Lambda^*)$ is an Azumaya algebra over the Krull domain $Q^g(R[t,s])$, so $Q^g(\Lambda^*)$ is a maximal order. Because $Q^g(\Lambda^*) \subset Q^g(\Lambda^*).\Gamma$ and $r.Q^g(\Lambda^*).\Gamma \subset Q^g(\Lambda^*)$, it follows that $\Gamma \subset Q^g(\Lambda^*)$ so we can define $\Gamma^{\}}$, the internal homogenization of Γ , [9,p.36] , i.e. the R[t,s]submodule of $Q^g(\Lambda^*)$ generated by the highest degree terms of elements of Γ , them $\Gamma^{\}}$ is clearly an order in Σ such that $\Lambda^{*} \subset \Gamma^{\}}$ and $r_{m}.\Gamma^{\}} \subset \Lambda^{*}$ where r_{m} is the highest degree term of r. In order to obtain from this that $\Gamma^{}=\Lambda^{*}$ we have to check that for every graded ideal I of Λ^* and every homogeneous element $q \in Q^g(\Lambda^*)$ such that $I.q \subset I$ we have that $q \in \Lambda^*$ Now, $I.M_n(L[t]).q \subset I.M_n(L[t])$ whence we may assume that $q \in M_n(L[t])$. Hence, $I^* \cdot q^* \subset I^*$ and because I^* is an ideal of the maximal order Λ it follows that $q_* \in \Lambda$ and therefore $q = s^k.(q_*)^* \in \Lambda^*$ for some $k \geq 0$. Thus, $\Gamma^{\dagger} \subset \Lambda^*$ which entails that $\Gamma \subset \Lambda^*$, finishing the proof.

B: Graded Brauer groups:

Graded Azumaya algebras and graded Brauer groups were introduced by F. Van Oystaeyen in [11]. Let us briefly recall the definitions. If R is a \mathbb{Z} -graded ring then a graded Azumaya algebra Λ is simply an Azumaya algebra over R with a \mathbb{Z} -graded structure extending the gradation of R. Two graded Azumaya algebras Λ and Γ are said to be graded equivalent if there exist graded f.g. projective R-modules P,Q such that there is a degree preserving algebra isomorphism $\Lambda \otimes END_R(P) \simeq \Gamma \otimes END_R(Q)$, where the endomorphism rings of P and Q are graded in the natural way, cfr. e.g. [9,p.6]. The graded Brauer group of R, $Br_g(R)$, is defined to be the graded equivalence classes of graded Azumaya algebras.

Clearly, the functor which forgets the gradation defines a morphism $Br_g(R) \to Br(R)$. Injectivity of this map for Gr-Dedekind domains was proved by F. Van Oystaeyen [11,2.11] and recently for graded Krull domains by M. Vanden Bergh (unpublished). Injectivity for arbitrary Z-graded rings was announced by S. Caenepeel. Because for graded regular domains the proof is rather trivial, we include:

Proposition 2: If R is a graded regular Krull domain, then the natural morphism $Br_g(R) \to Br(R)$ is injective.

Proof: Suppose that Λ is a graded Azumaya algebra which is of the form $\Lambda = End_R(P)$ for some f.g. projective R-module P. With K^g we will denote the localization of R at the multiplicative set of all nonzero homogeneous elements of R, then K^g is a graded field (i.e. all homogeneous elements invertible). Because $\Lambda \otimes K^g$ is trivial in $Br(K^g)$ and $Br_g(K^g) \to Br(K^g)$ is injective, [11] we obtain:

$$\Lambda \to K^g \otimes \Lambda \simeq END_{K^g}(V)$$

for some f.g. graded projective K^g -module V. Let $\{v_i; 0 \le i \le n\}$ be a basis of V over K^g consisting of homogeneous elements and denote $F = \sum R.v_i$. Identifying Λ with its image in $END_{K^g}(V)$, $E = \Lambda.F$ is a f.g. graded R-module containing

a K^g -basis of V. Then, there are natural inclusions:

$$\Lambda \subset END_R(E) \subset END_{K^g}(V)$$

and because Λ is a maximal R-order , $\Lambda = END_R(E)$. It follows from [2,Prop.4.1] that $END_R(E) \simeq END_R(E^b)$ (where E^b denotes the bidual of E). Because Λ is a f.g. projective R-module and R is regular , E^b is f.g. projective [8,Th.11.5] and graded, finishing the proof.

2: The proof

For any commutative domain R one denotes with PGL_n the automorphism scheme of the n-dimensional projective space over R, i.e. PGL_n is the sheafification of the presheaf which assigns $PGL_n(\Gamma(U, \mathcal{O}_R))$ to an open set U of X = Spec(R), cfr. [6,p.134]. As usual, \mathcal{O}_R is the structure sheaf of R.

Proposition 3: If R is a locally factorial Krull domain, then $H^1_{Za}(X, PGL_n)$ is the set of R-algebra isomorphism classes of endomorphism rings of projective rank n R-modules.

Proof: It follows from a sheaf version of the Skolem-Noether theorem, cfr. e.g. [6,IV.2.3,2.4] that the sequence:

$$1 \to G_m \to GL_n \to PGL_n \to 1$$

is exact as a sequence of sheaves of groups both in the Zariski (Za) and étale (et) topology. Therefore, one obtains the exact diagram:

$$H^1_{Za}(X,\mathcal{O}_R^*) \to H^1_{Za}(X,GL_n) \to H^1_{Za}(X,PGL_n) \to H^2_{Za}(X,\mathcal{O}_R^*)$$

$$H^1_{et}(X,G_m) \to H^1_{et}(X,GL_n) \to H^1_{et}(X,PGL_n) \to H^2_{et}(X,G_m)$$

where the two first isomorphism come from [6,p.134]. R being locally factorial Weil divisors coincide with Cartier divisors yielding that the sequence below is exact in the Zariski topology:

$$1 \to \mathcal{O}_R^* \to K^* \to \mathcal{D}_R \to 1$$

where \mathcal{D}_R is the sheaf of Weil divisors and K^* the constant sheaf with sections K^* , the nonzero elements of the field of fractions K of R. Using flabbiness of \mathcal{D}_R this entails that $H^2_{Za}(X,\mathcal{O}_R^*)=1$. So, we obtain the exact sequence:

$$1 \to H^1_{Za}(X, PGL_n) \to H^1_{et}(X, PGL_n) \to Br(R)$$

where the factorization of $H^1_{et}(X,PGL_n) \to H^1_{et}(X,G_m)$ through Br(R) comes from the proof of [6,IV.2.5]. Finally, $H^1_{et}(X,PGL_n)$ is the set of R-algebra isomorphism classes of rank n Azumaya algebras, hence $H^1_{Za}(X,PGL_n)$ are the isomorphism classes of trivial rank n Azumaya algebras, finishing the proof.

Corollary 4: If R is a locally factorial Krull domain such that Pic(R) = 1 then $H^1_{Za}(X, PGL_n) = 1$ iff all f.g. projective rank n R-modules are free.

Proof: Because $H^1_{Za}(X, \mathcal{O}_R^*) = Pic(R) = 1$ we obtain as in the foregoing proof that $H^1_{Za}(X, GL_n) \simeq H^1_{Za}(X, PGL_n)$. Finally, $H^1_{Za}(X, GL_n)$ is the set of isomorphism classes of projective rank n R-modules, [6,p.134], finishing the proof.

Theorem 5: (faithfully flat descent for the Bass-Quillen conjecture) If $R \subset S$ is a faithfully flat extension of regular local domains and if every f.g. projective S[t]-module is free, then every f.g. projective R[t]-module is free.

Proof

In view of the Auslander-Buchsbaum theorem [1] and the foregoing results, we have to check that $End_{R[t]}(P) \simeq M_n(R[T])$ as R[t]-algebras for every projective rank n R[t]-module P. If K (resp. L) denotes the field of fractions of R (resp. of S) then we can replace $End_{R[t]}(P)$ by an isomorphic R[t]-algebra Λ such that $\Lambda \subset M_n(K[t]) \subset M_n(L[t])$. For, $End_{R[t]}(P) \otimes K[t] \simeq End_{K[t]}(P \otimes K[t]) \simeq M_n(K[t])$ because all projective modules over K[t] are free.

Because S[t] is flat over R[t], $\Lambda \otimes S[t] \simeq \Lambda.S[t] \subset M_n(L[t])$, so, $\Lambda.S[t]$ is a trivial S[t] Azumaya algebra and therefore $\Lambda.S[t] \simeq M_n(S[t])$ by the assumptions on S and Coroll.4. By the Skolem-Noether theorem, cfr. e.g. [6,IV.1.4] this isomorphism comes from an inner automorphism of $M_n(L[t])$, hence we can find an element $\alpha \in GL_n(L[t])$ such that the diagram below is commutative, all inclusions being canonical:

$$M_n(K[t]) \subset M_n(L[t])$$

$$\Lambda \subset \alpha^{-1}.M_n(S[t]).\alpha$$

On $M_n(L[t])$ we define the gradation determined by α as in section 1. Since $\alpha^{-1}.M_n(S[t]).\alpha$ is clearly a graded subring of $M_n(L[t])$, homogenization yields the following commutative diagram:

$$M_n(K[t])^* \subset M_n(L[t,s])$$

$$\Lambda^* \subset \alpha^{-1}.M_n(S[t,s]), \alpha$$

It follows from Prop.1.(1) that $\Lambda^*.K(t,s) \simeq End_{K(t,s)}(V)$ for some finite dimensional K(t,s)-vectorspace V. Because Λ^* is a maximal order in $End_{K(t,s)}(V)$ (Prop.1.(2)), there exists by [2,Prop.4.2] a f.g. reflexive R[t,s]-submodule E of V such that $\Lambda^* = End_{R[t,s]}(E)$.

Because $End_{R[t,s]}(E) \otimes S[t,s] \simeq \Lambda^*.S[t,s] \subset \alpha^{-1}.M_n(S[t]).\alpha$ and $(End_{R[t,s]}(E) \otimes S[t,s])^b \simeq End_{S[t,s]}((E \otimes S[t,s])^b)$, cfr. [2,Prop.4.1] and [4,Prop.2.13], is a maximal S[t,s]-order, it follows that:

$$End_{S[t,s]}(E \otimes S[t,s]) \simeq End_{S[t,s]}((E \otimes S[t,s])^b) \simeq \alpha^{-1}.M_n(S[t,s]).\alpha$$

Hence it is a projective S[t,s]-module. Because S[t,s] is a regular domain this implies that $E \otimes S[t,s]$ is a f.g. projective S[t,s]-module, cfr. e.g. [8,Th.11.5]. S[t,s] being a faithfully flat extension of R[t,s] entails that E is a f.g. projective R[t,s]-module.

This entails that Λ^* is a graded Azumaya algebra which represents the trivial class in Br(R[t,s]). It follows from Prop.2 that $\Lambda^* \simeq END_{R[t,s]}(P)$ for some f.g. graded projective R[t,s]-module P. Now, $P \simeq P_0 \otimes R[t,s]$ by [4,Th.4.6] yielding that $\Lambda^* \simeq End_R(P_0)[t,s] \simeq M_n(R[t,s])$ because R is a local ring. Applying the exact functor E(-) on both sides yields: $\Lambda \simeq M_n(R[t])$, finishing the proof.

The same argument remains valid in case R and S are local factorial domains such that $Br(R) \to Br(K)$ is monomorphic.

Corollary 6 : (Bass-Quillen conjecture : equicharacteristic case) If R is an equicharacteristic regular local domain then every f.g. projective R[t]-module is free.

References:

- [1] M.Auslander, D.Buchsbaum; Unique factorization in regular local rings, Proc.Nat.Acad.Sci.USA, 45, 733-734, (1959)
- [2] M.Auslander, O.Goldman; Maximal orders, Trans. Amer. Math. Soc. 97, 1-24, (1960)
- [3] H.Bass; Some problems in classical K-theory, LNM 342, 1-70, Springer Verlag, Berlin, (1972)
- [4] T.Lam; Serre's conjecture, LNM 635, Springer Verlag, Berlin, (1978)
- [5] H.Lindel, W.Lütkebohmert, Projektive Moduln über Polynomialen Erweiterungen von Potenzreihenalgebren, Archiv. der Math., 28, 51-54, (1977)
- [6] J.Milne; Etale cohomology, Princeton University Press, (1980)
- [7] N.Mohar-Kumar; On a question of Bass and Quillen, preprint, Tata institute of fundamental research, (1976/77)
- [8] M.Orzech, C.Small; The Brauer group of commutative rings, Pure and Appl.Math. Vol 11, Marcel Dekker, New York, (1975)
- [9] C.Nastasescu, F. Van Oystaeyen; Graded and filtered rings and modules; LNM 758, Springer Verlag, Berlin, (1979)
- [10] D.Quillen; Projective modules over polynomial rings, Invent.Math. 36, 167-171, (1976)
- [11] F.Van Oystaeyen; Graded Azumaya algebras and graded Brauer groups, LNM 825, 158-171, Springer Verlag, Berlin, (1980)