A NOTE ON MAXIMAL ORDERS OVER KRULL DOMAINS

Lieven LE BRUYN (*)
University of Antwerp , UIA , Belgium

May 1982

82-19

(*) The author is supported by an NFWO/FNRS - grant

0. Introduction

The classical Mori-Nagata theorem (stating that the integral closure of a Noetherian domain is a Krull domain) is recently generalized to rings satisfying a polynomial identity in the following result by M. Chamarie:

Theorem 0.1 : [1] If Λ is a Noetherian prime p.i.-ring with center R and ring of quotients Σ , then there exists an intermediate ring $\Lambda \subset \Lambda' \subset \Sigma$ which is a maximal order with center R (the complete integral closure of R) which is a Krull domain.

Unlike in the commutative case, this 'integral closure' is by no means unique. This difficulty prompts the following question:

QUESTION A: If Λ is a maximal order over a Krull domain R, with ring of quotients Σ (which is a central simple algebra over K, the field of fractions of R), is it possible to describe all other maximal R-orders in Σ by means of 'invariants' of Λ ?

In this paper we provide a positive answer to this question using cohomology of the sheaf of normalizing elements of Λ (introduced in [3]).Furthermore, we will apply this result in section 3 in order to solve :

Throughout, we will consider the following situation. R is a Krull domain with field of fractions K and Λ is a maximal R-order in some central simple algebra Σ over K.

With O_R (resp. O_Λ) we will denote the structure sheaf of R (resp. Λ) over Spec(R). Our first objective is the introduction of the sheaf of normalizing elements of Λ , N_Λ . It is defined by assigning to an open set U of the Zariski topology on Spec(R) the sections $\Gamma(U,N_\Lambda) = N(\Gamma(U,O_\Lambda)) = \{ x \in \Sigma^* : x\Gamma(U,O_\Lambda) = \Gamma(U,O_\Lambda) x \}$.

Proposition 1.1 : \underline{N}_{Λ} is a sheaf of groups and the stalk in a prime p of Spec(R) equals N(R $_{D}$) .

proof

Let us first check that N_Λ with inclusions as restriction morphisms is a presheaf. A typical open set of Spec(R) is of the form X(I) = { $p \in \text{Spec}(R) : I \not\subset p$ } for some ideal I of R and it is well known that $\Gamma(X(I), \nabla D_\Lambda) = \mathcal{Q}_I(\Lambda) = \{x \in \Sigma : L \in \mathcal{L}(I) : Lx \subset \Lambda\}$ where $\mathcal{L}(I) = \{L \in R : I \subset \text{rad}(L) \}$. So, if X(J) \subset X(I), then $\mathcal{L}(I) \subset \mathcal{L}(J)$ and we have to prove that $N(\mathcal{Q}_I(\Lambda)) \subset N(\mathcal{Q}_J(\Lambda))$. It follows from some results of Chamarie [1] that each $\mathcal{Q}_I(\Lambda)$ is again a maximal order over its center which is a Krull domain and that the localization map $\mathcal{Q}_I(.)$ defines a groupepimorphism from Div(Λ) onto Div($\mathcal{Q}_I(\Lambda)$), where Div(.) is the group of divisorial ideals, cfr. e.g. [1].

Thus, if $x \in N(\mathbb{Q}_{\underline{I}}(\Lambda))$, then there exists a divisorial Λ -ideal A such that $\mathbb{Q}_{\underline{I}}(A) = \mathbb{Q}_{\underline{I}}(\Lambda)x$. Therefore, it will be sufficient to prove that $\mathbb{Q}_{\underline{J}}(A) = \mathbb{Q}_{\underline{J}}(\Lambda)x$. So, let $y \in \mathbb{Q}_{\underline{J}}(A)$, then there exists an ideal $K \in \pounds(J)$ such that $Ky \subset A \subset \mathbb{Q}_{\underline{I}}(A) = \mathbb{Q}_{\underline{I}}(\Lambda)x$, whence $Kyx^{-1} \subset \mathbb{Q}_{\underline{I}}(\Lambda) \subset \mathbb{Q}_{\underline{J}}(\Lambda)$ and

thus $yx^{-1} \in \mathbb{Q}_J(\Lambda)$ because every symmetric localization of Λ is idempotent, so $y \in \mathbb{Q}_J(\Lambda)x$. Conversely, if $y \in \mathbb{Q}_J(\Lambda)$ then $Ky \subset \Lambda$ for some $K \in_{\mathcal{L}}(J)$, whence $Kyx \subset \Lambda x \subset \mathbb{Q}_I(\Lambda)$. Thus, for every $k \in K$, we can find an ideal $L \in_{\mathcal{L}}(I) \subset \mathcal{L}(J)$ such that $Lkyx \subset \Lambda$ whence $kyx \in \mathbb{Q}_J(\Lambda)$ and thus $Kyx \subset \mathbb{Q}_J(\Lambda)$, yielding that $yx \in \mathbb{Q}_J(\Lambda)$. Thus, $\mathbb{Q}_J(\Lambda) = \mathbb{Q}_J(\Lambda)x$ finishing the proof that N_Λ is a presheaf, which is clearly separated. Therefore we are left to prove the gluing property. So, let $U_i: i \in I$ be an open covering of U and let $x \in \Gamma(U_i, N_\Lambda)$ for every $i \in I$. Then, $x\Gamma(U, N_\Lambda) = x(\cap \Gamma(U_i, N_\Lambda)) = \cap \Gamma(U_i, N_\Lambda)x = \Gamma(U, N_\Lambda)x$ whence $x \in \Gamma(U, N_\Lambda)$.

Finally, let us calculate the stalks of \underline{N}_{Λ} at the point $p \in \operatorname{Spec}(R)$. Clearly, $(\underline{N}_{\Lambda})_p \subset \operatorname{N}(R_p)$. Conversely, if $x \in \operatorname{N}(R_p)$, then there exists a divisorial Λ -ideal A such that $A_p = \Lambda_p x$. Thus, $(\underline{O}_A)_p = \Lambda_p x$ and likewise $(\underline{O}_A - 1)_p = \Lambda_p x^{-1}$, where \underline{O}_A (resp. $\underline{O}_A - 1$) is the structure sheaf of A (resp. A^{-1}). Now, we can choose a neighborhood V of p such that $x \in \Gamma(V,\underline{O}_A)$ and $x^{-1} \in \Gamma(V,\underline{O}_A - 1)$. Then, $x^{-1}\Gamma(V,\underline{O}_A) \times C \times^{-1}\Gamma(V,\underline{O}_A) \subset \Gamma(V,\underline{O}_A)$ whence $\Gamma(V,\underline{O}_A) \times C \times \Gamma(V,\underline{O}_A)$ and likewise one can prove the other inclusion yielding that $x \in \Gamma(V,\underline{N}_A)$, finishing the proof.

The sheaf $\overset{N}{\underline{\ \ }}_{\Lambda}$ is not necessarely a constant sheaf, as the following example shows :

Example 1.2: Let $\Lambda = \mathbb{C}[X,-]$ where - denotes the complex conjugation, then is a maximal order with center $\mathbb{R}[X^2]$. In [6] it is proved that $\{X^2+c:c>0\}$ is precisely the set of the prime ideals of $\mathbb{R}[X^2]$ whose valuation extends to a valuation in $\mathbb{C}(X,-)$. If N_Λ were constant, $N(\mathbb{R}) = \mathbb{C}(X,-)$ yielding that every localization of Λ at a prime ideal is a valuationring, a contradiction.

2. The main theorem

In this section we aim to solve question A , i.e. we will show how one can construct all maximal R-orders in a central simple algebra Σ over K from a given maximal order A . From [1] we retain that all maximal R-orders are equivalent. Of course, being conjugated defines an equivalence relation on the set of all maximal R-orders, so our study splits up in two cases :

I : The study of those maximal orders which are conjugated to Λ . They are of course classified by the set Σ^\bigstar /N($\!\Lambda$) .

II : A description of the equivalence classes of nonconjugate maximal orders.

The next theorem provides such a description by means of cohomology pointed sets , cfr. e.g. [2,5].

Theorem 2.1: There is a one-to-one correspondence between:

(a) : equivalence classes of nonconjugate maximal orders

(b) : elements of the pointed set $\lim_{\to} H^1_{Zar}(U,\underline{N}_{\Lambda})$, where the direct limit is taken over all open sets U of Spec(R) containing $X^1(R)$, the set of all height one prime ideals of R.

proof

Let Λ' be any maximal R-order in Σ . By \underline{O} (resp. \underline{O}') we denote the structure sheaf of $\Lambda(\text{resp. }\Lambda$) over Spec(R). $\underline{\Upsilon}$ (the conductor) is defined by assigning to an open set U of Spec(R) the sections : $\Gamma(U,\underline{\Upsilon}) = \{x \in \Sigma : \Gamma(U,\underline{\Lambda}') \times \subset \Gamma(U,\underline{\Lambda})\} \text{. First, we check that }\underline{\Upsilon} \text{ is a sheaf. We claim that inclusions are well defined restriction morphisms.}$ For, let $X(J) \subset X(I)$ be open sets of the Zariski topology of Spec(R) and let $y \in \Gamma(X(I),\underline{\Upsilon})$,

 $x \in \Gamma(X(J),\underline{\Omega}')$, then $Lx \subset \Lambda'$ for some $L \in \pounds(J)$ whence $Lxy \subset \Gamma(X(J),\underline{\Omega}) \subset \Gamma(X(J),\underline{\Omega})$ entailing that $xy \in \Gamma(X(J),\underline{\Omega})$ so $y \in \Gamma(X(J),\underline{\Upsilon})$ finishing the proof of our claim. So, $\underline{\Upsilon}$ is a presheaf.

Furthermore, if $U_{\underline{i}}$ is an open covering of U and if $y \in \cap \Gamma(U_{\underline{i}},\underline{\Upsilon})$, then $\Gamma(U,\underline{\Omega}')y = \cap \Gamma(U_{\underline{i}},\underline{\Omega}')y \subset \cap \Gamma(U_{\underline{i}},\underline{\Omega}) = \Gamma(U,\underline{\Omega})$ proving that $y \in \Gamma(U,\underline{\Upsilon})$ and therefore $\underline{\Upsilon}$ is a sheaf.

For every open set U of Spec(R), $\Gamma(U,\underline{O})$ and $\Gamma(U,\underline{O}')$ are both maximal $\Gamma(U,\underline{O}_R)$ -orders, hence they are equivalent. By a local application of lemma VII.1.3 of [4] it follows that $\underline{\Upsilon}$ is a c- \underline{O}' - \underline{O} -ideal contained both in \underline{O} and in \underline{O}' . By this we mean that for every open set U , $\Gamma(U,\underline{\Upsilon})$ is a left fractional $\Gamma(U,\underline{O}')$ -ideal and a right fractional $\Gamma(U,\underline{O})$ -ideal such that $(\Gamma(U,\underline{\Upsilon})^{-1})^{-1} = \Gamma(U,\underline{\Upsilon})$, where $\Gamma(U,\underline{\Upsilon})^{-1} = \{ \ x \in \Sigma : \Gamma(U,\underline{\Upsilon}) \times C \cap \Gamma(U,\underline{O}) \} = \{ \ x \in \Sigma : x\Gamma(U,\underline{\Upsilon}) \subset \Gamma(U,\underline{O}') \}$. It is readily verified that $\underline{\Upsilon}^{-1}$ which is defined by taking for its sections $\Gamma(U,\underline{\Upsilon}^{-1}) = \Gamma(U,\underline{\Upsilon})^{-1}$ is also a sheaf and a c- \underline{O} - \underline{O}' -ideal.

Since both $\underline{\Upsilon}$ and $\underline{\Upsilon}^{-1}$ are sheaves, s_p and s_p^{-1} live on a neighborhood V(p) of p. Therefore, $s_p\Gamma(V(p),\underline{O})\subset\Gamma(V(p),\underline{\Upsilon})$ and $\Gamma(V(p),\underline{O})s_p^{-1}\subset\Gamma(V(p),\underline{\Upsilon}^{-1})$. Hence, $\Gamma(V(p),\underline{O})s_p^{-1}\subset\Gamma(V(p),\underline{\Upsilon}^{-1})=\Gamma(V(p),\underline{\Upsilon})^{-1}\subset(s_p\Gamma(V(p),\underline{O}))^{-1}=\Gamma(V(p),\underline{O})s_p^{-1}$ and therefore $\Gamma(V(p),\underline{\Upsilon}^{-1})=\Gamma(V(p),\underline{O})s_p^{-1}$ and likewise, $\Gamma(V(p),\underline{\Upsilon})=s_p\Gamma(V(p),\underline{O})$. This then entails that: s_p^{-1} $(\underline{O}, V(p))s_p^{-1}=\underline{O}, V(p)$.

Thus, \cup V(p) is an open set containing X¹(R). Now, X¹(R) equipped with the induced Zariski topology is a Noetherian space and therefore we can find a finite number amond these V(p), say V(p₁)...,V(p_n) such that U = U V(p_i) contains X¹(R).

For any $i,j \in 1,...,n$ we have that :

Therefore $\{V(p_i), s_{p_i}\}$ describes a section of $\Gamma(U, \underline{\Sigma}^{\bigstar}/\underline{N}_{\Lambda})$.

Now consider the exact sequence of sheaves of pointed sets :

 $1\longrightarrow \underline{N}_{\Lambda}\to \underline{\Sigma}^{\bigstar}\to \underline{\Sigma}^{\bigstar}/\ \underline{N}_{\Lambda}\longrightarrow 1\ .$ Taking sections over U yields the exact sequence of pointed sets :

$$1 \rightarrow N(\Lambda) \rightarrow \Sigma^{*} \rightarrow \Gamma(U, \underline{\Sigma}^{*}/\underline{N}_{\Lambda}) \rightarrow H^{1}_{Zar}(U, \underline{N}_{\Lambda}) \rightarrow 1$$

Therefore, the section $\{V(p_i), s_{p_i}\}$ determines an element in $H^1_{Zar}(U, \underline{N}_{\Lambda})$ (and thus also in $\lim_{Zar} H^1_{Zar}(U, \underline{N}_{\Lambda})$) which differs from the distinguished element in $H^1_{Zar}(U, \underline{N}_{\Lambda})$ if and only if Λ' is not conjugated to Λ .

Conversely, let $s \in \lim_{Z_{2r}} H^1_{Z_{2r}}(U, \underline{N}_{\Lambda})$ and choose an open set U of Spec(R) containing $X^1(R)$ and an element $s(U) \in H^1_{Z_{2r}}(U, \underline{N}_{\Lambda})$ which represents s. Using the above exact sequence, s(U) is determined by some section in $\Gamma(U, \underline{\Sigma}^{\bigstar} / \underline{N}_{\Lambda})$. Such a section is given by a set of couples $\{(U_{\underline{i}}, s_{\underline{i}})\}$ where $U_{\underline{i}}$ is an open covering of U, $s_{\underline{i}} \in \Gamma(U_{\underline{i}}, \underline{\Sigma}^{\bigstar})$ for every \underline{i} and for all \underline{i} and \underline{j} we have that $s_{\underline{i}}^{-1}s_{\underline{j}} \in \Gamma(U_{\underline{i}} \cap U_{\underline{j}}, \underline{N}_{\Lambda})$. On U we will define the twisted sheaf of maximal orders \underline{O}' ! U by putting \underline{O}' $\underline{U}_{\underline{i}} = s_{\underline{i}}(\underline{O} \mid \underline{U}_{\underline{i}})s_{\underline{i}}^{-1}$. Using the fact that $s_{\underline{i}}^{-1}s_{\underline{j}} \in \Gamma(\underline{U}_{\underline{i}} \cap \underline{U}_{\underline{j}}, \underline{N}_{\Lambda})$ it is easily verified that this is indeed a sheaf. We claim that $\Lambda' = \Gamma(\underline{U}, \underline{O}', \underline{U})$ is a maximal R-order.

Firstly we will show that there exists an open refinement $\{W_k\}$ of $\{U_i\}$ and sections $t_k \in \Gamma(W_k, \Sigma^*)$ such that $t_k^{-1}t_1 \in \Gamma(W_k \cap W_1, O^*)$

and with the property that the twisted sheaf of maximal orders determined by (W_k, t_k) coincides with Q' on U W_k . Because $X^1(R)$ is a Noetherian space, there are a finite number among the U_1 , say U_1, \ldots, U_n such that U' = U $U_1 \supseteq X^1(R)$. For any i,j among 1,...,n, $Z(i,j) = \{p \in U_1 \cap U_j : s_1^{-1}s_j \not\in \Lambda_p\}$ is a finite set, because $Div(\Gamma(U,Q))$ is the free abelian group generated by $X^1(R) \cap U$ for any -open set U. So, $Z(1) = Z(1,2) \cup Z(1,3) \cup \ldots \cup Z(1,n)$ is a finite set. Now because the Zariski topology induced on $X^1(R)$ is the cofinite topology, there exists an open V in Spec(R) such that $V \cap X^1(R) = X^1(R)/Z(1)$. Take $W_1 = U_1 \cap V$, $W_1 = U_1$, for $i \neq 1$, $t_1 = s_1 \mid W_1$ and $t_1 = s_1$ for $i \neq 1$, then $t_1^{-1} \cdot t_j \in \Gamma(W_1 \cap W_j, Q^{\bullet})$. Continuing in this manner we will eventually find (W_k, t_k) satisfying the requirements, in particular, if $W = UW_k$, then $Q' \mid W$ coincides with the twisted sheaf of maximal orders determined by the t_k . Next, we define a sheaf $\underline{\Upsilon} \mid W$ by $\underline{\Upsilon} \mid W_k = t_k (\underline{\Upsilon} \mid W_k)$. Clearly, $\underline{\Upsilon} \mid W$ is a

Next, we define a sheaf $\underline{\Upsilon}$ | W by $\underline{\Upsilon}$ | W $_k$ = t_k ($\underline{\Upsilon}$ | W $_k$). Clearly, $\underline{\Upsilon}$ | W is a right \underline{Q} - ideal and ($\underline{\Upsilon}$ | W) $^{-1}$) $^{-1}$ = $\underline{\Upsilon}$ | W , this yields that for every open $V \subseteq W$, $\Gamma(V,\underline{Q})$ is a right fractional c- $\Gamma(V,\underline{Q})$ -ideal. This implies that $O_{\underline{\Upsilon}}(\Gamma(V,\underline{\Upsilon}))$ = $\Gamma(V,\underline{Q}'$ | W) is a maximal order.

In particular, $\Gamma(W,O'\mid W) = \Gamma(U,O'\mid U)$ is a maximal order. Finally, the reader may check that the constructions above do not depend on the choices made.

Corollary 2.2. : If R is a Dedekind domain, there is a one-to-one correspondence between :

- (a) equivalence classes of non-conjugate maximal orders
- (b) elements of $H_{Zar}^{1}(X, \underline{N}_{\Lambda})$

3. Application: maximal orders in matrixrings

In this section we aim to characterize those locally factorial (i.e. R_p is a UFD for every $p \in Spec(R)$) Krull domains for which all maximal orders in $M_n(K)$ are conjugated. In this situation we are able to compute $H^1_{Zar}(U,\underline{N}_\Lambda)$ for $\Lambda=M_n(R)$. With \underline{PGL}_n we will denote $\underline{Aut}(\underline{P}_R^n)$, the automorphism scheme of the n-dimensional projective space over R, i.e. \underline{PGL}_n is the sheafification of the presheaf which assigns $\underline{PGL}_n(\Gamma(U,\underline{O}_R))$ to any open set of $\underline{Spec}(R)$, cfr. e.g. [5].

<u>Proposition 3.1.</u>: If R is a locally factorial Krull domain and if $\Lambda = M_n(R)$, then $H^1_{Zar}(U, N_\Lambda) = H^1_{Zar}(U, PGL_n)$ for every open set U of Spec(R).

proof

If we assign to an open set U of Spec(R) the group $GL_n(\Gamma(U, \overset{O}{P_R})).K^*$ $\subset GL_n(K)$, then this defines a presheaf of groups. Its sheafification will be denoted by $GL_n.K^*$. This sheaf is clearly a subsheaf of $\overset{N}{P_A}$. We will show that their stalks are isomorphic. If $p \in Spec(R)$ and if $x \in N(M_n(R_p))$, then $M_n(R)x = M_n(A)$ for some divisorial R_p -ideal A. Because R_p is a UFD , $A = R_p.k$ for some $k \in K^*$, yielding that $x \in GL_n(R_p).K^*$ proving that $GL_n.K^* = \overset{N}{P_A}$.

The following sequence of sheaves of groups is exact :

$$1 \longrightarrow \underline{K}^* \longrightarrow \underline{GL}_n \cdot \underline{K}^* \longrightarrow \underline{PGL}_n \longrightarrow 1$$

where K^{\star} denotes the constant sheaf associated with K^{\star} .

Taking sections over U yields the following long exact cohomology sequence:

$$1 \longrightarrow \Gamma(U,\underline{K}^{*}) \longrightarrow \Gamma(U,\underline{N}_{\Lambda}) \longrightarrow \Gamma(U,\underline{PGL}_{n}) \longrightarrow$$

$$1 \longrightarrow H^{1}_{Zar}(U,\underline{N}_{\Lambda}) \longrightarrow H^{1}_{Zar}(U,\underline{PGL}_{n}) \longrightarrow 1$$

finishing the proof.

A : Dedekind domains

<u>Proposition 3.2</u>: If R is a Dedekind domain, then all maximal R-orders in $M_n(K)$ are conjugated if and only if $(-)^n: Cl(R) \to Cl(R)$ sending [A] to [Aⁿ] is an epimorphism.

proof

In view of Coroll.2.2 and Prop. 3.1 we have to find an equivalent condition for $H^1_{Zar}(X,\underline{PGL}_n)=1$. Writing out the long exact cohomology sequence of the following exact sequence of sheaves of groups: $1 \longrightarrow \overset{\bullet}{C_R^{\bigstar}} \longrightarrow \overset{\bullet}{GL}_n \longrightarrow \overset{\bullet}{PGL}_n \longrightarrow 1$ entails: $H^1_{X,Q^{\bigstar}} \xrightarrow{\delta} H^1_{X,GL} \xrightarrow{\delta} H^1_{X,GL} \xrightarrow{\delta} H^1_{X,QL} \xrightarrow{$

 $H_{Zar}^1(X, \underline{O}_R^{\bigstar}) \xrightarrow{\delta} H_{Zar}^1(X, \underline{GL}_n) \xrightarrow{} H_{Zar}^1(X, \underline{PGL}_n) \xrightarrow{} H_{Zar}^2(X, \underline{O}_R^{\bigstar})$ Because R is a Dedekind domain (Krull dimension = 1) $H_{Zar}^2(X, \underline{O}_R^{\bigstar}) = 1$. Furthermore, $H_{Zar}^1(X, \underline{GL}_n)$ is the set of isomorphism classes of projective rank n R-modules, which we denote by $\operatorname{Proj}_n(R)$. By Steinitz' result any projective rank n module is isomorphic to $J_1 \oplus \cdots \oplus J_n$ for some fractional R-ideals J_1 and δ is epimorphic if and only if there exists a fractional R-ideal I such that $J_1 \oplus \cdots \oplus J_n \cong I$ $\oplus \cdots \oplus I$ yielding that $J_1 \cdots J_n \cong I^n$, finishing the proof.

Remark 3.3: F. Van Oystaeyen suggested a more ringtheoretical proof of this result in the following way. Because all maximal R-orders in $M_n(K)$ are Morita equivalent and $M_n(R)$ is Azumaya, they are all Azumaya algebras. Furthermore Br(R) Br(K) whence any maximal order is of the form $End_R(P)$ where $P \in Proj_n(R)$. Applying again Steinitz' theorem to the condition $End_R(P) \stackrel{\text{def}}{=} M_n(R)$ yields the same condition on Cl(R).

B : Regular local domains

We recover the classical result of M. Ramras for matrixrings :

Proposition 3.4: If R is a regular local ring of gldim(R) ≤ 2 , then all maximal orders in M (K) are conjugated.

proof

We have to check that $H^1_{Zar}(U,\underline{PGL}_n)=1$ where U=X(m), m being the maximal ideal of R. Again consider the exact sequence: $H^1_{Zar}(U,\underline{O}_R^{\bigstar})\longrightarrow H^1_{Zar}(U,\underline{GL}_n)\longrightarrow H^1_{Zar}(U,\underline{PGL}_n)\longrightarrow H^2_{Zar}(U,\underline{O}_R^{\bigstar})$ Now, $H^1_{Zar}(U,\underline{GL}_n)$ is the set of isomorphism classes of reflexive R-modules which are free of rank n at every height one prime ideal of R, $Ref_n(R)$. Because $gldim(R) \leq 2$, reflexive modules are projective whence $Ref_n(R)=Proj_n(R)$ and $Ref_1(R)=Pic(R)$. Finally, R being local $Pic(R)=Proj_n(R)=1$ and therefore all cohomology pointed sets above are trivial exept perhaps $H^1_{Zar}(U,\underline{PGL}_n)$ but exactness of the sequence finishes the proof.

C: Locally factorial Krull domains

Theorem 3.5: If R is a locally factorial Krull domain then all maximal orders in $M_n(K)$ are conjugated if and only if the map from Cl(R) to $Ref_n(R)$ sending [I] to [I \oplus ... \oplus I] is surjective.

proof

Consider the exact sequence:

 $\lim_{n\to\infty} H^1(U,\underline{O}_R^\bigstar) \longrightarrow \lim_{n\to\infty} H^1(U,\underline{G}\underline{L}_n) \longrightarrow \lim_{n\to\infty} H^1(U,\underline{P}\underline{G}\underline{L}_n) \longrightarrow \lim_{n\to\infty} H^2(U,\underline{O}_R^\bigstar)$ where the direct limit is taken over all opens U containing $X^1(R)$

Because R is locally factorial, Cartier divisors coincide with Weil divisors showing that the sequence:

So, by Th. 2.1 and Prop. 3.1 all maximal orders in $M_n(K)$ are conjugated iff the map from $\lim_{n \to \infty} H^1(U, O_R^{\bigstar}) = Cl(R)$ to $\lim_{n \to \infty} H^1(U, O_R^{\bot}) = Ref_n(R)$ which is defined by sending a class of a divisorial ideal [I] to $[I \oplus \ldots \oplus I]$ is surjective.

Finally, it is a pleasure to thank F. Van Oystaeyen, J. Van Geel and M. Vanden Bergh for many stimulating conversations.

References

- [1]: M. Chamarie ; Anneaux de Krull non-commutatifs , thèse , Université Claude-Bernard , Lyon , 1981
- [2~]: J. Giraud; Cohomologie non abélienne, Grundl. der Math. Wiss. 179, Springer Verlag, Berlin, 1971
- [3]: L. Le Bruyn; Class groups and noncommutative algebraic geometry, Proceedings of the Emmy Noether conference '82, Antwerp
- [4]: G. Maury , J. Raynaud ; Ordres maximaux au sens de K.Asano LNM 808 , Springer Verlag , Berlin , 1981
- [5]: J.S. Milne; Etale cohomology, Princeton Univ. Press,
 Princeton, 1980
- [6]: J.P. Van Deuren , J. Van Geel , F. Van Oystaeyen ; Genus and a Riemann-Roch theorem for non-commutative function fields in one variable , Séminaire d'Algèbre P. Dubreil and M.P. Malliavin , LNM 867 , Springer Berlin , 1981