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Abstract

We introduce maximal orders relative to torsion couples as a tool to
study virtually all existing non commutative generalizations of Dedekind
and Krull domains. Further on we restrict ourselves to the Dedekind case,
the so called arithmetical rings. In the third section we give some
examples how this theory can be applied as well as some open prob]éms.

In the 1$st section we introduce and relate Picard and Class groups for
arithmtical rings. Their K-theoretic interpretation will enable us

in part II of this paper to study their behaviour under ringextensions.

1. Maximal orders relative to torsion couples

Let us recall some torsion-theoretic potions (cfr. [7,211. An endofunctor
o in R-mod is said to be a kernel functor if it is left exact subfunctor
of the identity in R-mod ; o is said to be idempotent if o(M/c(M))=0
for any left R-module M. To any kernel functor o the fitter of left
ideals £L(o) = {L <, R: o(R/L) = R/L) = R/L} is associated and to any
filter £ of left ideals satisfying :

(K1) : if I and J ¢ £, then I N J €L

(K2) = if [ el and J <;J, then J € £

{reR:rxel}el

fl

(K3) : if I € £ x € R, then (x:I)
one can associate the kernel functor o, defined by or(M)={n1€M |31 eL:Im O},

o, will be idempotent if and only if £ satisfies also :

L

(K4) : if I € £ and J <, R such that (x : J) € £ for any x € I, then

1
J e L.

A kernel functor o is called bilateral if its associated filter £(o)

has a cofinal set consisting of ideals, o is said to be symmetric if it
is both bilateral and idempotent. One associates to any idempotent kernel

functor o a left exact localization functor QG(.) in R-mod.




If R is o-torsion free (i.e. ofR) = 0), J_ : R~ Q_(R) = 1im Homy (I,R)
is the canonical embedding, where the direct limit is taken over all

I ¢ £L(o).

An idempotent kernel functor o is said to be a T-functor if it satisfies
(T):for I € £(o) : QO(R) jc‘(I) = QO(R).

o will be called geometrical if it has property T and satisfies :

(G) : for any ideal I of R, QQ(R)jU(I) is an ideal of Q_(R).

E.g. if o idempotent kernelfunctor, j.e. if £(o) has a cofinal set
consisting of cenﬁra]]y generated ideals, then o is geometrical whenever
it is a T-functor. Likewise, one can define all these concepts in Mod-R.
If £2(0) is a multiplicatively closet set of nonzero ideals of R, we will
denote with £1(0) (resp. £r(o)) the filter of left (resp. right)ideals
of R generated by £2(o). If £1(c) (resp. £r(o)) is idempotent, we will
denite by Q;(.) (resp. Qg(.)) the localization functor in R-mod (resp. in
mod-R) associated with £](o) (resp. with £r(o)). Finally, we will denote
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by # (R) (resp. Fr(R)) the set of all idempotent kernel functors in

R-mod (resp. in mod-R).

Definition 1.1. if R is any ring, a torsion couple (o,t) consists of a

filter of left ideals £(c) and a filter of right ideals £(r) such that
(o) £() ¢ £2(o,r) where £2(c,t)= (I <R | I € £(c) and I € £(1)}.
Throughout this note, S will be a fixed ring and all rings considered

are subrings of S.

Definition 1.2. : if R is a subring of S and (o,t) is a torsion couple

of R, R is said to be a (o,t)-order if {re¢R|3I e£2(c,r): Ir=00rrl=0}=0.
A (o,t)-order R in S is said to be maximal if there exists no proper overring

T of R in S such that I T J ¢ £2(0,7) for some I € £(0),d € £(x).

The mother example : let R be a prime Goldie ring and let S = Q be its




classical ringv of quotients. If o is the teft Goldie torsion, i.e.
£(o) = {I <y R | I contains a regular element},and t 1is the right Goldie
torsion theory, then R is readily seen to be a (o,t)-order in Q. Further
R is a maximal order (in the sense of [13]) if and only if R is maximal

as (o,t)-order.

Definition 1.3. : Tet R be a (o,7)- order in S. A Teft (right) (fractional)

R-ideal A is a left (right) R-submodule of S such that I ¢ A for some

I ¢ £(o) (I ¢ £(m)) and A J ¢ £2(o,¢) (JA € £2(031)) for some J € £L(7)
(J € £(o)). Of course, A is an R-ideal if A is both a left and right

R-ideal.

The following proposition generalizes some properties of "classical"
maximal orders (cfr. e.g.[13]).
Note that if A, B ¢ S we denote (A]B) = {s ¢ S: sA c B} and

{ALB) = {s €S : Asc B

Proposition 1.4. : if R is a (o,t)-order in S, equivalent are :

(1) : R is a maximal (o,7)-order.
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(2) : if A is a left R-ideal such that Ac A and R ¢ A, then R = A;

if B is a right R-ideal such that 82 c B, RcBthenR =28
(3) : if A is a left R-ideal, then (A ; A) = R, if B is a right R-ideal,
then (B% B) = R.

(4) : if 1 ¢ £2(0,7), then (I31) = (I21) = R
(5) : if A is an R-ideal, then (A*A) = (ALA) = R.

Proof

(1) = (2) : Clearly, Rc (A ; A) ¢ S. There exists an I ¢ £(<) such that

2

AT ¢ £2(o,1), hence (AiA) Ai=ATc¢€cL(o,t) and because (A*A) is an

overring of R, (AiA) = R whence A ¢ R because A c (A; A).
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(2) = (3) : if A is a left R-ideal, so is (AiA). Further, (A:‘A)2 ¢ (AiA)
and R ¢ (A%A) whence (A%A) = R.

(3) = (4) : trivial

(4) = (5) : there exists an I € £L(t) such that A I €.£2(0,T) whence

(Al % AI)’= R. Now, R ¢ (AiA) c (AI 1 AI) =R .

(5) = (1) : let T be an overring of R in S such that I T J ¢ 2 (

OsT)
for some I ¢ £ (o), J € £L(t). Thus IR> I TJ IR € £2(0,T) whence

TJIRC (IR;IR) =R, thus TJ IR e £

(o,t) because ITJIRc TJIR.
Therefore, T is a left fractional R-ideal. Similarly, oné proves that
T is also a right fractional R-ideal. Therefore, T ¢ (T; T) =R

finishing the proof.

Observation 1.5. If R is a (o,t)-order in S, then A‘F%(R), the set of

all fractional R-ideals,is closed under multiplication.

Proof

Let A, B € _F_(R) and let I, K, MP € £(c) 5 J,L,N,Q € £(r) such
that 1A, KB, AJ, BL ¢ £2(o,t), Mc A, Pc B, Nc A, Q c B then, of
course, MP ¢ AB, NQc AB and : R > KB > KIAB > K(IA)(BL) ¢ £2(G,T) whence
(K,1) AB ¢ £2(cyt), R > AJ > ABLJ > (IA)(BL) J € £2 (o,t) whence

AB(LJ) € £2 (ou7).

Let us recall the construction of the group of E. Artin. Suppose that

T is an ordered set with a multiplication law subject to the following
conditions.

(1) : T is a semigroup with unit element e

(2) : T is a lattice (i.e. a vb = sup (a,b) and a A b = inf (a,b) exist
for any elements a, b ¢ T).

(3) : a<b implies ac =< bc and ca = cb for all a,b,c €T

(4) : ¢ (avb)=cavcband (2 vb)c=acvbc for all a,b,c € T.




(5) for every bounded subset {a,; i €pr}of elements of T and every

. ! - . -
c €T: \vai)c = v(aic), c(vai) = v(cai)
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(6) : There exists a mapping (-)'1 : T > T such that a.a ~.a < a for
every a € T and if a.x.a = a then x = a—l.

(7) : if a2 = aand e = a, then e = a. -

Two elements are said to be quasi-equal iff a'1 = b_l. This defines an

equivalence relation on T and the set of equivalence classes equipped
with the multiplication [al.[b] = [((a.b)-l)'ll is a commutative (!)

group (cfr. e.g. [13] .

Proposition 1.6. if R is a maximal (o,t)-order in S, and if OE’T (R)

“

= T,,c.is 2., R=e¢, CIFT(R) satisfies (1) to (7).

Proof

(1) : cfr observation 1.5.

(2) : Tet A,B ¢ O_]FT(R), then AN B ¢ oF 1(R)’ for, let I, K ¢ £(o);
J, L € £(c); J, L € £(t) such that IA, KB, AJ, BL ¢ £%(o,7) and

M, P eL(o); N, Q € £(1) such that M, Nc A and P, Q ¢ B, then
MNPcANBand NN B. (or : MPc AN B if we do not impose that

L(c) and £(t) have the intersection property).

Further, IK(AJKB) c IK(ANB) c IKA n IKB ¢ R and IK(AJKB) ¢ £2(

CsT)
hence so is IK(ANB). Likewise one proves that (A N B) JL ¢ £2 (os1).
Also, A + B EO'I;(R), for, M+ PcA+B; N+Qc A+ B; and :

KI(A +B) c TA + KB c and KI(A + B)L : KIAL + KIB L ¢ £2 (o,7).

(3) and (4) are trivial.

(5) : let A, c 2 A; ¢ B e F (R) such that 1.A., A,J., IB and BJ are

19
elements of 22(o,r). Then

) .
IA;d; < TA; c I(2 A;) < R and I(AiJi) € L% (o,t). Then
2

(os1).

1A,d; © TA; < I(z A;) © Rand I(AJ) € £5(a,x), thus I(z A) €2
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Likewise, (= Ai) J €L (o,t). If Ki < A and Li < Ay where K, € £ (o),

L, € L(t), then, of course, Ky <3z Ai’ Li c Ai'

(6) : if A ¢ O_FT (R), it is easy to show that (A{R) is a left R-ideal
and that (A{R) is a right R-ideal. Now, A(A;R)A c A whence A(A{A) = R
and therefore (A%R) c (A;R). Similarly, (AéR) c (A;R) and thus :

(A:R) é (A{R) = (A;R) is an R-ideal satisfying the requirements of (-)'1.

(7) : fo]]oWs from proposition 1.4.

Definition 1.7. : an R ideal A is said to be a divisioral R-ideal iff

(A:R):R = A. o_]DT(R) will be the set of all divisorial R-ideals.
The next proposition follows from the arguments above :

Proposition 1.8. : if R is a maximal (o,t)-order, 0I)T(R) equipped with

the multiplication A » B = (AB:R):R is a commutative group.

definition 1.9. R is said to be a (o,t)-Krull order in S if

(1) R is a maximal (o,t)-order in $

(2) R satisfies the acc on divisorial R-ideals contained in R.

Proposition 1.10 : if R is a (o,t)-Krull order in S, O_D%(R)'z 7(4)

for some index set A and this isomorphism is order preserving.

Proof

Reverse the ordening on OD,F(R), i.e. A =B iff Bc A. It is readily
verified that every finite subset of’CyDT(R) has a supremum Aln..JWAn

and an infimum (A1+...An:R):R.

Moreover, any nonempty subset of positive elements of O_IlDT(R) (1.e.
divisorial R-ideals contained in R) has a minimal element. A well known
theorem oh commutative ordered groups satisfying these properties (cfr[31])

yields that OJ)T(R)'§ l(A) for some index set A and the isomorphism




is ordef preserving. Of course, the order relation on lﬁA) is defined

by (ax)x < (Bx)x < (Bx)x iff ay = By all x e A\,

Remark 1,11 : it is easy to verify that the maximal (with respect to
inclusion) divisorial R-ideals contained in R form a set of generators
of o,]DT(R). We claim that these generators are prime ideals of R. For,

in any Artin setting (i.e. a system satisfying the conditions (1) to (7)

we have for any a, b, €¢T:
-1

(ab)* = (a*b)* = (a b*)* = (a*b*)* where a’ = (a )"1 (cfr.[131). Now,
let P be a maximal divisorial R-ideal and suppose that I and J are ideals

of R such that P ¥ 1, P%Jand I JcP, then (I0)'c P* = P and (1J)* =

(I"J*)* = R =R a contradiction.

If P is a minimal prime ideal of £2(031) which is a divisorial R-ideal,
then P is a generator. It is not known to the author whether every minimal

prime ideal of rz(o,w) is divisorial.

Now, we aim to relate the arithmatical theory of a(o,t)-order R with

that of its center Z(R).

Let D be a commufaive ring, contained in S and let £(o) be a multiplica-
tively closed filter of nonzero jdeals of D. D is said to be p-completely
integrally closed if it is o-torsion free and satisfies the following
condition f every element s ¢ S such that there exists an element I € £(p):
I s" ¢ D for every n ¢ N belongs to D. The proof of the following lemma

is easy and left to the reader.

Lemma 1.12. equivalent are :
1. D is a maximal p-order in S

2. D is p-completely integrally closed

If R is a (v,c)-order in S with center Z(R), £(o(os1)) =
= {I < Z(R) | RI ¢ £2 (o,7)} is a multiplicatively closed filter of

nonzero ideals of Z(R).




Proposition 1.13 :

1. If R is a maximal (o,1)-order in S, Z(R) is o(o,t)completely integrally
closed.

2. If Ris a (o,1)=-Krull order in S, Z(R) is a p(o,t)-Krull order.

Proof

(1): suppose there exists an element x such that for some I € L(p[w,T)),

1 x"c Z(R) for every n ¢ N. Then, R [x] is an overring of R in S such

that R I R[x] <« R whence x ¢ RN K = Z(R) where K = {31¢ £(o(o,1)):IscZ(R)}
(2) : in view of part (1) we are left to prove that Z(R) satisfies the

ACC on divisorial Z(R)-ideals. For any I ¢ £(n(o.,T)) we denote (RI)_1=

= fs €S IsRICR), I'V=qkeK|kIcZ(R)}, Rl ={s ¢ S|(RI)"Ls ¢ R},
1= (keK | I_1 g < Z(R)}. Clearly, RI N Z(R) > I if I is divisorial.

Further,

(RT N Z(R)) 171 ¢ RIRD)™1 K« RN K= Z(R) whence I = RI n Z(R)

finishing the proof.
2
(

Remark 1.14 : If R is a (o,1)-Krull preorder such that £ oc) =

={l aR | INZR)#O0}c LZ(Q,T)l Z(R) is a Krull domain? We will return

to this in section 2.

Some examples

Marubayashi-Krull rings (cfr.([ 14, 15]) and Chamarie-Krull rings (cfr.[4])
are (o,1)-Krull orders where o (resp. 1) is the left (resp. right) Go]éie
torsion theony.Il#Krull rings (cfr. [9,10]) are (ol, oZ)—Kru11 orders
where £2(oc) ={l<R:1nZ(R)# 0}

Marubayashi's‘Kru11-HNP-rings (cfr[l61]) are (p],pr)-Kru11 orders where
£2(0) = N{£%(R-P); P ¢ Spec R, (P:R):R # R}.

Details ake left to the reader.




2. Arithmetical rings

In this section we will 1imit ourselves to maximal (o,t)-orders which

are of Dedekind type, namely Arithmetical rings.

Definition 2.1. A (o,t)-order R in S said to be an arithmetical (o,t)-

ring iff JFT(R) is a group.

Proposition 2.2. : if R is an arithmetical (o,1)-ring, then
1. any R-ideal is a f.g. projective left and right R-module

2. Ris a (o,1)-Krull order in S.

Proof

1. Let A be any R-ideal, then A~la = R
1 1

-1

AA™ " for some R-ideal A"l, whence

1]

A < (A;R). Further, 2 f.a. = 1 for some fie A'1 and

« (AiR) and A 333

a; ¢ A. Thus for any a € A, x(afi)ai = a and a f,i € R, yielding that

A = Ra +...+Ra Finally, (A;R) is contained in HomR(A,R) the set of

0
all left R-module morphisms from A to B and the dual basis theorem
implies that A is a f.g. projective left R-module. A similar argument
shows that A is a f.g. projective right R-module.

-1

2. First, we will show that (I;R) = (I;R) =1 " forany I ¢ £2(o,1).

To this end it suffices to prove that (I§R) and (I;R) are elements of

_F_(R). Because (I3R)I = R ¢ £2(o,1) yielding that L(LR)L = 1
whence I(IiR) = I(I%R)II_1 = II_1 = R, thus (I;R) = (I;R), done.
Also, 1"1(1]:1)1 = R yields that 1'1(1i1) ¢ 17! whence (L1) = R.

Similarly, (I;I) = R and by proposition 1.4., R is a maximal (o,1)-order

ACC on divisorial ideals contained in R follows from part 1.

Proposition 2.3. if R is an arithmetical (o,t)-ring, then SF(R) is

the free Abelian group generated by the prime ideals of R contained in

£2(o,1), which set we will denote with P(o,1).
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Proof

Beacause A_1 = (A:R) for any R-ideal A, oIFT(R) = OIDT(R) and by prop.2.2.

and prop. 1.10., there exists an order preserving isomorphism y: 5 FT(R)>ZKA)

for some index set A. Put 1 = ( and Tet Pi = W-l(

E’1'3')3'6A n n
R-ideal can be written uniquely as A = Pll...Pkk. We claim that any

]i)' Thus, any

prime ideal P ¢ P(0,1) equals Pi for some i. For, if P is a maximal ideal
n n
contained in P(o,t), then P= Pll...Pkk < P, whence P = Pi‘ Now, let
P e P(o,7) and let Q be any maximal ideal containing P, then y(Q) = y(P)
ok

whence P = QnPl‘... K where n = 0. Thus, either P = Q or Pi ¢ PacQ= Pj

for some 1 = i = k, a contradiction because w(Pj) oy (Pi) whenever i # j.
This completes the proof of the claim. Finally, Let Pi be a cenerator
of o F%(R) and suppose Pj is a maximal ideal containing Pi,then P1=Pj

whence Pi is a prime ideal contained in P(o,r) finishing the proof.

It follows from the above proof that any Pe P(o,t) is a maximal ideal

of R. Further, if R is an arithmetical (o,t)-ring, £2(o,¢) =

n n
1. .pk

- {Pl 1P €P(o,1) 1.

1y .

={l -y R:dKe £2(o,'n); Kc I}, £(07) = {J “p R: 1 K¢ £2(o,7), K< Jd},

Proposition 2.4. : If R is an arithmetical (o,t)-ring and let £L(o

then p] and pp are idempotent T-functors.

Proof

This proof and the following depends heavily on some techniques developed
by F. Van Oystaeyen, in the left Noetherian case (cfr.[21, 22, 23]).
First, wé will check that p] and o are idempotent. In view of prop. 2.2.
£(p]) has a cofinal set consisting of f.g. R-ideals. Now let J be a left
ideal of R such that p](I/J) = 1/Jd for some I ¢ £(p]) which we may
suppose to be an ideal f.g. as a left R-module, say I = Ri1+...+Rik.
Hence, there exists an ideal K in £2(p) such that Kij < J for all

1 <1 <k. Finally, K I ¢ J and because £2(p) is multiplicatively closed,
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1 1

J € L(p'). Because pl js idempotent, Q](R) = 1im Hom,(I,R) where the
o > R

direct limit is taken over all I ¢ £2(O,T). It follows that Ql(R) =

= {s €S| 31 ¢ £2(051) : I s ¢ R}. Likewise, o is idempotent and

2

={s €S| 31 €L (o,t) : $IcR} Clearly Ql(R) = Q;(R) because

r
QD
(13R) = (1;R) for any ideal I ¢ 2% (o,1).

'r)

Now, if I is an ideal contained in £2(p), then I I"1 = R where 1! ¢ Q

whence Ql(R)jp(I) = Ql(R) and therefore, p] is a T-functor.

If 0,1 € FI(R), o is said to be t-geometrical if 0_(R)j (1) is an
ideal of Q_(R) for every I ¢ £%(c). A symmetric kernel functor o is

said to be (o,t)~geometrical if o ¢ F1(R), t ¢ F'(R) and Q]](R)j ](I)
[¢ w

o

and j r(I) er(R) are ideals of Q]](R) resp. er(R) for every I ¢ £2(o,r).
( w

w 0 w

Proposition 2.5. : If R is an arithmetical (o,t)-ring and if » is a

bitateral kernel functor such that Ez(w) is contained in £2(c,1) and

£2(w) is multiplicatively closed, then :
1. w is a (o,t)-geometrical T-functor.

2. R is an arithmetical (w1, & )-ring.

Proof

e

1. The fact that « is an idempotent T-functor is proved as in prop. 2.4.
Let A =R aj+...+Ra_ be an ideal contained in £2(o,m) and let q ¢ QL(R)

2(&0 c £2(o,1). Because OB?T(R) is a

such that I g <« R for some I ¢ £
commutative group we have I(Aq) = Alq ¢ AR = A. Therefore, Ql (A) I(Aq)

is contained in QL(R)A whence Aq ¢ QL(R)A finishing the proof.

2. Let A ¢ 1 F r(

w w

R), then A ¢ F_ because Qw(R) c Qp(R) and A is

2

invertible in QG(R). There exists an ideal I € £7(w) I A ¢ £2(w) whence

(IA)I'1 = 1 ¢ R yieling that Al Q(R). Therefore, any element of

1 F’r(R) is invertible in Qw(R).
W w
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Proposition 2.6. : If R is an arithmetical (o,t)- ring and if w is a

bilateral kernel functor such that £2(w) is multiplicatively closed
and £2(m) c £2(0,T), then :

Qw(R) is an arithmetical (o', t')-ring, where

L(c') is generated by {Qw(R)I; I € £(o)} and

L(t') is generated by {J Q (R)s J € L(1)}

Proof

Follows easily from proposition 2.4. and compatibility of kernel functors

(cfr. [23).

Torsion couples can be ordered naturally in the following way (o,t)< (o',1')
iff o =0 and v = 7' (i.e. L(o) ¢ £(o') and L(t) < L(<')). Whereas the
largest torsion couple (o,t)-ring is usually difficult to compute, the
largest symmetric kernel functor o such that R is an arithmetical (o],pr)—
ring can be described nicely in the following way.

Let R be any ring and let 7 be the set of all ideals I of R such that

{r ¢ Rt Irzoor rl = 0} = 0 and let S be its Martindale ring of quotients
(i.e. S = Tim HomR(I,R) where the direct 1imit is taken over all I € T).
Let 4 be the sét of all ideals of R which are not invertible in S. We

claim that 4 is inductive under inclusion. For let {A,; i € A} be an
inductive subset of 4 and suppose that U Ai = A is invertible in S. Then

A is a finitely generated left R-module, say, A = R a1+...+Ran, but then

A = Ai for some i € A, a contradiction. By Zorn's lemma, A contains

maximal elements. We claim that any such maximal element P is a prime
ideal of R. For, let P ;’I, P % Jand I J ¢ P, then I and J are invertible

1 1 1

whence I ¢ PJ *cRand Jdc I " Pc R, whence P )71 and I " P are

invertible yielding that P has a left and right inverse in S whence P

is invertible, a contradiction.




- 13 -

We‘will denote with 4A(R) the set of a11 maximal elements of 4. For any
primé ideal P of R, £2(R-P) will be the multiplicatively closed set of

all ideals of R not contained in R. Now, let £2(p) = n{£2(R-P)|P € 4(R)},
then £2(p) consists of invertible ideals and therefore is the associated
kernel functor p an idempotent T-functor. Further, it is easily verified
that o is the largest symmetric kernel functor such that R is an

arithmetical (p],pr)-ring.

The fo]Towing proposition generalizes results of G. Bergman- P. Cohn
(the center of a 2-fir, [2]) and L. Lesieur (the center of an ipli-ring
[11] ). It is a special case of proposition 1.13 above but it gives
some more insight. With o, we will denote the symmetric kernel functor

associated to the filter generated by the centrally generated ideals of R.

Proposition 2.7. : The center Z(R) of an arithmetical (o,t)-ring R is

either a field or a Krull domain if £2(ot) c £2(0,1).

Proof
Because £2(0C) c £2(0,T), any ideal of the form Rc, where c is a nonzero

n n
central element, can be written uniquely as Rc = Pl1 e Pkk where

Pi € P(ost)s n, ¢ N. The prime ideals occuring in such a decomposition,
for ¢ running through Z(R), form a subset A(o,t) of P(o,t) consisting

of exactly those P ¢ P(o,1) satisfying

Formanek's condition, i.e. P N Z(R) # 0.

If A(o,1) = @, then there exists no proper ideal Re | . Z(R) is a
field.

If A(o,t) # B, we will associate to every P, € a(o,t) a discrete valuation
function v, on K, the field of fractions of Z(R) by vi(c) = n: for all

i
c € Z(R). The following properties of v; are easily verified.
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(1) v;(1) =0, (2) v; (cc') = vy(c) + vy(c')
As for vi(c+c'), R(ctc') = Rc + Rc' = PT*"("l’”E)... Pfin(nk’"'k)

yielding that R(cee ) = pPTIN(MLm) | plin(ng.my ) Qi g

Therefore, vi(c +C') = min {vi(c), vi(c')}. 0f course, these valuations
can be extended in a unique way to K. They satisfy the finite character
property because there are only a finite number of prime ideals occuring
in a decomposition of Rk, k ¢ K. Finally

Z ={k € K| vi(k) = 0 P, ¢ A(o,t)} = Z(R), for if k ¢ Z, Rk ¢ R

whence k ¢ R n K = Z(R).

Remarks

(1) Prop. 2.7. is the best result one can hope for, in fact Bergman and
Cohn [2] showed that evéry Krull domain can appear as the center of

a left and right principel ideal domains, which are N-ring, cfr. section 3.
(2) The condition £2(ot) c £2(o,r) cannot be dropped, e.g. the coordinate
ring of aksingu1ar affine curve.

(3) Arithmetical rings satisfying £2(ot) C LZ(O,T) have the lying-over

property for minimal prime ideals of its center.

3. Some examples

A. Asano orders

Let R be a prime Goldie ring and let o](resp or) the left (resp. right)
Goldie torsion theory, i.e. £(o]) (resp.L(or)) consists of the essential
left (resp. right) ideals of R. Then, Q(R) = Q"(R) = Q(R) is the classical
Artinian ring of quotients and the R-ideals are precisely the usual
fractical R-ideals (cfr. e.g. [13] ). Thus, R is an arithmetical

(o'
Prop. 2.3. is nothing but the classical result that F(R), the set of

,or)—ring if and only if R is an Asano-order. In this setting,

fractional R-ideals, is the free Abelian group generated by the non-zero

prime ideals of R.
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Clearly, £2(oc) c £2(0],or) therefore the center of any Asano order is
either a field or a Krull domain. Although we did not find any reference

of this fact in the literature, we believe it is well known among specialists.

B. HNP-rings

Probably the nicest nontrivial class of arithmetical rings (and indeed
the main motivation for their introduction) is the class of HNP-rings.
Recall that a left and right Noetherian prime ring is said to be a HNP-
ring if every left (right) ideal is a left (right) projective module.
Any HNP-ring having an invertible maximal ideal is an arithmetical ring.
The idea of arithmetical rings is to study those subsets of the fractional
ideals which admit a group structure whereas the complementary part
depends on the maximal idempotent ideals and this part can be described
nicely by other methods, e.g. the state space of the Ko—theory of
Goodearl (cfr.[81). Probably the arithmetical theory of HNP-rings can
be discribed entirely by a combination of these methods. Another
intriguing problem in this setting is the connection between the
maximal symmetrical kernel functor o such that R is an arithmetical

1

(o ,or)-ring and the open set of birationality. Let us recall some

definitions (cfr. [24,25] ).

Let A be any ring, X = Spec A its prime spectrum equipped with the
Zariski topology. A zariski open set is equal to some X(I) = {P ¢ X}IdP}
where I is an ideal of A. A ringhomomorphism f: A - B is said to be

an extension if B = f(A) ZB(A) where ZB(A) {beB|vaeA: b f(a) =

= f(a) b}. In this case, f_l(P) ¢ Spec A for any P ¢ Spec B and o :

Spec B » Spec A, o(P) = f !

(P) is a continuous mapping (cfr. [26]).
A monomorphic extension f : A >~ B is said to be a birational extension

if there exist nonempty Zariski open sets Y(I) < Spec B and X(J) ¢ Spec A




- 16 -

such that the restriction of o yields a homomorphism between Y(I) and
X(J), the birational extension property is equivalent to »(Y(I)) = X(J)
and H = rad B(H n A) for every radical ideal H < rad I. A Zariski
extension is a birational extension such that ¢(I) = Spec B. If B is

a Zariski extension of its center, B is said to be Zariski central.

In [ 18], E. Nauwelaerts and F. Van Oystaeyen proved that whenever

R is an HNP-ring which is a birational extension Qf its center and

P ¢ Y(I), the open set of birationality, then P is an invertible
maximal ideal. As a consequence of this, a birational HNP-ring has only
a finite number of idempotent ideals. This result leads us to the

following question.

Question 1 : Let R be an HNP-ring birational over its center and let
o be the maximal symmetric kernel functor such that R is an arithmetical

],or) = Y(I) where Y(I) is the maximal open set

(0], or)-ring. Is P(o
of birationality ? (Y(I) ¢ P(G],or) follows from the result of

Nauwelaerts - Van QOystaeyen).

When R is a p.i. HNP-ring, question 1 can be answered affirmatively using
some results of B. Mueller ([17] ) and the fact that invertible prime

ideals have the left and right Ore-condition.

C: N-rings, a question of L. Lesieur

R is an N¥ring if it is an arithmetical (0&, og)—ring where £2(oN) =

{I «R | I contains a normalizing element}. For any overring S of R,

NR(S) will denote the set of all R-normalizing elements {s ¢S |s R = R s}.
In[11], L. Lesieur posed the following question : if R is a prime

left principal iedal ring, Z(R) its center, k = Q(Z(R)) the field of

fractions of Z(R) and K

Z(Q(R)) the center of the simple Artinian

i

ring of quotients, is k = K ?
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He proved the following result : (cfr. [11])

Theorem (L. Lesieur) If R is a prime left principal ideal ring, k is

algebraically closed in K.

We aim to generalize this result to arbitrary N-rings. Let us start with

defining so called pseudo-valuations on the R-normalizing elements of

QN(R). Let {Py5 1 €4} = P(o&, oﬁ). For any element n in NR(QN(R)) we have
n n ‘
Rh =P 1 ’Pk for some i € A, n; € Z. Now, let us define :

L
;= Na(Qy(R)) »Zv;(n) = n,

It is straightforward to check that vi(l) =0 and vi(n.n') = vi(n)+vi(n').

1

v

Further, if‘nl,...,nk are R-normalinzing elements in QN(R) such that

nyte. .40y is R-normalizing, then Vi("1+"'+nk) >min {1 = j<k, VL(n}H

Proposition 3.1. If R is an N-ring and x ¢ Z(QN(R)) such that x is

integral over Z(R), then x ¢ Z(R).

Proof
1 "k
Clearly, x is an R-normalizing element of QN(R), whence Rx = P1 ...Pk

for some P, ¢ P(o&, oﬁ) and some integers n, € Z. If every n; = 0, then

X € RN Z(QN(R))‘: Z(R). Therefore, let us assume that vi(x) < 0 and that

x4 clxn"1+...+cn = 0 where ;i € Z(R). Because cixn—1 € NR(QN(R)) and

jxn'J); 1<j=n}=

min {Vi(c') + (n—j)vi(x); 1 =J < n}, a contradiction because vi(x) <0

x" ¢ NR(QN(R)), it follows that vi(xn) = n vi(x) > min {vi(c

J
.) = 0.

and Vi(CJ

Proposition 3.2. : If R is an N-ring, then k = Q(Z(R)) is algebraically

closed in K = (Z(QJR)).

Proof

It is easy to check that Z(QN(R)) is a field. Let x ¢ K\k and suppose

n-1+..

that x is algebraic over k, say xn+k1 X .+kn = 0 where ki € k,
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1 =1 =n. Clearing the denominators yields : Zoxn+ len'l+...+‘zn =0

where Zi € Z(R) and Z0 # 0. Now let 1 = Zox, then :

n n-1 n-1, _ T |
th o+ 275t oo Z, = 0. By Prop. 3.1., t ¢ Z(R) whence x = tz,

€ k
finishing the proof. o

If R is a prime left principal ideal ring, either R contains no normalizing
non-unit elements (in which case Z(R) is a field), or R is an N ring
(follows from [ 11, Propriété 6] ). Hence, Prop. 3.2. extends Lesieur's

result whereas Prop. 2.6. generalizes [ 11, Th. 3] because clearly 9 = Oy

We will extend fhis question to one about arbitrary arithmetrical rings,
the solution of which is of some importance in order to study class
groups (cfr. section 4 and part II of this paper). Let R be an
arithmetical (o,7)-ring. In order to study the relation between Z(R)

and Z(QO(R)) it is natural to consider the so called (o,t) -normal
closure of R in QG(R). NR(QO(R)) is the set of R-normalizing elements

of QO(R), and NE’T(QO(R)) will be the subset consisting of those elements
q such that Rq ¢ O,FT(R). The normal closure of R in QO(R) is the set

Ry = RNR(QO(R)) whereas the (o,t)-normal closure in the set RE’T =

= R Ng’T(QO(R)). It is easy to check that both R, and RE’T are prime
rings. Furthermore, Z(RN) = Z(QO(R)) whereas Z(R) ¢ Z(QO(R)). For, let

z ¢ Z(RS’T) and x € Q_(R) then I x ¢ R for some I ¢ £(o) whence
iZx=21x=1xZforevery i ¢l yielding that I(Zx-xZ) = 0

whence Zx - xZ = 0,

Oyt

Question 3 : What is the relation between Q(Z(R)), Q(Z(RN ) and

Q(Z(Q_(R))) ? In particular, if £2(oc) ¢ £2(0,r), is Q(Z(R)) = QZ(RY"™)) 2

D : ©-Rings
An S-ring is an arithmetical (o;_o, og_o)-ring where £2(oR_o) is the

set of all nonzero ideals of R. (E.g. a Goldie S-ring is nothing but an
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Asano-order). An S-ring R is said to be an @-ring if R satisfies Formanek's
condition, i.e. if every nonzero ideal has nontrivial central intersection.
In this case, we conjecture that there is a strong relation between R

and its center. In particular, we pose the following questions.

Question 4 : If R is an @-ring, is Z(R) a Dedekind domain ?

Question 5 : If R is an @-ring such that Z(R) is a Dedekind domain. Is

R Zariski central ?

Remarks
(1) : If R is an @-ring satisfying a polynomial identity, then R is p.i.
Asano whence Dedekind and a result of Robson's [19] yields that Z(R) is

a Dedekind domain. Zariski centralify follows from some results of

E. Nauwelaerts- F. Van Oystaeyen [ 18] . The non-p.i. cases of questions

4 and 5 remain open.

(2) : Question 5 is a generalization of the Nauwelaerts - Van Oystaeyen
conjecture ([ 18]) asking whether a bounded Dedekind prime ring satisfying
Formanek's condition is Zariski central. But even the validity of this
conjecture remains obscure because it would imply that a noncommutative
discrete valuation ring (cfr. [20]) in a skewfield D with center K
having nontrivial valuation on K is invariant under K-automorphisms of

D. Of course, when D satisfies a polynomial identity this is obvious.

4. Picard and class groups_of arithmetical rings

If R is a maximal (o,t)-order in S, then ojDT(R) the set of all divisorial
R-ideals is a commutative group under %-multiplication. o,]'PT(R) will be
‘the subgroup of O.IDT(R) of divisorial R-ideals Rn where n ¢ NO’T(R) =

= {5 €S |Rs = sR and Rs ¢ - F. (R)}.
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Definition 4.1. : The class group, OC'IT(R), of a maximal (o,t)- order

R in S is the group O‘DT(R)/CIPT(R).

Remark : this definition coincides with the usual notion of a class
group for completely integrally closed commutative domains (e.g. Krull
domains), with the Chamarie class group for nonommutative Krull orders

(cfr. [4])and with the normalizing class group for @-Krull rings.

If R is an arithmetical (o,t)-ring, we Qqtve a K-theoretic interpretation
of the class group which will enable us in part II of this paper to

deduce Maeyer-Vietoris sequences relatinaclass groups in ringextensions.

Let us recall some definitions of abstract K-theory (cfr.[1]) :

A product 1 on a category A is a functor :

Lo AxA A

which is coherently associative and commutative in the sense of MaclLane

(cfr.[12]. This means that there are natural isomorphisms :

1o (1A Xxl)a1lo (L x 1A) tAXAXxA-A andl 0ot AxA-A

where t denotes the transposition of A x A. The "coherence" of these
isomorphisms }equires that isomorphisms of products of several factors,
obtained from the above by succession of three fold reassociation and
twofold permutation, are all tre same.

If Ais a category with product, its Grothendieck group is an Abelian

group K (A) supplied with a map : [ ] a i 0b (B) > K ().

which is universal for maps into an Abelian group satisfying :

(Ka) : if A= B, then [Al, = [B],

(%):[Aimé=[A@1[Bg

This means that any map f : Ob(A) - G, where G is an Abelian group,

satisfying the analogues cf (Ka) and (Kb) is of the form f(A) = fo([A]A)
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for a unique homomorphism fo : KO(Q)'» G.
To construct KO(Q) we form the free Abelian group with the isomorphism
classes of Ob(A) as a basis, and then factor out the subgroup generated

by relations corresponding to (Kb).

Now, let F(o,t) be the category with objects Ob(F(c,t)) =(3F}(R)

and morphisms [A,B]F = HomR(A,B), the left R-module morphisms from

A to B. Remark that any left R-module morphism f : A » B can be extended
uniquely to a Teft QF(R)—module morphism.

F 2 Qu(R) = Qu(R) A~ Q(R) = Qq(R)B

where Q,(R) is the localization at the symmetric T-functor (prop. 2.4.)
determined by the filter generated by £2(0,T). Hence, [A,B]E, = (A;B)p

= {s¢ QP(R)]As<; B}. Let us defino a product on F(o,t) in the following

way : A, B € Ob (F(o,1)) = o F&(R), then AL B = AB and if q ¢ [A,NE,=

4

= (A%B)p and q' € [C,D]F (C;D)p, we claim that g L ¢ = qq ¢ [A L D]E’=

= (AC;BD)Q, for, AC q¢' = CA q¢ <« CBq'" = BCq' ¢ BD.

Remark that .lL: is not necessarily a commutative product because it may be
non-commutative on the morphism level. Nevertheless, it is possible

to define an Abelian Grothendieck group KO(F(O,T)) as above because

. 1. is commutative on the object level. Similarly, one could define a

category F'(o,t) with Ob (#(o,t)) = Ob(F'(o,t)) and with morphisms

[A,B]F, = RHom(A,B), the right R-module morphisms from A to B. It

follows from the proposition below that KO(F(O,T)) = KO(F'(O,T)).

~

Proposition 4.2. : if R is an arithmetical (o,t)-ring, then OCIT(R)

KO(F (os1)).

Proof

~

F _(R)/N where N

Because O,FT (R) is an abelian group, KO(F(O,T)) i

is the subgroup of those R-ideals I which are isomorphic to R, i.e.

there exist elements g and h in S such that Ig ¢ R, Rh ¢ I and
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igh = 1, rhg = r for all i ¢ I and r ¢ R yielding that gh = hg = 1 and

thus Ig = R and Rh = 1. Clearly, g ¢ 171 and 29 1 = 1 for some

9y € 1

R ik € I, whence g = & 9 (ik g) =2 9 jk where jk € R. Thus,
gr=2=zg, (jkr) =1 gy 1k g € Rg because ]k € 1. Therefore, g Rc R g
and similarly h R <Rh. Thus, R=hgRchRgc Rhg =R whence

hRg =}R and Rg=gR, Rh=hRyielding that g and h are

(194

R - normalizing. Thus, I ¢ O.IPm(R) yielding that KO(F(O,T))

1l

JF.(R/ P_(R) = C1_(R).

If D is a commutative Dedekind domain, there is a natural isomorphism
between C1(D) and Pic(D), the Picard group of D. This fact may for
example be proved by estab]ishing an isomorphism between the Weil
divisors and the Cartier divisors on the affine scheme Spec D.

ATthough one can study Cartier divisors on more general noncommutative
schemes, we restrict ourselves in this note to introducing Cartier
divisors on a suitable sheaf of rings associated with an arithmetical
(o,1)-ring (which, of course, coincides with the usual affine scheme if
R is a commutative Dedekind domain). The Cartier divisor classes will

be denoted by o PicT(R) and we will examine its relation to OC‘IT_(R),
(note that there is no obvious relation between O_PicT(R) and the

usual Picard group of R in terms of invertible R-R-bimodules (cfr.[51])).
Let us fix some notation : throughout R will be an arithmetical (o,1)-
%

ring, Q = QD(R) where L% (p) = £2(o,1), cfr. prop. 2.5. For any symmetric

kernel functor v, Qj(R) will be the left (or right) localization of R

2(p) n 2

at the kernel functor assiciated with £ (v). It follows from
prop 2.7. that QS(R) is an arithmetical (ov,wv)-ring, where £(ov) =

= {Q2(R) 1| I € £(o)} and £(x)) = (9 Q°(R) | J € £(x)}.

We make X - {x} U P(o,1) (where x is some abstract element playing the

role of 0 if R is a prime ring) into a topological space by inducing
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oh P(o,71) the Zariski topology and taking for Open (X) the set

{9, {x}‘U V where V ¢ Open (P(o,t))}. In many cases, this topology
will be homeomorphic with the cofinite topology on P(o,t).

We will define two sheafs of rings on X. The first,la, is the constant
sheaf corresponding to Q. The second,'ﬁp (or ;Ep is‘we want to stress

~ the role of ¢ and t), is a sheaf of arithmetical rings defined :

2

PV, ®o) (V) =0 { £2(R-P) : P ¢ V 0 P(0y7)}. Clearly

T(V,'wv)

i

QS(R) where £

n {Qg_P(R) : P eVn plo,t)} and restriction morphisms are
inclusions. It is readily verified that Rp is indeed a sheaf. R can be

recovered from it by taking global section, for, if s ¢ S and s ¢ F(X[M>),

2

then there exists an ideal I_ ¢ £2(o,r) N £(R-P) for any P ¢ P(o,T)

P
such that Ip.s c R, whence (Z Ip) s ¢ Rand 2 Ip € £2(031) which is
not contained in any P ¢ p(o,t), hence & Ip = R and therefore s ¢ R.

As was mentioned above, Q@(R) is an arithmetical (ov,xv)-ring. We will
mainly be interested in the fo]]owing two sheafs of (not necessarily
Abelian) groups:
U(Rp) is defined by r'(V, U(Rp)) = U(T(V, Ko)) where U(.) denotes : taking
units, restriction morphisms are inclusions.
N(Ro) is defined by r(V, N(Ro)) = N;Q’Tv (QS(R)) and restriction morphisms
ake inclusions. Let us check that N(Ko) is a sheaf. If W <V, QS(R) can
be obtained from QS(R) by localizing at a symmetric kernel functor,

2 2

say &, such that £7(g) ¢« £ (ov,TV) whence it is (ov,rv)— geometric

0,1
v>'y

yfe1ding that for any n ¢ NQ (Q@(R)), Qg(QS(R)n) =n Qg(Qs(R)) whence
n e NSW’TW (QS(R)). Now, N(Kp) is clearly seperated because it is a
subpresheaf of {.

As for the second sheaf condition : let V be an open covering of V

and suppose that s ¢ I'(V;, N(Ro)) for every i, then s Qs(R) =
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= s(N Q) (R)) < (n Qy . (R)) s = Qu(R)s and similarly Qy(R)s < sQU(R)
1 1

whence s ¢ T'(V, N(Ro)). Finally, remark that U(Ro) is a normal subsheaf

of N(Ro).

Definition 4.3. A Cartier divisor on X is a global section of the

sheaf N(Ro)/U(Ro). Thinking of the properties of quotient sheaves, we
see that a Cartier divisor on X can be described by ginving an open
cover {V.} of X, and for each i an element s; € I(V., N(Ro)) such that
for each i and j, si 531 ='Uij €T (Vi n Vj, U(Ro)).

A Carter divisbr is principal if it isanimage of the natural map
I(Xs N(Ro)) » (X, N(Ro)/U(Ko)). Two Cartier divisors are linearly
equivalent if their quotient is principal. The group of Cartier divisor

classes will be denoted by PicF(R) (or _Pic_ (R)).

X is said to be locally factorial if o Cl o (Qg p(R)) = 1 for every
R-p TR-P 7

prime P € P(o,T).

Proposition 4.4. : If R is an arithmetical (o,t)-ring then

1. OP1cT(R) > CyC]T(R)
2. If X is locally factorial, Pic (R) = C1 _(R).
() T c T

Proof

(1) : Let a Cartier divisor be given by {(v;, Si)} where {Vi} is an
open covering of X, and s; ¢ T(V,, N(Ro)).

Of course, the index set can be chosen to be finite because X is a
Noetherian space. Let P ¢ P(o,t) and suppose that P ¢ Vi‘ With n, we
will denote the Qsi(R)P power occuring in the decomposition of Qsi(R)si.

Of course, np is invariant under the choice of a particular Vi because

-1
j .

such that n, # 0. We define the associated fractional ideal of {(Vi’ Si)}

S:S." € F(Vi n Vj, U(Ro)). There are only a finite number of P ¢ P(o,7)

i
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n ,
to be n P P. This correspondence yields a group monomorphism f from
r(X, N(Ro)/U(Ko)) into JE_ (R). Further, any image of the natural map
(X, N(Ro)) » (X, N(Ro)/U(Ro)) corresponds to an element of o P.(R).
Thus, f induces a monomorphism f : _Pic (R) - _ C1 _(R).

[e) T o T
(2) Suppose that X is locally factorial and let A = P1 ...Pk be a
fractional R-ideal. For any P € P(o,1), QE_P(R)A = Qp_p(R) f,, for some
f € N(ﬁp)p. There exists a neighbourhood V_ of P such that fp Tives on

P
V_. Covering X with such open sets V_, the element fp gives a Cartier

p p

divisor on X. Note that if f, f' give the same fractional ideal on an
open set V, then f/f' ¢ r'(V,U(Ro)), thus we have a well defined Cartier
divisor. This construction is clearly inverse to the one of part (1)
and elements of PT(R) correspond to principal Cartier divisors whence
JPic (R) = L1 (R).

Remark 4.5. : If R is an S-ring, Ro is the usual affine scheme of R
(cfr. [21, 26] ). If R is an Q-ring, C]S(R)/Pics(R) is a torsion group.
Of course, if D is a Dedekind domain (or more generally, a bounded

Noetherian Asanc order), then X = Spec R is locally factorial and we

n?

recover the classical result : CI(R) = Pic(R), (in these cases Pics(R)

= Pic(R) where Pic(R) is the Frohlich Picard group, cfr. [51).

To end this section, we present a cohomological interpretation of
OPicT(R). We have the exact sequence of non-Abelian sheaves :

1~ U(Re) » N(Ro) - N(Ro)/U(Ko) » 1 and  Pic (R) = Coker(r(X,N(Ro))
Y4 U(Re)) - KX, N(Re)))

¥

> T(X, N(o)/U(¥o)).Whence _Pic_(R) = Ker (H
where the Hl(.) are the non Abelian cohomology pointed sets of [6] .
Luckily, one can also give an interpretation of OPicT(R) in terms of

usual (i.e. Abelian) Cgch-cohomology.
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Proposition 4.6. : if R is an arithmetical (o,t)-ring we haveﬂthe
follwing exact sequence

1> shP(N(Ro), U(Ro)) » Pic_(R) ~ Ker (H1
where Sh2P(N(Ro), U(Ro)) = Coker m,/ Coker wy, with n; : I(X, U(Ko)) »

r(X, UE)®P); m, ¢ (X, N(Ro)) > T(X, N(¥o)?P).

Because fractional ideals commute in an arithmetical ring, N(Ro)/U(Ro)
is a sheaf of Abelian groups.

Therefore we have the exact diagram :

1—> U(Rp) —— N(Ro) N(Ro)/U(Ro) ——> 1

] ——> Ker 7 ————s N(Ko)2ET e N(¥o)/U(Ko)——>1
where MPdenotes the abelianized sheaf of the sheaf of groups M (i.e
the sheafification of the presheaf with sections (U, M)/[T(U,M), T(v,M).
By local consideration, one verifies easily that Ker n = U(Kp)ab, thus

v
we get a Tong exact sequence using cech-cohomology

1> 1(X, U(R0)3P) 5 r(X,N(Ko)3P) (X, N(Ro)/ URp)) -

HLx, U®o)2®)— HL(X, N(Ro)?P)
whence Coker (T(X, N(ﬁo)ab) - (X, N(Ro)/ U(Rp))) = Ker(ﬁl(x, U(Kp)ab) n
HL(x, N(Ro)?P).

The result follows from applying the snake lemma (which is possible

in this setting!) on the following two exact diagrams :

o v
(X, URe)2P) - Hl(x, N(%p)2P)) -

1
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1 1 Ker B

1—> In I(X, N(Ro)) —> (X, N(‘ 0)/U(Ko)) —> Pic_(R) — 1

Sl l ;
i v Jl
11— Im T (X, N(Aﬁp)ab)—l?I‘(X, N(Ro)/U(Ro)) —>Coker y —> 1

! l

v ’
Coker a 1 1

and \i
1 ——>r(X, URp)) —— I(X, N(Ro)) —— Im (X, N(Ro))=> 1

e « l

] — F(X,U(?p)ab)*’ r(X, N(“Rp)ab)———-—» Im T(X, N(Tfp)ab—ﬂ

Coker " Coker ", Coker a

and the above description of Coker «.

Remark 4.7. : If R is a commutative Dedekind domain, N(R) is a constant

1

sheaf whence M (X, N(R))=-1 and further Shab(N(R), U(R)) = 1 yielding

. | . v
the result that Pic R = Hl(X, UR)). In part II of this paper we will

study the functorial properties of oPicT (R).

L. Le Bruyn

Dept. Mathematics UIA
Universiteitsplein 1
B-2610 Wilrijk
Belgium
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