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Splitting by Galois Objects.

By L. Le Bruyn.

0. Introduction.

Results due to S.U. Chase - A. Rosenberg [1] and 0.E. Villamayor -

D. Zelinski [12], a.o0., may justify the assertion that Amitsur cohomology
is the right one as far as splitting phenomena are concerned. However

this cohomology lacks one pleasant property : a manageable description

of the split Azumaya - algebras determined by 2 - cocycles.

In the fields case, such a description exists for Galois field extensions
using group cohomology. This is the well known (classical) crossed

product theorem (see e.g. [4]. For a relatively big class of field extensions
(among which are the finite normal and modular extensiens) one can extend
this result using a cohomelogy theory, due to M.E. Swaédler [8], for
algebras which are modules over a given " Hopf algebra. The conditions

we must impose on . the field extension N/k are precisely the ones needed
for N to be a Galeis object over k, in the sense of S. Chase - M. Sweedler
[2].

In the ring case, the De Meyer - Ingraham sequence [ 3] for Balois extensions
of rings offers a satisfactory generalization of the classical crossed
pfoduct theorem. Again, these Balois extensions are nothing but a special
case of the more general notion of Galois object.

Hence, it became plausible that one could find a seven term exact

sequence in about the same manner Sweedlers result generalizes the
classical crossed product theorem.. The purpose of this note is to prove
this assumption. Using this sequence we will explicitly describe a set

of Azumaya algebras which generate the p-component of the Brauer group

of a commutative ring of characteristic p.




The main application (and indeed the main motivation for writing out
this note) will be the study of splitting by modular ringextensions,

in the sense of F. Van Oystaeyen - A. Holleman [5], [11]. This will
draw some new light on results of F. Van Oystaeyen en the p-component
of the Brauer groups of a field of characteristic p [10], and make it
possible to extend some results to the ring case. In this note we
contend ourselves to hint at the connection, and hope to return to this

topic in a subseguent paper.

1. Galois Objects.

In [ 2], Chase and Sweedler introduced the notion of Galois object. Their
main motivation was to extend the fundamental theorem of Galois theory
for commutative rings, replacing the finite group of automorphisms in
the classical theory by a Hopf algebra.

In this section we define Galois objects. (our definition differs sightly
from the one given in [2], in order to avoid technical difficulties in
the sequel), recollect some properties as proved in [2] and give some
examples. Necessary Hopf-theoretic notions can be found in [2] and [9].
Let R be a commutative ring with unit. A Hopf algebra H over R (with
multiplication m, umit ¥, comultiplication A, counit ¢ and antipode S
will be called finite if H is a finitely generated projective R-module.
For such an Hopf algebra H we can form its dual prf algebra H* = HomR(H,RJ
with multiplication A*, uhit é*, comultiplication m*, counit y* and
antipode S*, Throughout this section H will always be a finite Hopf

algebra over R.

Definition 1.1. : An H-object is a pair (S,a) where S is a commutative

*
R-algebra and a:S -+ S ® H 1is an R-algebra morphism satisfying




fc®1) oa=01® ﬁ*J oa:S—>S® H* ® H*

(1 ®>u*] 0oa =g + $S>S®R=R
If C is an R-coalgebra ; A, B are R-algebras and ¥ : C ® A > B is an
R-module morphism.

We say that .C measures A to B if for all c € C and for all a, a' € A :

Y (c ® aa’) = [%} v (0[1] ® al ¥ (0(2) ®a')
v le® 1) =¢ (c) 1y
where we used the Sweedler - Heyneman notation : ACECJ = (%) 0[1]® Coye

We will ow associate with every H-object (S,a) a measuring from S to S.
S o . _ 1 = 3
Let us dencte & la Sweedler -Heynemann a(s) 2y %1 ® S (53 with

*
€S and s €H . Now, define v : H® S > S by ¥(h ® s) =

St (2)
z LIt 1 i i ing.
) s(q] <s(23,h> It is easily checked that ¥ is a measuring. From

now on ¥{h ® s} wil; be abbreviated to h;s.

Definition 1.2. : Let (8,a) be an H-object. We define the R-algebra

*
g 1 S®S=*S®H by the formula

homomorphism ¥
) = ( yi= 3 ‘ ‘
Ws[x ® V) (x ® 1) aly) % X yqu ® y[z)
(S,a) will be called a Galois H-ebject -if the following conditions hold
S is a faithfully flat R-module

*
S: S® S5 ~>38S®H is an isomorphism

Y
If S is an H-object, we define an R-algebra S # H as follows. As an R-
module S # H = S ® H except that we write s # h rather than s ® h.
Multiplication in S # H is defined by the formula :

(s # h)(t # g) = (E] sﬁh(q].tl # h(2] g
S # H is an algebra, called the smash product of S and H. We define a
left S # H - module structure on S by the formula

(s # M)(t) = s(h.t) (s,t € S5 h € H)

From ['2] we recollect the following :




Proposition 1.3 :

The following are equivalent for any H-object S :

(1) S is a Galois H-object

(2) S is a f.g. faithful projective R-module and the mapping

¢ : S#H-~> EndR[S],\arising from the left S # H-module structure on S

is .an isomorphism of algebras.

Proposition 1.4 :

Let S be a Galbis H-object, D = S # H and
J=1{h €H VYh €H:hh=¢glh')h} a right ideal of H.
Then the functors
D-mod - R-mod M- JM
R-mod- ~ D-mod N—-5®&N
are isomorphisms of categories. In particular, M = S ® JM as left D-modules

far any M in D=mod.

Proposition 1.5.

Let S be a Galois H-object, then

ST = fe €S| VheH: hs=clhis} =R

Example 1 (cfr. [7])

Let G be a finite group and let R [G] denote the group algebra of G

over R; then R [G] is a finite ' R-Hopf algebra. An R-algebra S is Galois

RG] - object if and only if the following conditions are satisfied :

(1) There is a representation of G as a group of automorphisms of the
R-algebra S.

(2) S is a faithful R-algebra and R is the subring of G-invariant
elements of S

n

(3) There exist elements XyoonesX 3 YgunmeesV of. S such that igja[xini =

5091 fqr 0 € G.




Thus, Galois R [ G]l-objects are precisely the Galois extensions in the

sense of De Meyer-Ingraham [ 3] with Galois group G.

Example 2.
Let us recall that an R-algebra S is said to be modular over R in the
sense of F. Van Oystaeyen [ 183}, [11] and A. Holleman [ 5] if there is a
finlte abelian group G and set mappings

u:6->5 o0 Uy

f:6xG6 - UR)
{with U(R) the multiplicative group of invertible elements) with the
the following properties
(a) the induced R-linear mapping U : R[G] - S is an isomorphism.

(b) Yo, € G : UgY, = flo,7) Ugr

The group G is called the basic group of S. Itis uniquely determiﬁed

by the algebra structure of S, [11]. It is clear that S is a free R-module
with basis {u0,0 € G},

Let R [G:r be the dual Hopf algebra of the Hopf algebra R [G]. Letting
{vo,o € G} be the dual basis for R [Gj*,'{va,o € 6} is a set of pairwise
orthogonal idempotent elements whose seem is the ldentity element of

R [G]* Counit and comultiplication are given by :

A Vo T > V} ® V07‘1

;s oelv ) =8
3e g

1,0

ok .
RG] = R[G] has basis {wb,o € G}

Proposition 1.6. : If 8 is a moduler ringextension of R, then S is a

*
Galois R{G] sobject if G is the basic group of §

Proof.
Let us define : a«.: S > S8 ® RI[G]

[ ®
Uy Uy ® W,




- *‘ _

*
(a ® 1o a[uol = Uy ®w ®w = (1®mJ o a(uol
*
(1Q®u Joa = u, ® 1 = 1S[u0)
*

thus (S,a) is an R[G] -object. Further, S is clearly faithfully flat,
hence it will be sufficient to prove that the map
Y : $S® S >SS Q®R[G] Uo®u7_l-ucu;®w,r

is an isomorphism. This follows from the fact that all flo,7) are

invertible elements of R. O

Example 3

Let R be a commutative ring of characteristic p and let S be a purely

DB

inseparable extension of the form R[x] / (x" - a); a € R.
H will be the cocommutative finite Hopf-algebrz with basis

{h.; 1 = 0,...,p%-1} and with :

3

i+ , L
hoho = (09 h.+, 5 Alhr) = .2 h, ® h
: i]i+] i=o i r-

* ‘

H will be the Hopf-algebra with basis {gi; i=o,...,pe—1} and
Xlg) = =

;m gi = i

4] (];) V3 @ i
J=siv ‘

*) = *lg.) =8
& - go,u gj h Ooj

It is easy to.check that S is a Galois H-object with

* . . . -
a:5->H axd)= xI® g, * z (‘?)::xJ T ® g4

1=i<]

2. Hopf Cohomology.

In this section we will extend the work, as originated in [81, to.the ring
case and to arbitrary contravariant functors from the category of
commutative R-algebras to the category of Abelian groups.

Recall that, i1f C is an R~coa1gebra and A an R-algebra, then HomR[C,A)

can be given an R-algebra structure. For f,g € HomR[C,A) the product




* i : (e) =
f* gism, o (f® g)o.AC. Thus for ¢ € C, £ * glc) (E]ffc(qjg[C[z)J.

A

The unit element of HomR(C,A) is “A 0 &pn- This product of functions is

alled convolution. If C is a cocommutative R-coalgebra and A is a
commutative R-algebra, then it is clear that HomR(C,AJ is a commutative
R-algebra. In the sequel, H will be a cocommutative Hopf algebra over R
(i.e. where the underlying coalgebra is cocommutativel). A will be a
commutative R-algebra and ¥ : H ® A - A measures A to A. For o < g let

@FH denote H R...® H g-times. ®1 H has the coalgebra structure on the

tehsor product of coalgebras (cfr. e.g. [2], [9D; & H = R.

The Hopf cohomology arises from the cosimplicial algebra

—

SCH,A) : Hom_ (8 H,A) 3 Hom_ (®* H,A) 3 (® H.A) 3 ...
R R - -

where S is used en hommage de M.E. Sweedler, with the commutative R-

algebras. Hom (@7 H,A) as defined above and with face operators

R
5. : Hom, @9 H,A) > Hom, @1 H,A)
i R R
specified by
8 (f) = ¥(I ®F)
6i (f) = fFI® ... I®MR®I ®...° I) withm at place i, for i = 1,...,q
SQ+1(F) = mAPF®8]

A contravariant functor F from.the category of commutative R-algebras to
the category of Abelian groups will carry the cosimplical algebra S(H,A)
to a cosimplical Abelian group which becomes a cochain compléx S(H,A,F)
with alternating sums of face operators as boundary homomorphisms. For

n = o, to the Hopf cohomology group HnEH,A,F) are the cohemology groups

of the complex S(H,A,FJ.

Some examples.

The functors U and Pic from commutative R-algebras to Abelian groups

are the usual ones : U(T) is the group of invertible elements of T,




and Pic T is the group of isomorphism classes of invertible (projective
rank one) T-modules.

Let us briefly look at Hi[H,A,u] for i = 0,1 and H°(H,A,Pic).

8] [HomR(®° H,A)) = U(A) and if a € Z°(H,A,u)) then for all h € H : (h.a) =
= ¢{h)la and hence a ¢ AH N U{A). Thus H® (H,A,U) = U(AH]. If S is a Galois
h-object, then by Prop. 1.5. H°{H,S,U) = U(R).

If £= 5 € Zqu,A,U) then pl{e ® ¢) = Y(I ® f) * ;1 m* f ® ¢ or

fm = YlI ® f) * (+ ® ¢). Thus for all h,h' € H :

F(hh') = = (h., . FCh deth’ ) = = (h
ttney (1) ( (r) 2" T oy

hence, f can be viewed as a "crossed” homomorphism and quH,A,U) is the

) A A L)

(1 (2}
group of crossed homomorphisms modulo the subgroup of inner crossed
homomorphisms, i.e. of the form Dq[a) for a € U(A). For h € H, Dq(a)(h3=

-1
= (h.a) a.
At this point it is worth mentioning that one can prove in-exactly the same

way as in [ 8] :

HYRIG ], A, U) % HI(B,U(A)) for all q = O.

3. Comparison with Amitsur cohomology.

Let S be a commutative R-algebra. The Amitsur cohomology (cfri: [1]) arises

from the cosimplicial algebra.
Cis/R) : s 3 e83 &’ 3 ...,
P -

—
where ®hS denotes the k-fold tensor product with itself and the face

operators di ¥ ®h8 - ®h+18 are given by ditx1®...<® Xk] =

= ><,1® e ® x:i ®’l®xi+,] ®.,.®><K,

of S and o =1 = K.

the xj being arbitrary elements

Theorem 3.1. : If S is a Galois H-object, then C(S/R) and S{H,S] are

isomorphic as cosimplical algebras.




Proof.

*
lety : S® 5 > 3S ®H be the algebra isomorphism as defined in 1.2,
Y : H® S - S the with a corresponding measuring and we will denote

Y{h ® s) = h.s.

$ /!

First we will define R-algebra isomorphisms nq : @17 5 > Hom(®" H,S)

as follows :
. \ Y * 0 ‘ o
g=1=%m, is the composite S® S > S ®M = Hom (H,3) with 6 (s®u)(h) =

= s <u, h>. Clearly, 7, is an R-module isomorphism, so it will be

1

sufficient to check that ¢ is an algebra map.

* i
Let *D be convolution in H ; *j convolution in Hom (®" H,S)¢

6 [ (s@u)(t®v)]h) Ght®m*OWEM

=st< u* v,h>
)
= st .2 ulh,, ,v(h
= Z (sulh
{h)

= 2 6(s®u)lh
(h)

= [0 (s* u)*q g{tev)] (h)

138 vih, )

() (2)

[,”0 (t ®v) (h(zj

Thus n, is an algebra isomorphism.

1
g>1= Let ﬂq be the composite :
. g-1 x« T, ®1 R *
o1ls 8% (gfs) @ i —1  tomeT ! H,8) ® H

0, (5] (h®h') = £(n) <g,h’> Hom(®" H,S)

Again, ﬂq is glearly an R-module isomorphism and by induction hypothesis

we may assume that = is an algebra map, so it is sufficient to proof

g-1

that Hq is.an algebra map:




_/]O_

o [ (Pogl(h@i)] (hen') =

* * 1 ' =
0 0F % h@gx 1 (hen)

(f *q_thEhJ(g *s i) (h") =

z f(h

2, Flhgqy) nih

(2 &y B ()10
2 2 f(h
(h) (h")

X 2 6 (f®gllh, ., ®ht )6 (h®i)(h ®h! =
(h) (h') R 1) g (2) [2]

[0 (f®g) * 0 (h®1i)] (h®h']. Done.
g g g

Jelh' ., Jhth, ., ith' .)

(1] (n (2") (2)

Next we prove :

h

{...h th—s—3—

(u

ﬂq(so®;_.. ®sq)(h,!®... ®hq] = soh,l.[

q=1: ﬂ1(x<®y3(h3 =02 XY (4
(y)

= X xvy <y, ,h>= x(h.y)

Sqnpe g-1q"°q
Y ) (h)

) (23

g>1: ‘nq(so®...® sa] (h1®...® h‘aJ =

0qo[7rq_1®IJ[ [g

5 ®,.® 5 ®s fs ) ®s) 1 (H®..80 )=
q) 0 -2 g-1""4d (1) q” (2] 1 g
[qusth.[sqhz.[...[sq_zthq_q.sq_qfsq)(131...)<[sq][23,hq> =
" L) . ‘»2 ‘ 3 > LI =
sohy ( hq—1 [Sq~ﬂ [Sq][sq][13 <(sq][2J hq>] )

Soh1'(thZ'["'hq—1(5q—1(hq'sqj"']

Finally we have to check that the following diagrams commute :

w

®q+']S d 3 HDmR [®q H.’S)
di 5,
i
e ﬂq+1 g+1
&It2g 3 HomR[® H,S)

i=0:[86 07 (s®..®s J] (h ®&..®8h )=
0 q 0 a o] g

¢(h0® soh,].[s,lh2

ho'[Soh1'[s1h2'("”[hq'sq)"'} =

w(aaelh_ s )oun) =
g d




_’]/I..

i (1®1 ®..8s )Jh ®...0h_) =
g+1 0 a o] a

(7.,

1=i=q ¢ [6,07 (s ®...®s )] (h ®..®h_ ) =
i "g e a 0 a

o0d((s ®...s )](h ®::,®h_ ) =
o o a 0 a

T (8 ®..® 3 )J(h ®..8h, ,®h, ;h, ®...® H)
g o a o i-2 i-1i a

= Soho'[S1h1'("'8i—2hi—2'[Si—1hi'(sihi+1'("'[hq'saj"']
=7 (¢ ®..®s, , ®1 s, ®..0s )Jlh ®..8 ]

g+l o i-1 i g 0 q
=[n 0d.(s ®..®8s )] (h ®..h)

g+ i 0o q 0 g

i =g+ 1:[8 on (8 ®..3 )] (h ®..®h ) =
g o g 0 a

q+1
7T (s ®.. s J(h ®..®h J g, th ) =
g o q ) a-1 H g

i

SOhO.(S1h1.("'(hQ‘1.SqJ.")€H(haJ

Soho'[51h1'("'hq—1'[Sq[hq.ﬂjj"'] =

i (s ®..s ® 1)(h ®R..®h ) =
g+l o g o g
[ﬂq+1 0 dq+1£so ®. .. ® sq)] (h, ®...® hq)
This finishes the proof. 0

Corollary 3.2. Let F be any coniravariant functor from the category

of commutative R-algebras toc the category of Abelian groups and let S be
a Galois H-object, then for.all g =z o :

~

HY(s/R,F) & HI(H,S,F).

4. The Main theorem.

Now we are able to prove the main theorem of this note :

Theorem 4.1. : Let S be a Galois H-object, then there is an exact seguence :

1> H'(H,5,U) = Pic R ~ Pic S = H2(H,S,U) - Br(S/R) - H(H,S.,Pic) — H°(N,S,U)

Proof.
If S is a Galois H-object, then S is a f.g. faithfully flat projective R~
module, hence "isotrivial” (cfr. [12]). Using the foregoing this theorem

is mothing but a reformulation of the fameous Chase Rosenberg seguence. o
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Corocllary 4.2.: Hilbert's theorem 30

1, then H (H,S,U) = 1

If Pic(R)

Corollary 4.3 : Crossed Product Theorem.

~

If Pic(S) = 1, then Bri(s/R) = HZ[H;S,UJ

Pic (S®S)= 1
Translating the Chase-Rosenberg morphisms via the isomorphisms of Coroll.
3.2 we get group morphisms which are similar to the ones defined in the

De Meyer-Ingraham sequence [ 3]. We illustrate this with two examples.

a H/][H,S,Ulf> Pic(R)

Let f ¢ Zq[H,S,U], we can define a morphism :

0. :SHEM S #H via 0?(s#¢ﬂ'= Z sfth “# h

f (h) (1) (r)
We can form a left S # H-module SF’ which is isomorphic to S as an R-module
Sf, with action : (s # h).s' = QF[S # nh)s' 3 s,s8' €S, h € H.

By Proposition 1.4., we have a left S # H-module isomorphism : Se =S GbJSF.

Now, rankRS = ranKRSf hence JSF € Pic(RJ.

Define a’ : Z'(H.S.U) - Pic(R) by a’ (f) = [Js, 1.
If £ € B'"(H,S,U3, theh there exists a unit a in S with ¥V h € H : f(h) =

= [h.a]éq, hence :

)3t #h_ =3 (Ssth . ..a) #h._.)

GF[S# h} = 2 s(h (2) 1 (2)

(h)
- st et -5

(1)
1(5 # hla.

So, we have an R-module isomorphism ¢ : R - JS_ by ¥{r) = aqr, therefore

£
a' (f) = 1.
Therefore it makes sense to define

a : H'(H,S,U)] - PicR via al{Ff] = [JS$].
Verification of the fact that this is indeed the right morphism is left

to the reader.
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B : H°(H,S,U) » Br(S/R)

We will introduce a generalization of the classical crossed product
construction to arbitrary Galois obejects. Recall in S # H multiplication
is given by :

(s # h)(s" # h') = (i]S(h(1]'s,] # h[z)h"

We akter this multiplication by ¢ + H® Hwe> S ¢ ZZ(H,S,UJ as follows
S #b H is the R-module S ® H with multiplication :

) #0 heayh’

(s # hl(s' # h'}) = 2 sth,,,.8"') o(h ® h’
o o (h). (h') (N (2) (1) (337 (2)
using the convention : (A ® I) o A(h) = Z h(1) ® h[2] ® h(B]

(hi
A boring but important calculation shows that S #oH has an associlative

multiplication if ¢ € ZZ(HQS,U].

5. The p-component of the Brauer group

In this section, R will be‘a commutative ring of characteristic p. We
will explicitely describe a.set of Azumaya algebras which generate the
p-component of the Brauer group :'BE(R]p4 thus characterizing results

of Saltman [B] .

e
Let S be the purely inseparable extension of the form R [x]/[Xp -al;

g €N, a € R and H the corresponding Hopf-algebra, as in example 3 of
section 1. For every ¢ € ZZ(H,S,UJ we will denote :

Rla,e,0) = § #b H.

Theorem 5.7. : BP(RJD is generated by the R(a,e,0).

Proof.

Let- A be an Azumaya-algebra over R of exponent pe, then:by 16, The.8.2]

e e
. i3 - LI p — D -
there a;e 8o ered € R such that A 1s split by R [x1 aqg.,.,xm.,.am]
1/p 1/p®
R [a,l seeoa 1.

Using a result of [1] , A is simllar to an A’ with A’ containing
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e
a’I/p

e
1 5 - .,a;/p ] as a maximal commutative subalgebra of A' and A" is

RI

e e
/p .,a;/p ]. By a theorem of Yuan [ 13},

left projective over R[a,I o n e

=)
A' T A ®...0 Am where Ai contains R [ggp ] as a maximal commutative

e
subalgebra and Ai is left projective over R [ag/p 1.

1
Using the fact that

the kernel of the multiplicatien map R [ag/pe] ® R [al/pe] -+ R [a;/pe]
is nilpotent, oneé can show that the Chase-Rosenberg morphism

B’ HZESi/R,UJ - Br[Si/RJ is surjective, hence B : HZ[H,Si,U) %~Br[Si/R]
is also R [x] /Expe- aiJ. Therefore A, ~ R[ai,e,ai] for some o0 ¢ ZZ(H,Si;U)
and A ~ R(aq,e,aqi ®een® R[am,e,am], finishing the proof. a

Furthermore , as the reader may easily verify

[=] e
R(a,e,0) T R < x,y > /(X" -a, YP - b, XY-vx+1).

6. Splitting by modular ringextensions .

Again, R will be a commutative ring of characteristic p, S a modular
extension (see example 2 of section 1) with basic group G, which is a
p-group. Since the kernel of the multiplication map 3 ® S = § is nilpotent,
the map B : HZER [G:F,S,UJ - Br(S/R) is surjective, henoe every Azumaya
algebra split: by S.is equivalent to S #b R [Bj* for some 6 € H2{R [Gj*,S,U).
Thus,. S #0 RG] * is the tensor product of a Galoils algebra in the sense
of Hoeschmann, R [G] *, and a group algebra R[G] * with a skew
multiplication on it, depending on the 2-coecycle f(a,Bl. in HZ[G,UERJJ
déscribing the algebra structure of. S and of the 2 cocycle ¢ in

* *
HZER IG] ,S,U)i Tt is possible to choose a basis of 8 #0 R[G] .

12

*
{xaa s+ 0 € G} such that ® R x = RI[G] end :

‘ 2 :
g[o,r)yGT g € Hsym (G,U(R) 1]

*
S# RIG] = @R x [y, vV,

ow let us look at the p-component of the Brauer group of a field of
characteristic p, k. If A is a central simple k-algebra in Br(k)p; then

one can prove as in the previous section: that A is split by a purely
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en
-a ]

e
inseparable field extension of the form k [xq,...,xnl/(xp —qq,...,xp N

In[11] F. Van Oystaeyen proved that a field-extension is purely inseparable

of this form if and only if it is a modular field extension with basic

p-group G.

Thus A~L # R[G] T % N = glo,7) z ith N a Galois
us A ~ A [G] & [yf’ Vg¥, = glo,ly g € Hsym] with N a Galoi

algebra and g a symetric 2-cocycle, consistent with [11] .

As promised in the introduction we hope-toc come back ta this topic in a

subsequent note .
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