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1. Introduction.

Noncommutative Krull rings have been studied in some recent papers, cfr.
e.g. [3,12,191 . The first examples of these rings were already studied
in 1968 by R. Fossum [ 8], namely maximal orders over Krull domains. Our
main motivation for studying this class of rings comes from the next

result by M. Chamarie [3].

Theorem 1.1. : (M. Chamarie) if I' is a Noetherian (or affine) prime p.i.

ring with center R and classical ring of quotients Z, then there exists
an intermediate ring ' ¢ A c 2 which is a maximal order over the complete

integral closure of R which 1s a Krull domain.

Besides their ringthecretical importance. the spectra of these maximal
orders seem to be the most natural noncommutative generalization of

affine normal varieties, [10] , so & closer investigation of them might

shed some new light on "noncommutative algebraic geometry”. cfr. e.g.

[1,36] . One of the main problems in the theory is to find a suitable
generalization of unigue factorization domains and, related to this guestion
to find a proper definition of the class group. Sgveral possible definitions
were suggested, e.g. a rather obscure K-theory class group, W(A), by

R. Fossum [ 8], the normalizing classgroup., C1(A), by M. Chamarie [ 3] and

the central classgroup, Cc1%(A), which has been studied extensively by

E. Jespers and P. Weuters, cf. e.g. [ 11,37] .

In this note we aim to survey some of our results on the normalizing and

central classgroup, cfr. [15,16,171 .
The second section, on the normalizing or Chamarie classgroup . is of

(*) The author is supported by an NFWO-grant (Belgium).




a more geometrical nature. In the study of commutative Krull domains there
are some important questions on class groups for which purely ring
theoretical methods seem to be insufficient. To solve these one has to

use some geometrical machinery, cfr. e.g. [7]. An example of such a
situation is presented by some results of V.I. Danilov on the relation
between C1{(R) and Cl R[[t]] for a Noetherian integrally closed domain R.
First, the classgroup is expressed in terms of Picard groups of certain
open subvarieties of Spec(R), then he uses the good functorial and
cohomological properties of the Picard group to prove his theorems on open
subvarieties and finally he pulls the obtained information back to the
classgroup.

We try to generalize some of these results to maximal orders over Krull
domains. To this end we introduce Weil and Cartier divisors and the
corresponding class groups. Since the proofs of the classical theorems

on the relation between these invariants do not generalize to the p.i.-
case we had to come up with a new approach. These new proofs have the
extra advantage of presenting ring theoretical interpretations (such

as the type number and the genera of a maximal orderl)) for certain

cohomology pointed sets.

Several applications are included. e.g. a characterization of those
locally factorial Krull domains R for which all maximal orders in Mn[KJ
are conjugated, a result stating that every torsion element of the
Picard group of R is killed in the class group of a certain matrixing

Mn(R] and a proof that Cl(A) is a direct summand of CI(A[[t]D.

In the third section we treat the central class group. This time our
approach is more ringtheoretical. We study to what extend C1%(A) 2 C1(R)

implies that A is a (reflexivel) Azumaya algebra over R. For tamifiable




maximal orders this result is proved, counterexamples to the general case
are included and the relation between this obstruction and the universal
measuring bialgebras associated with the orders is being hinted at. As

an example we show that certain divisorially graded rings [18] over
ramifiable maximal orders are {(reflive) Azumaya algebras,providingﬁa new

approach to this class of rings.

|

2. Divisors and the Chamarie class group.

Throughout, we will consider the following situation. R is & Krull domain
with field of fractions K and A is a maximal R-order in some central simple
algebra X over K.

With QR (resp. QAJ we will denote the stucture sheaf of R (resp. A)

over X = Spec(R). Although the Weil and Cartier divisors are defined

on the noncommutative affine scheme associated with A over Y = Spec(A),

QQC [36] ., there is no real need to dwell upon these technicalities here,

for

EEETE_E;l; : [17]11f 1 =Y > X is the usual (continuous) morphism, then
* ~ aNC . nc, «~

i LQA] = QA and i, (QA ) = QA.

bi
: ' A) = A) = A = .
Proof Tt follows from [ 3] that koP( ) QA—P( ) Rp where p = P N R

r e

*
Therefore, 1 (QA] is a subsheaf oF‘QRC and all their stalks are isomorphic,

*
whence i (8

O\ = o

A Similarly. QA is a subsheaf of i*[QRFJ and all their

stalks are isomorphic, finishing the proof.
So, for p.i. maximal orders we can restrict attention to central schemes.
A more general approach can be found in [17]. Let us consider the following

two sheaves of not necessarily Abelian groups on X = Spec(R)

* *
The sheaf of units, QA , is defined in the obvious way, i.e. F[U,GA) =
= U[F(U,QA)J and restriction morphisms are inclusions. It is straightfor-

*
ward to check QA is a sheaf.




The sheaf of normalizing elements, NA’ which is defined by

. *
F{U,ﬂA] = N(F(U,QAJJ = {x €2 : F(U,QAJ.X = x.F(U,gA)} and restriction

'

ﬁorphisms are inclusions. In [ 15] it is shown that NA is a sheaf of

gfcups and the stalk of N(ADJ.

Ekineed not be a constant sheaf. For, let A = @ [ X,-] where - denotes
the complex conjugation. Then A is a p.i. Dedekind ring with center

R [XZ]. In[31] it is proved that {XZ + Cc; © > 0} is precisely the set
of those prime ideals of R [XZ] whose valuation extends to a valuation
in @ (X,-). this implies that for those prime ideals p, (NAJD = qQ(X,-J.
Now, suppose NA were constant then N(A) = Q(X,-) yielding that every
localization at a prime ideal is a valuation ring, & contradiction.

over R in Z are conjugated.

*
Clearly, QA_is a normal subsheaf OFvﬁA so we can form its quotient sheaf
*
ba =-NA/2A. which is a sheaf of Abelian groups because D(A), the group of
divisoriael A-ideals [ 8] is commutative. In analogy with the commutative

case we define :

definition 2.2. : A Cartier divisor on X is a global section of the sheaf

b

bA- Thinking of the properties of quotient sheaves one sees that a Cartier

divisor on X may be defined by giving an open covering {Ui;i € I} for X
and for every i € I an element ny € F(Ui.ﬁAJ such that for all i,j € I

- *
n..n‘./l e, Nnu.; 6,).
i™] i J -
A Cartier divisor is said to be principal if it is in the image of the
natural map F[X“ﬁA]'+ F[X,QA]. Two Cartier divisors are linearly equivalent
if their guotient (which is defined locally) is principal. The Abelian

group of Cartier divisor classes on X will be denoted by CaCl(X), the

Cartier class group of X.




Similarly., one can define the Cartier class group of an open subvariety
U of X, CaCl(U) by the exact sequence

TNy W > Tb,|U) ~ CaCltl) - 1

In:case A = R, CaCl(U) is nothing but the Picard group of the cpen
suﬁvariety U, cfr. e.g. [10].

For the definition of non-Abelian cohomology pointed sets the reader is

referred to [9] or [22].

\,
‘ v

il

Proposition 2.3. : If A is a maximal order over the Krull domain R, then
(a) :+ 1~ CaCl(X) — HI_0GO%) = HI__(XN,)

Zar =A Zar A
(b) : 1 - CaCl(l) - H' (U e*[U) S HD (N )

Zar -A Zar -A

Later on, we will give a ring theoretical interpretation of these cohomology
pointed sets. Having defined what Cartier divisors are. Let us now look

at Weil divisors : if U is an open set of X = Spec(R), then we dencte with
XEqJ(UJ the set th][R) N U, i.e. the height one prime ideals of R lying

in U. With Div(U) we denote the free Abelian group generated by the height
one prime ideals of A corresponding to X[1][U] (recall that there is a

one-to-one correspondence between X[q)[R] énd X[q]

A), [3]). In case
U = X, Div(U) is nothing but the divisor group D(A). The assignment
U -~ Div{U) defines a flabby sheaf on X which we denote by QA' From [ 17 ]
we retain that the following sequence of sheaves is exact
0%~ N D
T2 >80 7 5B
where the morphism._f\_l_A -> QA is the natural one, i.e. sending a normalizing

element to the divisorial ideal it generates.

definition 2.4. : A Weil divisor on U is an element of Div(U)} and C1{U}

the class group of the open subvariety U, is defined by the sequence :

1 - T, > TWN) > Div(L) - CLW) ~ 1

T




Of course, if U = X, then Cl(U) = C1(A), the Chamarie class group i.e.
the quotient group of D(A) by P(A) the subgroup of those divisorial
A-ideals which are generated by one element (which is then clearly a
narmalizing element!]) Remark also the slight difference between our
natation of similarity of Weil divisors and that of [32].
In my talk during the Noether days I tried to mimic the commutative
prgofs in order to ralate the Cartier class group to the Picard group
Pic(A) = I(A)/P(A) (where I(A) is the group of invertible
A-ideals) and to give a noncommutative generalization of Danilov’'s main
tool. This approach forced me to impose a technical condition on the
maximal order A, namely that Pic[Ap) = 1 for all p € X = Spec(R). The
general validity of this condition depends on the following two questions
on prime ideals of maximal orders which, although plausible, have not
yet: been proved.
(Q1) :+ If A is a maximal order over a Krull domain R and p € X = Spec(R),
are there only a finite number of prime ideals of A lying over p?
(if R is Noetherian, the answer is : yes).
(Q2) : If A is a maximal order over a Krull domain R and p ¢ X = Spec(R).
If P,P' € Spec(A) such that PN R =P' N R = p, is pid(A/P) =
= pid(A/P’') or even A/P = A/P’ ?
Since then I was able to give a more ringtheoretical proocf of the result
which hypassed these problems and had the extra advantage of presenting
ringthoretical interpretations of the cohomology pointed sets used

before.

Theorem 2.5. : [17]1 I+ A is a maximal order over a Krull domain R then
Cl(A) = lim CaCl(U) where the direct limit is taken over all open sets
!

U of X containing X (R). Moreover, the following sequence of pointed

sets is exact

1T

I




‘ .0 * N
1 - ClA) » 1im HZar[u,gAJUJ - 1im H,_ (U.N,

iy - 1

Lgt us first recall some definitions.

Tge genera of A, G(A), is defined to be the set of isomorphism classes
of left divisorial A-ideals (c-ideals in the terminology of [21] . The
type number of R in 2. TR[E] is the set of non-conjugate classes of
maximal orders over R in Z.

The determinatiﬁn of the type number is in particulat interesting in
;rder to construct all maximal orders over R in ¥ out of a given one,
ofr. [ 151

In view of Prop. 2.3., Theorem 2.5. follows from the following

Theorem 2.6. : [17] If A is a maximal order over the Krull domain R, then

(a) : 1 - ClA - GA) -~ TR[ZJ -+ 1 is exact

~ *
(b) : G(A} = 1lim HY .8 |U) where the direct 1limit is taken over all
37 Vzar A
)

open subvarieties U of X containing X (R}.

() : T,(2) = lim Hq (U,N,|U) where the direct limit is taken over all
R > Za —A

open subvarieties U of X containing X[ql(R).

T

Proot.

(a) : The map ¢ : Cl(A) - G(A) is of course given by sending the class
[T] of a divisorial ideal I to the isomorphism class < I > of I in G(A).
This map is a monomorphism of pointed sets, for if < I>=<A>then
one can extend the left A-module isomorphism 1 -+ A to an Z-linear
isomorphism : 2 — X showing that I = A.n. Because A is a maximal order
this entails that n is a normalizing element, so [I] = 1. Further, the

map ¥ : G(A) ~ (2) is given by sending an isomorphisms class < A >

TR
of a left divisorial A-module A to the class of BX{AJ = {x €3: A x CA}
in TR[EJ . Let us first check that this map is well defined. If < A > =

*
= « B > then by an argument as before, A = B x for some x € Z . This




entails that X_10r(83x - 02(A]. Because Gf[AJ and OT[B] are both maximal
orders this entails that they are conjugated.

: - : *
The sequence is exact in G(A). For, let Hf[LJ = X 1Ax for some X € X

1 -1

then, because A = xﬂf(LJx- - Br[Lx_qJ and A is a maximal order, Gr[Lx J=
= A showing that L x~1 is a@ two sided divisorial A-ideal . So, < L > =
%;< Lx_1 > and Ker ¥ C Im ¢ and the inverse implication is trivial.
anally we have to check that ¥ is epimorphic. So, let I' be a representant
of a class in TR(E). Then (A.; ') is a divisorial R-lattice which is a

left A-ideal and a right I'-ideal showing that Br((A : I)) =T, finishing
r

the proof.

(b) : Let L be a left A-ideal which is a reflexive R-lattice, then Lmq

= (L : A) is a right A-ideal which is a reflexive R-lattice. With QL
- .

(resp 6 1] we will denote the structure sheaf of L feesp.th) over
- -

(1)

Spec(R). Let p € X (R}, then (6, ) =1L =A .a because A is both a
—-L'p PP p

p
left and right principal ideal ring. Similarly, (08 ) =L = a A .
= -1p p p " p

Take a neighbourhood VD of p such that ap €r [VD,H 1] then it is fairly
- -

easy to see that

o~

= (6,|V ).
Qqu pJ a,
(1)

0
[_LJ]vp
Let U = u{Vp; p € X (R}}, then {(Vp.ap)} defines an element of
*  k * *
rew,z /QAJ, where 2 denotes the constant sheaf with sections 3 .

Writing oLt the long exact cohomology sequence of :

RN S
one finds
* * * *
rwz) 3 rws ey - Hwet - 1

In this way., one can associate every left A-ideal L an element of

*
lim H1(U.9A}. It follows from the exact sequence above that the elements

‘ * *
associated with L and L’ coincide iff L = L'x for some x €M,z2) =2,




*
Conversely, with every element of 1im H1(U,0AJ, one can associate an
*  *
isomorphism class of left A-ideals by choosing an element in I'(U,Z /BA)
which generates it, say {(Vp,ap]} and then defining the left Q_A]U—ideal

6 locally by & |V_ = (8,1V )J.a and taking its sections I'(U,8 ).
L 4 y*-L’ p 84l P TP & " ~

(c) ¢+ Let I' be any maximal R-order in Z. With 9 (the conductor) we
denote the presheaf which assigns to an gpen set U of Spec(R) the
sections : T'(U,0) = {x€Z : F(U,Gr]x c F(U,BA]}. An easy computation

shows that Q_is actually a sheaf of left gp-ideals and right QAfideals.

1 1

Furthermore, ﬂ_1 which is defined by its sections reu,8 ') = P[U,gj—

is also a sheaf and a left gAwideal and a right Qp-ideal.
Now, let p be any height one prime ideal of R. Since both Ap and Fp are

maximal orders over the discrete valuation.ring Rp, they are conjugated
- *
i.e. qu.Fp = A.p for some sp € £ . We claim that there exists a

] 3 g . - /] -
neighbourhood V(p) of p such that : s (QFIV(DJ].SD = HAIV[pJ.
Both 8 and gfq are sheaves, so0 S5 and sgqlive on a neighbourhood V(p) of

o -1 .
p. Therefore, s, L(v(p),6,) CT(V(p),6 ). Hence, F(V(p],ﬂAJsp CT'(Vipl),b

_ -1
= TV(p),0)71 € (s T(VIP).0,

LV(p),8"") = T(Wip).8,y)s " and similarly & F(V(p),0) - 5 T V(p).0,1.

J) = I‘(\/(DJ,_@_‘,\J.-SUI yielding that

ThUSJ
-1
(8 {Vip))l.s_ = 6,1Vip)
spr EplViPIIsy = 8, [Vip
Now, U = U(V(p) is an open set containing X[q)(RJ and {[V(p),sp} describes
*
a section in F(U,E/NAJ. Consider the exact sequence of sheaves of pointed

sets :

7 > N

Ny~ E*‘ - E*/_}\_I_A - 1

Taking sections aover U yields the exact sequence :
* * 1 ‘
1T+ NA) -~ 2 > TWZ/ND > HWULND > 1

. 1
Therefore, the section {(V(p),spl} determines an element in H (U,ﬂAJ

1] -




e

_/IU..

(and so in 1im H1(U,NA]J which is different from the distinguished element
im H1(U{NAJ if and only if I' is not conjugated to A.

Conversely, let s € lim H1[U,NAJ and choose an open set U of Spec(R)
containing X[1J[RJ and an element s(UJelﬂ[U,ﬂAJ which represents s. Using
the above exact sequence, s(U) is determined by some section in P(U,E*[MA].
Sth a section is given by a set of couples {[Ui,siJ} where Ui is an open
céver of U, s; € F(Ui,ErJ for every i and 5;1.5j ¢ F(Ui n Uj’ NAJ for all

i ;nd J« On U we will define the twisted sheaf of maximal orders g,‘U by

. =1 ; . : -
putting 6 U, = s,(0,]U)s,. It is not hard to verify that I' = I'll 6.

is a maximal R-order,and this finishes the proof.

Since both G(A) (cfr. [8]) and TR(ZJ do not depend upon the chosen

maximal order A, C1(A) is also an invariant.
Let us give some applications.:

A : conjugateness of maximal orders in matrix rings

We aim to characterize those locally factorial Krull domains (i.e. Rp

is g UFD for every p € Spec(R}) for which all maximal orders in Mn[KJ
are conjugated. Remark that all regular Krull domains are locally
factorial by the Austander-Buschbaum theorem. Our result provides a
large class of counterexamples to question in [21].

With EEEnwe will denote AutCPg), the automorphism scheme of the n-dimen-
presheaf which assigns PGLn(F(U,BR]J to an open set of Spec(R), cfr.

e.g. [22].

Proposition 2.7. : [15] If R is a locally factorial Krull domain and

ne

3 - . . .
if A Mn(RJ, then HZ (ULN, W) HZ (U, PGL |U) for every open set

U of Spec(R).




_1’]_.

Proof.
If we assign to an open set U of Spec(R) the group GLn(F[U,gRJ].
*
K C GLn(K), then this defines a presheaf of groups. Its sheafification
*
will be denoted by.QEn' K . This sheaf is clearly a subsheaf of NA' We
will show that their stalks are isomorphic. If p € Spec(R} and if
x € N(M_ {R_J}, then M (R)x = M_(A) for some divisorial R -ideal A.
n p n n p

* *

Because Rp is a UFD, A = RD.K for some k € K , yielding that x € GLn[Rp].K
ing th N

proving that ELH.__ = Nye
The,following seguence of sheaves of groups is exact

* * *
1 > K - GL .ﬁ_ -> EL%/EED N E_ =,PGLn - 1

Writing out the long exact cohomology sequence ylelds

1 * 1 * n : 2
1 =H (UK} - H (GL,K } - H (U,PGL ) - H
r —— Za

*
Zar — Zar ——n Za r[U’ﬁ o=

finishing the proof.
With Refn[R] we will denote the set of iIsomorphism classes of reflexive

R-lattices which are free of rank n at every height one prime ideals of R.

Theorem 2.8. : [15] If R is a locally factorial Krull domain, then all

maximal orders in Mn(KJ are conjugated if and only if the map from C1(R)

to Refn[RJ sending [T]to [I ®...® 1] is surjective.

————.

Proof : Writing out the long exact cohomology sequence (cfr. [9] ) of
the exact sheafskquence :
*
1 - 0, - GL - PGL - 1
—R —n ——
and then taking direct limits over all subvarieties U of Spec(R) containing
X[qJ(R). yields :

*
%) 1im H2U,0.3 % 1im HCULGL )~ 1im HU(ULPGL ) —» 1im HO(U,6)
- —R > ) =S —— > -R

The first term in this seguence equaks C1(R) by Danilov's result, cfr. e.g.

[7, Prof V. 18.8]1 and the second equals Refn[RJ, by [22,p.134]. The




_’|2_

The third term egquals TR[E] by Prop. 2.7. and Th.2.6. c. Let us now look
at the last term. Because R is locally factorial, Cartier divisors

coincide with Weil divisors, cfr. [10] ., i.e. the sequence :

1 6 - K* - D, - 1
-
-R — <R

is exact. Writing ocut the long cohomology sequence and using flabbiness

* .
of‘D and the fact that K 1is constant yields :

—-R
_ ‘ 2 * 2 *
1= Hy (U0l Hzer(Uelg) = Hyap( KD =1
Therefore, the last term in (*]) vanishes. 30, TR(Mn(K)) = 41 if and

only if a is epimorphic. Now, a is derived from the sheafmorphism

* *

9 . . . . . . ..
2 GLn which assigns diag(u) to a unit u € (0 )p, locally. This
shows that the map a is given by assigning the isomorphism class of

I®...®@ (n times) to [I].

Using Steinitz' theorem (cfr. e.g. [23]) one immediately deduces

Corollary 2.9. : [15] If R is a Dedekind domain, then all maximal

orders in Mn(KJ are conjugated if and only 1if (-37:C1(R) - C1l(R) is an

gpimorphism.

B : Type number and the polynomial extension.

Th. 2.8. shows that the type is not necessarily preserved under taking
matrix rings. Even more, the type number is not invariant under poly-

nomial extension. From Th. 1.6. one deduces

~

Corollary 2.10 : If A is a maximal order over R in 2 then TR(EJ

~

=T z i y i A} EGATLD.

TR [t]( (£)) if and only if G(A) GALtD

Counterexamples are now easily provided. Let A be any p.i. skewfield
and 1et A = A[t], then G(A) = 1 since A[t] is a principal left ideal

domain. However, GA[t,s,J]) # 1 since there are projective non-free

left ideals in Als,t], cfr. [25].




_13_

Asymptotical and Azumaya class groups

It follows from Th. 2.6. and Th. 2.8. that N

is not necessarily a
%A y

constant sheaf, so there may be non-trivial normalizing ¢lements
*
(i.e. £ GLn[RJ.K } in Mn(R]' The easiest example of such a situation

can be found in [24] :

Let R = Z [v-5] and I = (2,1+V-5) a non-principal ideal then MZ(IJ
is generated by the normalizing element

2 -1+ +/-5

1+ V-5 -2
This example shows that the natural map CI‘R -+ Cl A can have a non-
trivial kernel. As was suggested to me by E. Formanek the reduced norm
on A can be used to show that this kernel consists of n-torsion elements
where n = p.i.d.(A).
In order to describe the non-trivial normalizing elements in matrixrings
or Azumaya algebras one has to determine the relation Cl(R) and the
next two invariants

(A} : the asymptotical class group, Cl_(R) = 1im Cl(MnfRJj
nenN
(R) = lim Cl(A)
Z -3
A az
Lemma 2.11: [17] IFf R is a Dedekind domain, Cl1_(R) = ¢ ® CL(R).

(B) : the Azumaya classgroup, DlA

Proof : First, we will show that the kernel of the natural morphism

m : Cl1(R) - C1 MnfRJ consists of n-torsion elements. For, suppose

that n (A) = Mn(AJ = Mn(RJ.nfor some normalizing element n, then, taking
determinants yields : AT = R.det(n). Conversely, let us prove that

any torsion element is killed in the classgroup of a suitable matrixring.
So, let A be a fractional ideal such that A" % R, then by Steinitz’

theorem, cfr. [ 23], there is an isomorphism :




_']4_

) i R®...O0R > A®...®A
which is represented by an n x n-matrix a € GLn(K). This means that
MHLR)G = Mn[A) showing that [A] € Ker(Cl(R} =~ Cl(Mn[R]]J. finishing the

proof.

<~ -

This result will be generalized in a joint paper with M. Vanden Bergh

to Krull domains of finite Krull dimensien.

Theorem 2.12. : If R is a Krull domain of finite Krull dimension, then

Clw(R) = ClAZ(RJ = C1(R)/Tors(Pic(R)].

0 : Formal power series

In [20] it is proved that AJ[t]] is @ maximal order over RI[t]] if A
is a maximal order over R. Most of the technical machinery described
above was developed in order to study te relation between C1(A) and
ClEA [[t]]). As an easy consequence of Th. 2.5. we obtain the following

noncommutative generalization of a result of Danilov, cfr. e.g. [71].

Theorem 2.13. [17]1 If A is a maximal order over a Krull domain R, then

C1(A) is a direct summand of Cl(A (tcin.

Proof. (sketch) Let X and Y denote respectively Spec R and Spec RI[t1]
then j @ F[t)L- £(o) induces a closed regular immersion X - Y which
identifies X with V(T). Furthermore, if i + Y - X denotes the natural

morphism, then we obtain the following exact diagram :
1+ CL(A) > Lim H1(v,6%) S 1im HULA) S
: i N 14 Na ’

S

| . 1 * L] :
9 -ClA[[t]] - 1imH LV,QI_A[[.,C]]J » um HWN gy

*
and a carefull investigation of these maps learns that j  induces a

natural splitting of the inclusion C1(A) - ClA[[t])
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3. Graded (reflexive) Azumaya algebras and the central class groups.

In the foregoing section we studied the divisorial ideal structure of a
maximal order. A more difficult problem seams to be the determination of
the (prime) ideal structure of an arbitrary maximal order, e.g. questibns
(@ 1) and (@ 2) above.

A standard trick is to study certain nice ringextensions of A with an
easier ideal structure and pulling back the obtained information to A.
Developing such a procedure as well as studying its obstruction is the
main aim of this section. For a Krull domain R there are at least two
classes of maximal orders which are reasonable understood, namely Azumaya
algebras [ 13,6] and reflexive Azumaya algebras [26,38] . Let us briefly

recall their definitions:

If A is a maximal order over a Krull domain R , consider the natural
R-algebra morphism :

m:A® = A @A°PP EndR(A]
which is determined by m(Z a; ® bi][kJ =2 ai.k.bi.A being a divisorial
R-lattice (i.e. Af* = A), so is EndR(A), [26].
This entalls that m extends to a morphism :

mos A - Gy @Ry o Eng ()
pex' ' (R) p

Now, Azumaya. algebras are orders for which m is an isomorphisms. They

are f.g. projective modules over R, their prime ideal structure is
homeomorphic with that of R and even its Chamatie class grdhp is suitable
for description at léast if Kdim(RJ < «, Th, 2.12. The Brauer group
Br(RJ,'éfr. e.g. [ 6,13 ] describes the Azumaya algebras up to Morita
eguivalence.

Extending an idea of Yuan [ 38 ], M. Orzech defines in [26] a reflexive

Azumaya algebra to be a maximal order such that m' defined above is an
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isomorphism. Two refelxive Azumaya algebras A and I' are said toc be
;imilar if there exist divisorial R-lattices M and N such that

~

*k *k
A® EndR(M)J = I'® EndR[NJJ

The similarity classes of reflexive Azumaya algebras form a group under
%ultiplication (- ® -)**,B(R), the so called reflexive Brauer group
which has been studied by M. Orzech [26]). Let us recall two basic
‘properties

[1)(RJ}

(Bq) : B(R) = D{Br[Rp); p € X
(82) : the following seguence is exact

1 - Pic(R) - ClL(R) - BCI(R) - Br(R) - B8(R)
Here, B Cl(R) is the so called Brauer-class group. It is defined by
taking the set of isomorphism classes of reflexive R-lattices M such
that EndR(M] is a f.g. projective R-module and then taking equivalence
classes for the relation :

Mo iff mepy T e
for some f.g. projective R-modules P and @.

The cokernel of the morphism Br(R) - B(R) is not so easy to determine

it may be nontrivial.

I+ the Krull domain R is G-graded (where G is an arbitrary, but
usually ordered, group with neutral element e), then one can define the
graded (reflexive) Brauer group of R. Br2(R) resp. Bg(R], cfr. [ 34,35]
in the obviuos way.

That is, a graded (reflexive) Azumaya algebra A is a G-graded order

with center R such that the natural map

nl) AT 2 A A%PPE) L eng A

is a degree preserving isomorphism.
Two graded (reflexive) Azumaya algebras A and T' are said to be similar

if there exist G-graded f.g. projective R-modules {resp. divisorial
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R-lattices such that

(k) (k)

A ® End_(P) =T ® End_(P)
R R

the isomorphisms being degree preserving. For more details on the graded

Brauer group, the reader is referred to [35].

The phylosophy is that, most ungraded results have a graded counterpart

if G is an ordered group and graded results sometimes suffice to describe

the Brauer groups, cfr. e.g. [34,35].

Let us define the central class group, C1°(A), of A. With P°(A) we denote
the subgroup of D(A) consisting of those divisorial ideals which are
gerenarted by one central element. C1%(A) is then defined to be the
guotient group DAY /PE(A).

It is easy to verify that the natural morphism u : C1(R) - C1°(A) is
injective and that Coker(u) is a finite group. For, take any element c

in the Formanek center of A, then there are only a finite number of prime
ideals P of A suc that A.c C P. Because the localization at the other
height one primes are Azumaya algebras, P = A.(P NN R) for allmost all

i dek

n
P ¢ X(qJ[AJ. For tha finitely many exceptions, Pi = (A.CPi nRy "1 .

n
So, Coker W) = ®@ 7Z/n.Z.
i=1 i
First, we will study a graded ring extension of A which kills off

Coker(u). So consider the Z @...® Z-graded subring

A(g) of = [xqixgq,...,xn, x;q] which is defined by
PR M ek M9 My
A@)(myseeiam ) = (P oouP e X

where the Pj are the finitely many exceptional many exceptional height
one primes. Part (a) of the next proposition was proved in a joint

paper with F. Van Oystaeyen in a more general setting [ 181].

Proposition 3.1. : [168] If A is a maximal order over a Krull domain R,

then with notations as abaove




(a) : AD) is a maximal order over its center R(@) which is a Krull domain.

R

i((b) : Cl R(2) = C1 A(D)

Proof : (b)

By [ 11,1IV,2.2], the following sequence is exact

-1
1%

where Cl;(A(ﬂJJ is defined to be the quotient group of Dg[A[EJJ. the

1

1 > 1A - ca®Am - c®Ex., x GX LX) -1
g 1 N’ n

subgroup of D(A(B)) of the Z ®...® Z-graded divisorial ideals of

[} _ -1 -1
A(B), by Pg[A[IZJJJ = {Al@).c|c ¢ ROk IX X hee X s X7 13 Now,

-1
1

a -
z
Ci ¢ [Xq’ X1

z [X1, X ""’Xn’ ng] being an Azumaya algebra over a factorial domain,

X ") = 1, whenos 15 A@) = c1%Ac)).
Furthermore, as in [18] it is easy to verify that the sequence below is
exact :

T <IP L. [P 1> > [:1;(/\(;3)3 > 1

/I
Similarly, Clg[R[ﬂJ) = C1(R(Z)) and
1 - . < [p1],.... [pn] > > Cl(R) = Clg(R[BJJ - 1

whence one finally obtains the exact diagram :

1 1
) |

1=y <[p;1> —— C1(R) —— CL(R(B)) ——> 1
| |

T <[P 1> — C1°%(A) = C1°(A(D)) ——— 1

} |

O Z/n, Z = @ 7Z/n.7
1 1

finishing the proof.

All rings R(#) occuring in this way are of the following type :let R be

a Krull domain, then for any (finite) set of height one prime ideals
{pq,...,pn} and for any set of natural numbers {mq,...,mn} one can define
‘the so called lepidopterous Rees ring [ 33] R[pimi) to be the 7 ®...®7Z-

graded subring of K [Xq,X;j ...,Xn,ngl defined by




- - o 1 i
RGp.m ) (1, .eni ) = [p[1[11/m1]]. cee . pL[ln/m”” 7 ** % 1...xn”

where [[a:b]] = sign(a/b). [Ia/b [] {{./.] denotes the integral part of
./« . These rings are readily seen to be Krull domains. They are ordered
in the following way :
< !" ’ ", C ] ’

R(pi.mi) R[pj ij iff {pi} {pj} and my mj
for the corresponding values of i and j.
If A is an Azumaya algebra (or more generally, a reflexive Azumaya)
algebra over R, then Cl(R) = c1®(A). F. Van Oystaeyen and later E. Jespers
asked whether the inverse implication is alsc valid. Using the foregoing
construction of lepidopterous Rees rings, the next theorem is not hard

to prove

Theorem 3.2. [186]
(1) : If R is a Krull domein with field of fractions K such that the
Jespers-Van Oystaeyen holds for all R(pi, mi); then

= i g )
Br(K) 1im B (R(pi,miJJ.
(2) : If R is moreover a Dedekind domsin, then Br(K) = 1im Brg(prj,mi)].
The key lemma in our approach to the. Jespers-Van Oyesteyen conjecture is

[161] :

Lemma 3.3. : If A is a maximal order over a discrete valuation ring R

with C1%(A), then one of the following situations occcur :
(a) + A is an Azumaya algebra.

(b) : Z{A/Am) is a purely inseparable field extension of R/Rm.

The proof of this lemma comes down to a verificetion that prime ideals
of A[t] satisfy the unique-lying-over property with respect to R[t] .
This 1s perhaps the proper place to present a method for constructing

maximal orders with a split-up prime spectrum. The first example
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K

(known to the author]) of such a situation was constructed by M. Ramros
[27]. He gives a maximal order over a regular local ring of global
dimension Z such that there are exactly two maximal ideals lying over

the central radical. The funny (2} thing about our class of examples

is that the problem reduces entirely to commutative field-theory. Let

A be any maximal order over a Krull domain R and suppose that P € Spec (A)
lies uniquely over R (it follows from [ 3] that this property is equivalent
with : b(P) satisfies the left and right Ore-conditions). The fiber of
the extension A > A[t] in P egquals Spec Q(A/P) [t ] whereas the central
fiber in p = P 1 R equals Spec Q(R/p) [t ]. Therefore, the fiber in P
does not split up over its center if and only if Z(Q(A/P)) is a purely
inseparable fields extension of Q(C/p). Split-examples are now easy to
construct

Take A = ®[X,-] and P = (X), then A/P =@ and R|P = R . Let f(t)

be any irreducible polynomial over R which splits over @, e.g. t2 + 1 =
= {(t + 1)(t. - 1), then (X, t + 1) and (X,t-i) are two prime ideals of

Aflt] lying over the same central prime ideal [Xz,t2+13.

From lemma 3.3 one deduces immediately:

Thecrem 3.4 : If R is a Krull domain duch that Rp/pRp is a perfect

(1)(R) and if A is a maximal order over R, then :

field for every p € X
(a) : A is a reflexive Azumaya algebra iff C1(R) = C1(A).
(b) : A is an Azumaya algebra iff C1(R) = C1°(A) and if A is a flat

R-module.

So, in particular, the Jespers-Van Oystaeyen conjecture holds for
applications in algebraic number theory and algebraic geometry (over a
field of characteristic zero).

Instead of putting restrictions on the Krull domain R, one may prefer to

consider a subclass of maximal orders. From [ 8] we retain that a reflexive
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R-order I' is said to be tame iff Pp is an HNP-ring for every p EX(qj[RJ.

A maximal order A over R is said to be tamifiable if A ® S is a tame
order over S, where S is the integral closure of R in a separable splitting

subfield of Z.

Theorem 3.5. : [16] If A is a maximal order over a Krull domain R, then

(a) : A is a reflexible Azumaya algebra iff c1%(A) = C1(R) and A is tami-
fiable.
(b) : A is an Azumaya algebra iff C1°(A) = C1(R), A is tamifiable and A

is a flat R-module.

We need :

Lemma 3.6. [16] If A dis a tamifiable maximal order, then so is A(@)

Therefore, if A is a tamifiable maximal order, one can construct an
extension A > A(@) such that A(B) is a graded (reflexive) Azumaya algebra
over a certain lepidopterous Rees ring R(Z). This approach will, in
particular, be interesting if A is a flat R-module, for, in this case
A(2) will turn out to be an Azumaya algebra. Hence, its prime ideal
structure is homeomorphic with that of R(8), which can be expressed in
terms of prime ideals of R, and the obtained information can be pulled
back to A.

A further development of this approach will probably lead to a better

understanding of tamifiable maximal orders.

Let us now look at the obstruction ageinst this approach, i.e. do there
exist maximal orders which do not satisfy the Jespers-Van Oystaeyen
conjecture ? Clearly, this problem has a local nature, 1.e. we may
restrict attention to maximal orders over a discrete valuation ring R.

By RSh we will denote the strict Henselization [22] of R.
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Theorem 3.7. : [16]

(a) : If A is a maximal order over R, then A is an Azumaya algebra iff
C1%(A) = C1(R) and R®" splits =.
(b) : The Jespers-Van Oystaeyen conjecture holds for maximal orders over

R if and only if it holds for maximal orders over RSh.

This theorem reduces the problem to the following one :

Does there exist a discrete valuation ring A with central uniformizing
parameter m such that its center R is a strict Henselian discrete
valuation ring and A/A.m is a commutative purely inseparable field
extension of R/R.m ?

Commutativety of A/A.m follows from the fact that A/A.m is a division:
ring over its center, but Br(R/R.m) - Br Z(A/Am) is epimorphic (being

a purelely inseparable field extension [ 13]) and Br(R/R.m) = 1 (R being

a stric Henselian valuation ringl), so A/A.m = Z(A/A.m).

That such a situation can occur is made clear by the following examples

due to DB. Saltman [28] :

equicharacteristic case : Let F be & field of characteristic p and

K = F{(t)), the field of Laurent sequences over F equipped with the
natural discrete valuation and let R be the associated (complete)
valuation ring. Let {a,b} be contained in a p-basis for F and let A be
the cyclic algebra [atmp,b] . Choose a € A such that ¢ - ¢ = a tmp, then
(a.t)p—tpmq(a.t) = a whence K(al)/K is a field extension such that the
corresponding residue fields are F[qq/pl and F. Since b # (F[aq/DJ)D, one
can verify that b is not a norm of K(al/K yielding that A is a skewfield.
Since any valuation an a complete field extends to a finite dimensianal
skewfield over it., there exists a valuation ring A in A cver R with

C1%(A) = 1 and one verifies that A/A.t = F(a /P, 1Py,
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General case : Let K be a field of characteritic zero and residue class

field F of characteristic p. Suppose K contains a primitive pth root of
unity, say w. Again, assume that {a,b} is a part of a p-basis for F.
Choose preimages a',b' € K of a and b and let A be the cyclic algebra
(a',b’) defined over K. Again there exists a valuation ring A in A

a’I/p

such that A = A.t = F( 6Py and c1tA) = 1.

In Saltman's approach (only for exponent one and degree pr—extensions)
the inner derivations of A determine the structure of the purely
inseparable field extension A/A.t « R/R.t. In the general case, the
structure will be determined by the universal bialgebra associated with

A, [141 .
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