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0. Introduétion §

Noncommutative Krull rings have been studied in some recent papers, cfr. e.g.
[3],[12],[8]. The mother examples of all these generalizations were studied already
in 1968 by R. Fossum [6] , i.e. maximal orders over Krull domains. One of the main
problems in the theory is to find a suitable generalization of unique factorization
domains and, related to this question, to find a proper definition of a class group.

Several possible definitions were suggested , e.g. the K-theoretic classgroup ,
W(A) , by R. Fossuni [6] , the normalizing classgroup , Cl(A) , by M. Chamarie [3]
and the central classgroup , which has been studied extensively by E. Jespers and
P. Wouters [7],[8]. '

F. Van Oystaeyen [20] and later E. Jespers [7] asked whether for a maximal
order A over a Dedekind domain R , the vanishing of the central classgroup implies
that A is an Azumaya algebra over R. This conjecture is readily checked to be
equivalent with the following :

(Jespers-Van Oystaeyen conjecture) If A is a maximal order over a Krull
domain R , equivalent are :
(1) : A is a reflexive Azumaya algebra in the sense of M. Orzech [14].

(2) : Cle(A) =~ CI(R).




The aim of this paper is to show that this conjecture is virtually always
satisfied. In the first section we treat the local case , i.e. maximal orders over a
discrete valuation ring. If CI°(A) = 1 then either A is an Azumaya algebra or
Z(A/A.m) is a purely inseparable field extension of R/R.m. This result makes
it possible to reduce the study to maximal orders over strict Henselian discrete
valuation rings. Probably, the theory of universal bialgebras associated with or-
ders , initiated by the author in [10], will provide the missing tool to prove the
conjecture in this case. Hopefully, this will be the contents of a subsequent paper.
In this paper we will restrict attention to so called tamifiable maximal orders.
In the second section we prove a global version of the conjecture for tamifiable
orders. If A is 4 flat module over its center , CI°(A) ~ CI(R) entails that A is
a (real) Azumays algebra. Due to some counterexamples of Hoobler, the flatness
condition cannot be dropped. Using the theory of generalized Rees rings (initiated
by F. Van Oystacyen [21] and extended to the noncommutative case in [11]) we
will apply these results in the last section in order to reduce the study of maximal
orders over a Krull domain R to the study of (reflexive) Azumaya algebras over
certain Rees-type extensions R(®P) of R.

The author is convinced that a further development of this approach will lead
to a better understanding of maximal orders.

Part of this paper was written while the author visited the university of Lyon
(France). He likes to thank G. Maury , J. Raynaud and M. Chamarie for their
hospitality and several helpfull conversations concerning Prop.2 . Many thanks
also to F'. Van Oystaeyen , J. Van Geel and M. Vanden Bergh for thelr continuous
help and interest.




1. The local case :

Throughout this paper; A will denote a maximal order over a Krull domain
R , ¥ will be the classical ring of quotients of A which is a central simple algebra
over K , the field of fractions of B .

From [6] we retain that the set of all divisorial A-ideals (i.e. fractional ideals
- A such that (A: A): A= A, cfr. [6]) is the free Abelian group generated by the
height one prime ideals of A ; D(A). With P¢(A) we denote the subgroup of D(A)
consisting of those divisorial ideals which are generated by one central element.
The central classgroup of A, CI°(A) , is defined to be the quotient group D(A)/P°(A)
cfr. e.g. [7],[8].

In this first section we will restrict attention to the case that A is a maximal
order over a discrete valuation ring R such that Cl°(A) = 1 . This means that
the unique maximal ideal M of A is of the form A.m where m is the uniformizing
- parameter of R . In order to check that A is an Azumaya algebra over R, it is
sufficient to check that A/A.m is a separable algebra over R/Rm ,[2].

The condition which appears in the literature , cfr. e.g. [18] , is the rather
trivial one that Z(A/A.m) is a separable field extension of R/Rm (for, A/A.m is
a simple p.i.-ring whence separable over its center). The aim of this section is to
improve this result.

Let L be a separable splitting subfield of £ and let S be the integral closure
of RinL .

Theorem 1 : If A is a maximal order over a discrete valuation ring R ,
equivalent are :

(1) : A is an Azumaya algebra over R

(2) : Cl°(A) =1 and A® S is an HNP-ring

This theorem follows immediatly from the next two propositions. In the first
proposition we aim to improve some results of Reiner and Riley and to reduce our
study to two cases. The proof relies heavily on some results of J. McConnell [5]
atid M. Chasiiaris [3].

Proposition 2 : If A is 2 maximal order over a discrete valuation ring R
with C'I°(A) = 1, then one of the following situations occurs :

(a) : Z(A/A.m) = R/R.m in which case A is an Azumaya algebra

(b) : Z(A/A.m) is a purely inseparable field extension of R/R.m




Proof : The proof will be split up in several steps :

step 1 : First, we claim that it is sufficient to check that prime ideals of the
polynomial ring A[t] which lie over A.m satisfy the unique-lying-over property
with respect to the center R[t]. For, it is rather easy to see that this set of
prime ideals corresponds bijectively to Spec(A/A.m[t]). Now, A/A.m is a simple
p-i.-algebra, whence there is a one-to-one correspondence between Spec(A/A.m/t])
and Spec(Z(A/A.m)[t]). If the claimed condition is satisfied, this entails that there
is a one-to-one correspondence between Spec(Z(A/A.m)[t]) and Spec(R/R.mlt]) ,i.e.
there are no irreducible polynomials over R/Rm which decompose over Z(A/A.m)
in distinct irreducible polynomials. Because Z(A/A.m) is a finite field extension of
R/Rm this entails that Z{A/A.m) cannot contain separable elements over R/Rm
not belonging to R/Rm , finishing the proof of our claim.

step 2 : In [3] , M. Chamarie proved that a prime ideal P of a maximal order
over a Krull domain satisfies the unique-lying-over property with respect to its
center if and only if C(P), the multiplicatively closed set of elements which are
regular modulo P, satisfies the left and right Ore = conditions. Let us first verify
that every P € Spec Aft] such that P M A = A.m satisfies the AR-property. By
[6] 2.7 it is sufficient that P has a centralizing set of generators. Now, m € P
and P/A.mt] = A/A.mlt].c’ for some ¢’ in Z(A/A.m)[t] , because every ideal in a
polynomial ring over a simple ring is generated by a central element . So, (m,c) is
a centralizing set of generators of P. Using [5] Th.6 and Coroll.7 , it will now be
sufficient to check that every ideal of A[t] has a centralizing set of generators. In
fact, the proof of [5] Th.6 uses only the fact that the ideals H,, have a centralizing
set of generators, so we just have to check this property for ideals intersecting A
nontrivially. ' '

step 3 : Let I be any ideal of A[t] such that 7N A 52 0, then INA = A.m”
for some natural number n. Let Iy = py(I) where py : A[f] — A[t]/(m™) is the
canonical epimorphism and let ¢; € I be of minimal degree such that uy(e;) £ 0.
If my is the leading coeficient of ¢; , then clearly pi(my) 5% 0 and Am; A =
A.m't where I; < n , for , otherwise one could lower the degree of ¢1. So, we may
suppose that the leading coefficient of ¢; equals m!t. Because m!t € R and the
degree of ¢; is minimal , e3X — Xey € (m™) for every X € A yielding that py(e) €
Z(A[t]/(m™). If 4 =0 (i.e. mj == 1) then p;i(I) == Aft]/(m").1i (ci), finishing the
proof. If 0 < {; < n and if I 5% (m"™, ¢1), choose ¢; € I of minimal degree such
that po(ce) £ 0 where po @ Aft] -+ AJt]/(m™, cy) is the canonical epimorphism.
Clearly, by a mininial degree argument as before we may assume that the leading
coefficient of ¢ equals m!2 for some lo < I3 and that eaA—\es € (m™, c1) for every
A € A whence pa(ce) € Z(Aft]/(m™, ¢1)). Continuing in this manner one finds after
a finite number of times an element ¢, such that either I = (m", ¢y, ..., ¢s) or the
leading coefficient of ¢,,41 is 1 yielding that I = (m™, ¢y, ..., ¢+1), finishing the




proof.

_The condition : Z(A/A.m) is not a purely inseparable field extension of R/R.m,
is always satisfied in the cases urider consideration in algebraic number theory and
algebraic geometry. For, in these cases , ¥ is a central simple algebra over a global
field or over a functionfield of a variety over a basefield of characteristic zero ,
yielding that R/R.m is a perfect field.

This vast amount of good examples may account for the manifest lack of
interest of order-theorists in the question whether there exist maximal orders
satisflying condition (b) of Prop.2 . Despite this indifference we will prove, just
for the sake of aesthetics :

Proposition 3 : If A is 2 maximal order over a discrete valuation ring R
with Cl°(A) = 1 such that AQ S is an HNP-ring , then situation (b) cannot occur.

Proof : Again, we devide the proof in three steps :

~step 1: Suppose that Z(A/A.m) is a proper purely inseparable field extension
of R/R.m. By a result of [9] we know that the natural map between the Brauer-
groups :

[-®Z(A/A.m)] : Br(R/R.m) — Br(Z(A/A.m))

is an epimorphism. So, there exists a central simple algebra A over R/R.m such
that M3(A) @ Z(A/A) =~ Mi(A/A.m). ’

Replacing A by M;(A), X by M;(Z) A by M;(A) etc. we may therefore assume
that A/A.m contains a simple algebra A over R/R.m such that A/Am ~ A ®
Z(A/A.m).Now, if p: A -+ A/A.m denotes the natural epimorphism we will denote
by A; = p~!(A). Because A; and A share the common twosided ideal A.m , A4,
is an order in ¥ and the center of A; equals R. Furthermore, A.m is the unique
nonzero prime ideal of A; and Z{A;/A.in) = R/R.m. For order purists, A; is a
Backstrom - erder [17] with associated hereditary erder A .

step 2 : Let L be a separable splitting field for ¥ contained in X. Further, let
S be the integral closure of R in L. It is fairly easy to check that S = LN A is a
discrete valuation ring with uniformizing parameter m (this follows e.g. from the
theory of Van Geel primes and their extension theorem [18] ). Now, A ® § is by
assumption an hereditary order in M, (L) which is not maximal because otherwise
A would be Azumaya (cfr. [17] Th.VI.2.8 or an easy descent argument). Now, by
results of Harada or Artin [1] one can describe A ® § nicely in the following way
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with ny + ng + ... + n; = n and 7 > 2. Clearly, 4; ® S shares a common ideal
with A ® S namely (A ® S).m , therefore :

ARS) M CARSCARS

This implies that there are at least j prime ideals of A; ® S lying over mS . The
proof will be complete if we can show that this is not possible.

step 3 : Because £ : A1 — A; ® S is a central extension, prime ideals
intersect in prime ideals, so we have to calculate the fiber of ¢ in A.m. A; being
a finite module over its center and A.m satisfying the unique- lying-over property
with respect to the center, A.m is localizable [20] whence there is a one-to-one
correspondence between this fiber and Spec(A @ S) = Spec(S/S5.m) because A is
a simple algebra with center R/R.m ; S/S.m being a field finishes the proof.

The inverse implication of Th.1 is, of course, trivial. We will end this section
with the presentation of an étale approach to the problem. In particular, we
will reduce the Jespers-Van Oystaeyen conjecture to the special case of a strict
Henselian discrete valuation ring :

Theorem 4 : If A is a maximal order over a discrete valuation ring R
and if R°* denotes the strict Henselization of R then the following statements are
equivalent :

(1) : A is an Azumaya algebra over R

(2) : CI°(A) = 1 and R®* splits &

Proof

(1) = (2) : Trivial because the Brauer group of a strict Henselian local ring is
trivial , i.e. R®* splits A, hence Z.

(2) = (1) : First, we recall that R®** is a discrete valuation ring with unifor-
mizing parameter m ,R°*/R**.m is the separable closure of R/R.m and R —
R*® is an étile extension , hence in particular a Galois extension in the sense
of Chase, Harrisson and Rosenberg [4] . We claim that A ® R** is an HNP=ring
(for, J(A @ R**) = J comsidered as a A-module ,denoted Jy, is f.g. projective and
using the separability idempotent of R®* it is easy to check that the natural map
JA @ R** — J splits whence J is a f.g. projective AQ® R**- module). By assumption
R*®* splits & whence A ® R®* is of the form as described in in the proof of Prop.3
so it will be sufficient to check that the fiber of A ® R°* « R*F at R**.m con-
sists of one element (by a descent argument).Now, this fiber is in one-to-one cor-
respondence with Spec(A/A.m@R** [R** .m) ~ Spec(Z(A/A.m)QR** | R** .m). By




Prop.2 7 (A/A.m) is purely insepara‘ble over R/R.m and R /R"".m is separable
over R/R.m whence this set consists of one element,done.

Remark 5

(2) : By an argument as in the foregoing proof , A ® R*" is always an HNP-
ring with a unique non-zero prime ideal which is centrally generated. Therefore,
A ® R** is a maximal order over R** with trivial central classgroup. Thus, the
Jespers-Van Oystaeyen conjecture holds for maximal orders over R if and only if
it holds for maximal orders over R**. _

(b) : R** splits T always if the Brauer group of a discrete strict Henselian
valued field is trivial. The author’s knowledge on Brauer groups is far too limited
to lift the foregoing sentence to a conjecture.

(c) : Up till now , we have reduced the original question to the following one

Does there exists a discrete valuation ring A (in 2 p.i. skewfield) with central
uniformizing parameter such that its center R is a strict Henselian discrete valua-
tion ring and AfA.m is a commutative (!) purely inseparable field extension of
R/Rm ?

To deal with this problem, some new techniques seem to be inevitable. Perhaps
the theory of universal bialgebras associated with orders (as expounded by the
author in [10]) might prove usefull after all.

2. The global case :

If A is a maximal order over a Krull domain R , then there is a natural
morphism 7 : CI(R) — CI°(A) induced by the morphism © : D(R) — D(A) defined
by ©(4) = (A.A)"". In this section we aim to investigate to what extend Cl(R) =~
Cl°(A) implies that A is an Azumaya algebra over R. Let us first recall some
definitions :

If A i§ aii ofdef over a Krull domiaiti R , éonsider the natural R-algebra
morphism :

m : A° = A @ A°P? - Endg(A)

which is defined by m(3_ a; ® b;)(X\) = X a;. 2 .b;. If A is a divisorial R-lattice (i.e.
A = A""), so is Endg(A). This entails that m extends to 2 homomorphism m’




from (A ® A°")"* to Endp(A) :

AQAP" = Endp(h)
Voo
(A® A°PP)™  m

Extending an idea of Yuan [23] , M. Orzech defines in [14] a reflexive Azumaya
algebra A over a Krull domain R to be an R-algebra which is a divisorial R-lattice
such that the morphism m’ defined above is an isomorphism.

Two reflexive Azumaya algebras A and T’ are said to be similar if there exist
divisorial R-lattices M and N such that :

*%

(A ® Endp(M))"” o~ (I ® Endg(N))

The similarity classes of reflexive Azumaya algebras over R form a group G(R) ,
the so called reflexive Brauer group.

The next lemma is due to F. Van Oystaeyen (even in a more general setting,
[20]) :

Lemma 6 : If A is a reflexive Azumaya algebra over a Krull domain R ,
then A is a maximal order.

Proof = : Suppose that A is properly contained in a maximal R-order T'.
Because A, is an Azumaya algebra for every p € X()(R), the set of minimal
NON-ZEero prime 1deals of R, A, I‘,, yielding that I'/A is o —torsion where 0 =
inf{oy;p € XW(R)}. Because A is o closed (being divisorial !) this entails that
A =T, a contradiction .

_An order A over a Krull domain R is said to be tame if it is a divisorial R-
lattice and if A, is an HNP-ring for every p € X ()(R). Again, let L be a separable
splitting subﬁeld of ¥ and let § be the integral closure of B in L. § is of course
again a Krull domain. We are now able to state the main theorem of this paper :

Theorem ¥ :If A is 2 maximal order over a Krull domain R ; then :
" (a) : Ais a reflexive Azumaya algebra if and only if CI(R) = CI°(A) and AR S
is a tame order.
(b) : A is an Azumaya algebra if and only if CI(R) = CI°(A) ,AQ S is a tame
order and A is a flat B-module.




Proof

(2) : Recall from lemma 6 that every (reflexive) Azumaya algebra is indeed a
maximal order. For every maximal order A over a Krull domain R , we have the
following exact diagram :

1 1 1
} | l
L = pr) = D2® = cur — 1
l iy v N
L= pe)y = 2)  — crp) 1
! !
1 - PE/n, L

Coker(p) is a finite group. For, take any element in the Formanek- center , cfr.[15]
then there are only a finite number of height one prime ideals P of A such that
A.c C P. Because the localizations at the other height one prime ideals are
Azumaya-algebras, P = A.(PNR) for allmost all P € XU(A). And, for the finitely
‘many exceptions P = (A.(PNR)")"".

 Now, if CI(R) == CI°(A), then every P € X(1)(A) is centrally generated and
therefore A, is a maximal order over R, with CI°(A) = 1 for every p € X(U(R).
Because discrete valuations extend in a finite separable field extension , one can
find for every p € X(I)(R) an height one prime ideal P in S such that (A® S)p =~
Ap ® Sp is an HNP-ring (because A @ § is a tame order). By Th.1 this implies
that A, is an Azumaya-algebra for every p € X W(R). '

To finish the proof we have to check that the morphism :

m’: (A Q@ APP)” — Endp(A)

is an isomorphism. Because m’ is a morphism between two o — closed R-modules,
it is clearly sufficient to check that (m’), is an isomorphism for every p € X{1(R).
But this is trivial because A, is an Azumaya-algebra.

(b) : In view of part (a) it suffices to prove that the morphism :
i A® AP — (A A°PP)T

is an isomorphism. It is clearly monomorphic . To prove surjectivity , let o =
Yo AiQ®uifr € N(AQAPP), where \; € A, p; € A°PP and r € R. Because R is a Krull
domain , R satisfies the finite character property ,i.e. I = {p € XWO(R):R¢ R;}
is a finite set. Let J = X((R)—~1,T = N{ApPP;p € I} and I’ = N{A}PP;p € J }.
Then , @« € A @ I’ and clearly a € N{(A Q A°PP),;p € I} = AQ N{APP;p € I}




because 7 is finite and A°?P is a flat R-module. Therefore,
cCEAQTNAQI'=AQ(I'NI")=AR A°P?P

because A°PP is a divisorial R-lattice (as a maximal order), finishing the proof.

Remark 8 : Now, suppose that every reflexive Azumaya algebra over R
is a flat B-module , then this would entail that they are Azumaya , yielding that
the natural map Br(R) — P(R) is epimorphic. However, in general this is not
the case as some counterexamples due to R. Hoobler show. This proves that the
flatness-condition cannot be dropped.

3. A new approach to maximal orders

In this section we aim to apply the foregoing results in order to reduce the
study of maximal orders over a (nice) Krull domain R to :

(a) : The study of graded (reflexive) Azumaya algebras over certain Rees-type
extensions R(®) constructed from R (i.e. the study of the graded (reflexive) Brauer
group of R(®) , cfr [22]). '

(b) : The study of the ringextension R — R(®).

Moreover this approach enables us to calculate the Brauer group of the field of
fractions of R in terms of the graded (reflexive) Brauer group of the rings R(®P) as
well as to give a Brauer-group equivalent of the Jespers-Van Oystaeyen conjecture.

Throughout, A will be a maximal order over a Krull domain B and {F4, ..., P}
will be the finite number of height one prime ideals of A which are not centra,lly
generated and coker(u) = @Z/ni& (cfr: proof of Th.7)

We consider the Z @ ... @ Z-graded subring A(®) of DXy, X7 o X, XY
which is defined by :

A®)(my, ..., mp) = (P72 ..PTY" X X

10




Part (a) of the next theorem is an adaptation of a similar result in [11] ,
therefore we will merely present an outline of the proof.

Theorem 9 : If A is a maximal order over a2 Krull domain R , then :
(a) : A(®) is a p.i. maximal order over its center R(®P) which is a Krull domain

(b) : CIe(A(®) = CUR(®))

Proof ‘

(2) : In view of [3] we have to check the following two facts :

1: For any ideal I of A(®) , (I ;1 I) = ({ ;; I) = A(®P)

2. A(®) satisfies the ACC on divisorial ideals (i.e. ideals of A satisfying

(I : A(®)) : A(®) = ).

(1) : Because A(<I>) is a graded p.. ring , its graded ring of quotients ,
QI(A(P)) = L[X‘,X 1] is obtained by inverting central homogeneous elements
and it is an Azumaya algebra over the Krull domain K[X;, X7!cfr.[11]. 8
$[X:, X 7] is 2 maximal order. Now, let I be any ideal of A(®) and suppose that
I.g C I for some g € Q(A(P)). Then, Q?(A(®)).1.g C Q?(A(P)). and by maxis
mality of Q9(A(®)) this yields that ¢ € Q9(A(®)) .Hence we may decompose g in
its homogeneous components , ¢ = ¢;, + ... + ¢;, with 7y < ... < 13 (note that
ZD...DZ can be given the structure of an ordered group. We obtain : Cy(I).g;,
C;.(I) where C;(I) denotes the set of all leading coefficients of elements of I of
degree 3. Therefore, (Co(I).qi,)" C Ci(I)™ whenee : gi, € (Co(I)” )~ 1*C;, ()™
By [11] , this means that ¢;, € A(®)(z). Replacing g by ¢ — g;, and repeating the
foregoing argumentation one finally arrives at ¢ € A(®), finishing the proof of (1).

(2) : If {I,;mn € N} i is an ascending chain of divisorial A(®) ideals , then the
ascending chain {(Qg L) n € ]N} becomes stationary , L.e. there is an n” € IN
such that (Q9.1,) = (Q7. I :)"" for every m > n’. On the other hand , because
A is a maximal order , there exists an n € N such that : Co(ln) = Co(Iu)™
for every m > n''. Let N = sup(n’,n") | then I, = IN for every m > N ,cfr.
[11].

(b) : The graded central classgroup of A(®) , CI5(A(®P)) is defined to be :

CIS(A®)) = D,(A(®))/ P5(A(®)
where D,(A(®)) is the subgroup of D(A(®)) of the ZEB ..€p Z-graded divisorial ideals
of A(®) and Pc(A(<I>)) = {A(®).c | ¢ € k[X1, X7}, ..., X0, X 71} By [8,Th.3.2] the

following sequence is exact :

1 CL(A(®)) » CL(A(®)) = CL(E[X1, X7, o X, X1 =

11




Now, E[X1, X711, ..., X5, X!} being an Azumaya-algebra over a factorial domain,
Cl(B[X1, X7, .., Xn, X ;1] = 1 whence : CIS(A(D) == CI°(A(D)).
Furthermore, it is easy to verify that the sequence below is exact :
L=< [P1], .., [Pa] >— CI°(A) — CL(A(®)) - 1
Similarly, Cl,(R(®)) ~ CI{R(®)) and :
1 =< [p1], s [Pn] >— CUR) — Cl(R(D)) — 1

whence one obtains finally the exact diagram :

1 1
! !

1 = <> = CUR) ~— CUR@®) — 1
! !

1 = <[P]> — cCP(A) — CFA@Q) — 1
} l

DL/ T YL/

finishing the proof.

If the Jespers-Van Oystaeyen conjecture would be thrue in general, then the
foregoing result completes our reduction from maximal orders over a Krull domain
R to graded (reflexive) Azumaya algebras over suitable Rees-type extensions.

This is , in particular, the case for applications in algebraic geometry if the
characteristic of the ground field is zero.

In general, we will prove that the foregoing reduction holds also if the maximal
order A over R is tamifiable. By this we mean that A ® S is a tame order , where
S is the integral closure of R in some separable splitting subfield L of %. We have
to prove the following :

Theorem 10 :If A is tamifiable , hence so is A(P).

Proof : Of course, L(Xj,...,X,) is a separable splitting subfield of
%(X1,...,Xn). Let S(®) be the integral closure of R(®) in L(X71, ..., X,,). Because
R(®) is a graded Krull domain, so is §(®) by an argument similar to [FVO,VG].
Let P be any height one prime ideal of S(®) , then either P is a graded prime
ideal or P, (the set of homogeneous elements) = 0. ' |

12




Suppose first that £, = 0. Then the localization of A(®) ® S(®) at P is
a localization of ¥ ® L[Xl,X;'l, vy X1, X 71]. Therefore it will be an Azumaya
algebra over the Krull domain S(®)p , hence a maximal (thus tame) order.

Next, suppose that P is a graded prime ideal and that PN R = p. If p ¢
{Pi1 NR,..., P, N R}, then the localization of A(®) ® S(P) at P is a localization
of (Ap ® Spns)IX1, X711, .; Xn, X7'] whence a tame order because the class of
tame orders is closed under polynomial extensions and central localizations [6].

It p=PiNR, then (A@)® S(®))p = (A(O) R 5(0))g[X2, X5, ., X, X 51
where A(O)(n) = P7.XT, S(©) is the integral closure of R{©) , the center of
A(©),in L(X;) and ¢ = P N S(©). Now, A(0) ® 5(©) is readily checked to be an
overring of (A ® S)(®) in (£ ® L)(Xy). Furthermore, (A ® S)(P) is a tame order
by [11] or [13] and therefore so is A(6) & §(©), finishing the proof.

To end this paper we will present two Brauer group equivalents of the Jespers-
Van Oystaeyen conjecture:. The proof and more details will appear elsewhere.

All rings R(®) occuring as centers of generalized Rees rings of maximal orders
over R are of the following type :

Let R be a Krull domain , then for any (finite) set of height one prime ideals
{p1;..,pn} and any set of natural numbers {m,,...,m,} we will define the Van
Oystaeyen ring R(p;, m;) to be the Z @ ... @ Z -graded ring :

*%

‘R(p,:, m,-)(z'l, ...,’in) o (p:[l[il/mlll Qin/mn]])

where [[a/b]] = sign(a/b).]| a/b ], (|./.] denotes the integral part of ./.). Mimicing
the proofs of Th.4.5 and Th.4.7 of [11] it is fairly easy to see that all these rings
R(p;,m;) are again Krull domains.

They are filtered in the following way : R(p;, m;) < R(p’j, m’;) if and only if
{r:} C {p’;} and for the corresponding values of i and 7 : m; | m’;.

For more details on graded (reflexive) Brauer groups , the reader is referred
to [22].

Theorem 11  : (Brauer group equivalences)

The following statements are equivalent :

(1) : The Jespers-Van Oystaeyen conjecture holds

(2) : If D is a Dedekind domain with field of fractions K
then : Br(K) =lim Br?(D(p;, m;))

(3) : If R is a Krull domain with field of fractions K
then : Br(K) =lim B9(R(p:, m:))
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