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0. INTRODUCTION

In [5] we introduced the notion of an Q-Krull ring. It turned out that any
Q-Krull ring R is the intersection of quasi-local Q-rings Ri which are
symmetric localizations of R with respect to o, where £(ci) = £(R\Pi) and
P, is a prime ideal of R. If one assumes each o, to be a geometrical kernel
functor, then the set of these prime ideals Pi equals XI(R), i.e. the set

of all nonzero minimal prime ideals of R.

Throughout this note, each o will be a central kernel functor. In the
second section, we prove an intrinsic characterization of central Q-Krull rings
(Theorem 2.1). Two conditions in this characterization are similar to the.
characterizing properties in the commutative case whereas a third condition
is needed in order to make the localized rings local and the localizations
central. 1In the final section, we derive a necessary and sufficient condition
under which R[T] remains central Q-Krull if R is. Moreover, it's perhaps
interesting to see that this condition may be reduced to the algebraicity

of certain field extensions.

(%) Both the second and third named author are supported by an N.F.W.0.~grant.




1. PRELIMINARIES

Throughout this note, R will be a prime ring satisfying Formanek's condi-
tion, i.e. every nonzero ideal of R intersects C, the center of R, non-trivially.
In this case, stm(R) = {c—lr = rc—llr €ER, 0 #c€C}lis a simple ring. More~

4 r 2 . .
over, stm(R) = QR\O(R) = QR\O(R), where QR\O(R) denotes the localization of

the left R-module R with respect to the symmetric filter L (R\O), cfr. [11] and

[1217.

In [5] we defined an Q-Krull ring to be a ring R satisfying Formanek's
condition such that :

(1) there exist filters of ideals of R, £2(Oi) (i € A) such that

]

o, “(®)

1

R.
1

"

{q € stm(R) 131 € £2(oi) : Ig CR }

"
]

r 2 .
S el . : C :
Qoi(R) lg € o (R 31 (0,) = qI CR};
(2) for all i €A, R, is a quasi-local Q-ring (cfr. [12]), i.e. every ideal
of R, is a power of the unique maximal ideal P; of R.3
(3)y R=n Ri;
ien

(4) for every 1 €A and for all I € £2(ci) : RiI = IRi = Ri;

(5) for all r € R there are only finitely many i € A such that RrR = (r) € £2(0i).

In [5] we proved that.ﬁz(oi) = £2(RKPi) where Pi = Pi N R and £2(R\Pi) =
{I1|1 an ideal of R such that I ¢ Pi}' In this paper we will assume the extra
condition that every Gi is a central kernel functor, i.e. £2(Ui) has a cofinal
set cousisting of centrally generated ideals. This is equivalent to saying that
I¢E £2(ci) iff R(I NgC) € £2(Oi). In particular, Ui is geometric. If R is an
Q-Krull ring such that moreover, each o, is a central kernel functor, then we

say that R is a central {~Krull ring. In this case, R, = {c-lr]c € C\p., r € R}
i i




.

where P, = Pi N C. Hence Ci’ the center of Ri’ equals Q .(C). Because Ci

is a discrete valuation ring (cfr. [51), Py has to be a piime ideal of C

of height one. Conversely, C being a Krull domain ([5]) yields that every
nonzero minimal prime ideal of C has to be a 1] for some 1 € A (cfr. [2],[4]).
By the definition of Ri’ it follows that Pi is the only nonzero minimal prime

ideal of R lying over P:s yielding a one-to-one correspondence between XI(R),

the set of all minimal nonzero prime ideals of R, and Xl(C).

A ring S is said to be related to R if RC 8§ C stm(R) and if ¢S C R for

some nonzero ¢ € C. R is called a symmetric maximal order if there does not

exist a ring S related to R, except for R itself.

Recall that a fractional R-ideal I is a twosided R-submodule of stm(R)
such that ¢I C R for some nonzero ¢ € C. If A and B are subsets of stm(R),
we define (A: B) = {q € stm(R)|qB C A} and (A: B) = {q € stm(R)|Bq C A},

\
Lemma 1.1 : The following statements are equivalent :

(1) R is a symmetric maximal order;

(2) for any ideal I of R (I:QI) = (I:rI) = R;

il
o]

(3) for any fractional R~ideal I (I:QI) = (I:rI)

Proof :

(1)==>(2) : Clearly RC:(I:rI)(: stm(R) and if 0 # ¢ € I N C then

c(I:rI) C R whence (I:rI) = R. Likewise, (I:QI) R.

(2)==>(3) : There exists a nonzero element ¢ € C such that ¢I C R. Because
cI is an ideal of R, R = (cI:rcI) = (I:rI).

(3)=>(1) : Suppose S is a ring such that RC S C stm(R) and ¢S C R for some

nonzero ¢ € C. Then S is a fractional R-ideal and (S:rS) = R. Because S is a

ring we get that § = (S:rS) = R.

Lemma 1.2 : If R is a symmetric maximal order in stm(R) and if I is a fractional




R-ideal, then (R:QI) = (R:rI).
Proof : x € (R:QI) iff xI CR = (I:rI) iff IxI C- I iff Ix<:(I:ZI) = R.

Proposition 1.3 : If R is a central Q-Krull ring, then R is a symmetric maximal

order in stm(R).

Proof : Let S be a ring such that RC § C stm(R) and ¢S C R for some nonzero
c € C. Note that cS is an ideal of R such that RicS = cSR.l yielding that

RiS = SRi because oy is a central kernel functor. For each i € A we have that
cSRi C Ri’ Since each Ri—ideal is invertible, we have SRi = RiSRi =

1

(cSRi)-l(cSR.l)SRi = (cSRi)— cSRi = Ri’ whence S C Ri for all 1&€A. Therefore

S CR.

If R is a central Q-Krull ring, we put F (R) to be the set of all fractional

R-ideals and D (R) to be the set of all divisorial ideals, i.e. those fractiomal

7
R-ideals I such that I = N RiI' If TE€EF (R) it is a straightforward computation
i ,
to show that (R:I) = N (Ri:RiI)' Because R,I = Ri for almost all 1 € A and

i
using lemma 2.3 of [5] we obtain that Ri(R:I) = (Ri:RiI) for all 1 €A,

Proposition 1.4 : If R is a central 09-Krull ring, then a fractional R-ideal I

is divisorial iff I = (R:(R:1)).

n -1,
1

. n,
: =NR,I=n (! ,iR,I) = (R,:P! *) = p! .
Proof : Suppose that I Rll (Pl) Then (R1 Rll) (Rl P1 ) Pl

-n, n
Hence (R:I) =N (Pi) 1

and therefore I = (R:(R:I)) =nN (Pi) *. Conversely,

let T = (R:(R:I)). Because (R:I) = n'(Ri:RiI) and Ri(R:I) = (Ri:RiI) we obtain

that I = N (R,:(R,:R.I). It follows from lemma 2.3 of [5] that R.I = R.:(R.:R,I)
T Tt | i i1

and therefore I =N RiI°

If S and T are rings such that S C T, we say that T has the intersection property
(i.p.) with respect to S if any nonzero ideal of T has a non-trivial intersection

with'S.




Lemma 1.5 : If R is a central Q-Krull ring, then the center of R/P, Z(R/P),

has the i.p. with respect to C/P N C for all P € XI(R).

Proof : Choose P € XI(R). First we show that R/P satisfies Formanek's condition.
Let 0 # (I/P) be an ideal of R/P, then I ¢ P and therefore (I N C)E (P N C).

In particular (I/P) N (C/P N C) # O whence (I/P) h Z(R/P) # 0. Let A be an
ideal of Z(R/P) and let a be a nonzero element of A. J = Z(R/P)a is an ideal
of Z(R/P) and (R/P)J = (R/P)a. Furthermore, (R/P)J N Z(R/P) =J

because a is invertible in stm(R/P) (which exists since R/P is prime and
satisfies Formanek's condition). By the first part of the proof 0 # (R/P)J N
(c¢/pnC) =JN (C/P N C) whence O # ; N (C/pNnCc)y CANn (C/PnNC).

Finally, we recall the definition of an arithmetical pseudovaluation on D (R).
A function v : D(R) »+ TU{~} where I' is a totally ordered group is said to be
an arithmetical pseudovaluation if it satisfies :

(1)»>VI,Je D®R) : v(I*J) = v(I) + v(J);

(2 VI, JED®) : wW(I + J)=> min®(I),v(J)) where T + J =‘ﬂ Ri(I + J);

(3) VI, J€ D(R) : if I C J then v(I) = v(J);

(4) v(R) = 0 and v(0) = o,

For more information on pseudovaluations, the reader is referred to [9] and [10].

2. CHARACTERIZATION OF {~KRULL RINGS

In this section we aim to prove the following result :

Theorem 2.1 : R is a central 9-Krull ring if and only if :
(1) R is a symmetric maximal order in stm(R);
(2) R satisfies the ascending chain condition on divisorial ideals contained

in R;




(3) for each P € XI(R) and for any ideal I of R we have I C P if and only if

(Inc)yc (pnc).

If R is commutative, assumption (1) is equivalent to saying that R is com-
pletely integrally closed in its field of fractions (cfr. [4] and lemma 1.1).
Therefore, condition (1) and (2) state that R is a Krull domain, in the commu-
tative case. Condition (3) is necessary in order to force a closer relationship

between the ring and its center.

If follows from proposition 1.3, theorem 2.5 of [5] and the fact that the
o, are central, that these conditions are necessary. We will prove the converse

implication by a series of lemmas.

First, we aim to establish that the set of divisorial ideals, D (R), is a
commutative group. To this end we use the group of Artin. The construction
we give runs along the lines of G. Maury and J. Raynaud [6]. Denote by F (R)
the set of all nonzero fractional R-ideals. Clearly, if A and B are in F (R),
so is A.B. F (R) with this multiplication and ordered by inclusion satisfies
the following properties :

(1) F(R) is an associative semigroup with identity element R;
(2) F(R) is a lattice; A + B = sup(A,B) and AN B = inf(A,B);
(3) if A,B,C€ F(R), then A < B implies AC < BC and A(B + C) = AB + AC,

(B + C)A = BA + CA;

(4) if {Aoc:a € I} 1is a nonzero family of elements of F (R) such that

z Aa € F (R), then for any C€ F (R), sup {CAa:a € I} and sup{AaC:a e I}

exist in F (R) and sup{CAa:a g 1} = z CAu = C(z Aa) C sup{Aa:cx € 1}.

Also, sup{AaC:a €1} = sup{,Aa:a € I}C;

]

(5) for every A € F (R), (R:A) € F (R) (note that(R:zA) (R:rA) = (R:4)
by lemma 1.2);

(a) AR:A)A < A; (b)) VXE F (R):AXA < A implies X < (R:A);
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(6) R2 < R; moreover if R< 8, 8 < S and SEF (R), then S = R because R

is a symmetric maximal order.

Now, we define an equivalence relation on F (R) by saying that A ~ B
iff (R:(R:A)) = (R:(R:B)). The set of equivalence classes is isomorphic
to the set of divisorial ideals D (R), i.e. those fractiomal ideals I such
that I = (R:(R:I)), which becomes an associative semigroup by defining

AxB = (R:(R:AB)) if A,BE D (R). Proposition 1.4 of [6] yields that D (R)

is a commutative group.

Now, we reverse the ordering on D(R), i.e. A< B iff A D B. It is readily
verified that each finite nonempty subset of D (R) has a supremum (resp.

infimum), AlfW...fWAn (resp. (R:(R:(A1 + ... F An)))).

Proposition 2.2 : D(R) = Z(A) for a certain index set A and this isomorphism

is order preserving.

Proof : We already know that D (R) is a commutative, ordered‘group such that
any two elements have a supremum and an infimum. Moreover, condition (2) of
Theorem 2.1 states that any nonempty subset of positive elements of D (R)
(i.e. divisorial ideals contained in R) has a2 minimal element. A well~known
theorem on commutative ordered groups satisfying these properties (cfr. [1])
vields that D (R) = Z(A) for some index set A and the isomorphism is order

preserving.

() is defined by (o.) < (B.)

Of course, the order relation on Z Vren VA E A

for all A €A, Let w:I)(R)»-Z(A) be an order preserving isomorphism.

) and let P.l = w~l(ei). Thus, any element A of I)(R) can be

iff ay < BA

Put e, = (Gix AEn

. n ‘
writtem as A =P lx ., . knk (niE Z).

1

Q

Lemma 2.3 : Pi is a prime ideal of R.




Proof : Let X,y € R such that xRy C Pi' It is straightforward to check

that RxR # RyR = RxRyR C Pi where A = (R:(R:A)). Further, Y(RxR) = 2 njej
and Y(RyR) = 2 mjej where nj’mj = 0. In particular, Y(RxR) + y(RyR) =
Z (nj + mj)ej = w(Pi) =e.. Therefore, n, 21 or m; Z 1 yielding that either

X € RxR C Pi or y € RyR C Pi'

Lemma 2.4 : Let P be a nonzero prime ideal of R, then P contains P.l for some

i€n,

Proof : Rc C P for some nonzero ¢ € C. Since Rc € D (R) we may write

s PPk and all n, > 0. Therefore P2 Pi

n T}: .
) =p lw,, . ,xpk D
PO Re =P Py P, K

for some i.

Proposition 2.5 : D (R) is generated by the prime ideals of height one of R.

Proof : Suppose P is a height one prime. By the previous lemma, P = Pi for
some i. Conversely, let P be a prime generator of D(R). If P is not a
height one prime, 0 # Q i P for some prime ideal Q of R. Again by the previous
lemma, Pi i P for some 1 € A, Therefore y(P) ; w(Pi) =e;, a contradiction

because y(P) > 0.

Let us define for all i

m

. _— . = % st Bk
v. : D(R) Z : A Pl .o Pk i—-ni

Proposition 2.6 : A is an arithmetical pseudovaluation on D (R).

Proof : It is easy to check that A = P?1==...::P£k = (R:(R:P?1 cos PEk)).
Because D (R) is a commutative group, it's trivial to see that for all
I,J€ D(R) vi(I::J) = vi(I) + Vi(J)' Now, let I C J and let ¢(J) = 2 mjej’

(1) = z njej. Since ¢(J) < Y(I) we have that vi(J) <’vi(I).

Next, we have to establish that‘vi(I +J) = min(vi(I),vi(J)). Suppose




.

first that both I and J are contained in R. Then I = (R:(R:Prl11 PEk))

C (R:(R:P?i) because all n, 2 0, Similarly, J = (R:(R:Pr;ll P:k)).

c (R:(R:P’fi)) whence (I + J) C (R:(R:P‘i‘i)) + (R:(R:P‘;i)) =(R:(R:P1i°i))

where ki = min(ni,mi), yielding that vi(f_:—j)2=min(vi(1),vi(J)). If I¢R
or J ¢ R, there exists an element ¢ € C such that ¢I C R and ¢J C R. Hence
v, ((eR)T + (eR)T) > min(v, ((R)I),v; ((cR)J)) = min(v, (cR) + v, (I),v, (cR) +
Vi(J))' Therefore vi(cR) + vi(m) = vi(cR) + min(v.l(I),vi(J)) completing

the proof.

Lemma 2.7 : Let v be anm arithmetical pseudovaluation on D (R) and let {Ij}
”

be an arbitrary set of divisorial ideals such that 2 IJ.E F (R), then

V(ZIJ.) = inf {v(I,)]..

Proof : One inequality is obvious since v( sz) < v(Ij) for every j. The
converse implication is proved in a way similar to the proof of Proposition

2.6.

Corollary 2.8 : If v is an arithmetical pseudovaluation on D (R) and if

1€ D (R), then v(I) = inf{v(RxR) Ix € I},

Now, let us consider again the arithmetical pseudovaluation

v, ¢ D@®R)—Z : A=pP'x...xp"k n, and suppose i = 1 for the sake of

1 k

simplicity. Denote Q1 = {x € stm(R)ivl(RxR) > 0} and R1 = {x € stm(R)l

xQ) C Q1 and Qx ¢ Ql}' It is straightforward to check that Q1 N R = P,.

1

Ix C R for some ideal I of R not contained in Pl}’

Proposition 2.9 : R, = {x € stm(R)lvl(RxR) >0} = {x€ stm(R) |xI C R and

Proof : (1) Suppose x € stm(R),vl(ﬁﬁ) >0and v € Q, i.e. vl(RyR) > 0.

We immediately have that RxyR C RxRRyR C RxR x RyR, hence RxyR C RxR x RyR.
This yields v, (RxyR) >vl(§x—R') + vl(RyR) > 0. Therefore xQ, € Q. Similarly

le C Ql' Conversely, suppose x € Rl' In particular xP_ C Ql' Corollary

1
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2.8 yields that there is an element y € P1 such that vl(RyR) = 1, Hence

RxRyR C Ql' We claim that vl(RnyR)>>O. If RxRyR C R we may write

RxRyR = erlyR + ..+ i;;;;ﬁ (because the divisorial ideals satisfy the
ascending chain condition). If RxRyR ¢ R, then it may be multiplied by a
central element such that the image 1s in R; then the argument used before
may be repeated. Since xrjy S for all j, Lemma 2.7 yields that

v1(§§§§§) > 0. Therefore v1(§§§§§) = v1(§§§) + vl(§§§) > 1 and vl(§§§) = 1.
Hence v1(§§§) = 0.

"lyx,..%xP X and n, > 0.

1 k 1

Multiply this equality by those P?i with n, < 0. Then I % RxR = P?l::...

where I € D (R) and on the right hand side of this equality all n, are positive.

(2) Let x € Rl’ i.e. vl(RxR) > 0. Write RxR =P

Hence I ¥ RXR C R. Now I is the product (in D (R)) of positive powers of Pi
and 1 # 1. Hence I ¢ Pl' Conversely, suppose IXCR and I ¢ Pl' Take

y € I\Pl' Then yRx CR C R Similarly as in the first part of the proof we

T
have VI(RYRXR) = vl(RyR) + vl(RxR) > 0. But vl(RyR) = 0 since y € R\Pl'

Therefore vl(RxR) >0 and x € Rl'

Proposition 2.10 : R, is a quasi-local Q~ring with unique maximal ideal Ql’

1

Proof : Using condition (3) of theorem 2.1 we may write R1 = {x € stm(R)I

xI C R and Ix C R for an ideal I of R such that (INC)FJP N C)} =

{c—lr = rc—llc € C\pl,r € R} where Py = Pl N C. Hence it's clear that

Q = RIPI = PIRI and that R, is a quasi-local ring.

Suppose I is an ideal of R, and 1 # R;. Then I C Q. Put
' o= = - = . = -
Ql {x € stm(R)lvl(RxR) 1}. Because vI(Pl) 1 we have VI(R'PI) 1.
Hence (R:Pl) c Qi. Using Corollary 2.8 we obtain that Qi contains an element

of valuation -~ 1. We clearly have QlQi C R, and Qin CR Since I C Q, we

1
have IQ; - QIQi - Ry Therefore IQi =R, or IQi C Q- In the second case,
IQ'12 CR

- Suppose IQ;n C R, for all n € N. Take x € I, then vl(RxR) =m€ N,
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Choose n > m. Arguing in a way similar to the argument used in Proposition
2.9, we find an element in IQ;n which has negative valuation m-n, a contra-
diction. Therefore IQ'In = R1 for some n € N. Similarly QimI = R1 for some

m€ N. Hence Q;m = Qin. Since Qi contains an element of valuation =1, the

latter only happens if m = n. It is easily verified that I = Q? (since here

QlQi = Qin = Rl)' So finally R, is a quasi-local Q-ring.

1

We are now able to finish the proof of Theorem 2.1. For all i€A Ri =
Qi.(R) = Q;.(R) where £2(oi) = £2(R\Pi) (Proposition 2.9) and Ri is a quasi-
lozal Q-rin; (Proposition 2.10). Moreover R = Q Ri’ for suppose x€ N Ri’
then vi(§§§) > 0 for all i. Hence x € RxR C R because D (R) = Z(A). If
IE £2(R\Pi) we already have established that RiI = IRi = Ri (Proposition
2.10). TFinally, take r € R; RIR = P?1=€...== ng and all o, > 0. An easy
computation learns that n, >0 iff r € RtR C Pi' Because there are only

finitely many n, > 0, it follows that (r) € £2(ci) for almost all i. This

proves that R is Q-Krull and condition (3) yields that R is central Q-Krull.
Remark
It is still an open question whether or not condition (3) of theorem 2.1 can

be weakened or even dropped.

The following generalizations of commutative properties may be derived

as applications of Theorem 2.1.

Proposition 2.11 : Let R be a ring satisfying the following conditions

(1) R = Q Ri where all Ri are quasi-local Q-rings contained in stm(R) such

that IRi RiI for all ideals I of R;
(2) for any ideal I of R and any P € XI(R) ICPIff (INCYC(PNC);
(3) for all r € R Ri(r) = Ri for almost all 1.

Then R is a central Q-Krull ring.
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Proof : First, it's easy to check that C =N Ci where C = Z(R) and Ci = Z(Ri)'
To prove that R is a central Q-Krull ring we check conditions (1) to (3) of
Theorem 2.1. The fact that R is a symmetric maximal order in stm(R) is
proved as in Proposition 1.3 (use the fact that ideals of Ri are invertible
for all i, cfr. Proposition 2.1 of [5]). It remains to verify whether the
ascending chain condition on divisorial ideals holds. This is proved in the

same way as in the commutative case (cfr. [4], Chapter 1, Theorem.3.6).

Proposition 2.12 : Under the conditions of the preceding proposition we have
1 : . :
that for all P € X' (R) there exists an index i such that QR\P(R? = QC\p(R) = Ri

where p = P N C.

Proof : Because R =N Ri’ we have that C = N Ci' Since R is Q-Krull, C is a
Krull domain [5]. For all p € XI(C), there is an index i such that QC\p(C) =
C.1 ([2]1,[8]). There is exactly one P € Xl(R) lying over p, because R is central
Q-Krull. Therefore R = Q

R) = Q.. (R) = RCi - Ri' R is a quasi-local Q~ring

R\P c\p

since R is an Q-Krull ring. Let P (resp. Pi) be the unique maximal ideal of

R (resp. Ri). First we prove that Pi C P. Suppose x € Ri and x ¢ P. Then

RxR ¢ 5, hence R € RxR and thié entails R.l = Ril-iRi C RiﬁxiRi = RixR.1 C Ri and

x & Pi. Therefore Pi C P. We claim that Pi N R is a prime ideal of R. 1Indeed,
take x,y € R and suppose that xRy C Pi N R. Then Riny = RxR.;y C Pi (note that
IRi = RiI if I is an ideal of R). So, x € Pi or y € Pi. Hence x € Pi N R or

y € Pi N R. S8Since (Pi N R)C(P N R) and prime ideals of R contained in PN R = P
extend to prime ideals of R, we may derive from 0 # R (Pi NR)YC P =R(P NR)
that P = ﬁ(Pi N R). Therefore P C ﬁPi C RiPi = Pi and we conclude that

P = Pi. Since R and Ri are quasi-local Q-rings, they both are svmmetric
maximal orders in stm(R)° Finally, using lemma 1.1 we obtain R =(P : P)=

t . pty-
(Pi : Pi) Ri'
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3. POLYNOMIAL EXTENSIONS

In [5] we gave a sufficient condition on an Q-Krull ring R for R[T]
to be @~Krull, namely for all P € X' (R) we have Z(R/P) = C/(P N C).
This condition is not necessary as the following example due to Professor

D.S. Passman and Professor P.F. Smith shows.

Example : Let R, resp. €, be the field of real, resp. complex, numbers.
And let = be the extension of the complex conjugation to the formal power
series €[{t]]. Consider the following subset of the two by two matrices
over C[[t]]

o B
A = <_ _>| a,8 € C[[t]]
tB o

Clearly A is a ring for the usual addition and multiplication, and A is closed

under taking the adjoint. Now consider the following ring homomorphism
o B
¢ ¢ A — C which maps < _ _> to a(0), where oa(0) is the constant term of a.
t8 a

<ta B)
\tf ta

element outside P is invertible. Indeed, a = < -

So kernel ¢y = P =

a,B € C[[t]]] is a maximal ideal of A and every
o B\

_ )E A\ P iff «(0) # O;
te o -1 -1
so 1f a € A\P, then det a € R[[t]I\t R[[t]]. Therefore a = (det a) .

adj a € A.

Because P2 C tA one immediately obtains N P* = 0, To justify the following
n
we embed A in the ring of two by two matrices over the quotient field of

clft]]. 1LetW = t-lP. We claim that W = P_l; in the sense that PW = WP = A,

o gt N\ /0 1 B 0 1

Indeed, since | _ = <_ _ |} and since € P we
g t 0 ot B t O
p

a
obtain AC WP = PW = t‘le C A; so the claim follows. Therefore one proves

as in the proof of Corollary 5.2 in [5] that A is a quasi-local Q-ring.
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. n ,
t 0

Note that A satisfies Formanek's condition because ( n> € P for all

0 t

n € No.

Now one easily checks that Z(A) is the set of diagonal matrices with entries
in R[[t]]. Moreover A/P = (€ and Z(A)/Z(A) NP = R. So we can consider
Z(A/P) as a finite Galois extemsion of Z(A)/Z(A) N P. By making a slight
adaption of the proof of Lemma 5.1 in [5], one proofs as in [5] that A[T] is an

Q-Krull ring. .

In this section we aim to give necessary and sufficient conditions on a
central Q-Krull ring R in order to have that a polynomial extension R[T] is a

central Q-Krull ring.

Lemma 3.1 : If R is a symmetric maximal order in stm(R), A€D(R) and I €F (R),

then (A:QI) = (R:I) A = Ax (R:I) = (A:rI).

Proof : By symmetry it suffices to prove that (A:QI) = Ax(R:I) = R:(R:A(R:1I)).
Since (A:QI) = (R:A'):QI = (R:QIA') = (R:rIA') where A" = (R:A), we obtain

that (A:QI) is divisorial. Now suppose x € (R:I) and y € A. Then yxI C yR C A,
So»A(R:I) - (A:QI). Since (A:QI) is divisorial we have A%(R:I) C (A:QI).
Conversely, let x GE(A:QI). Then xI C A and xI(R:A) C A(R:A) C R. So

x € (R:I(R:A)). Let o = (R:(R:I)) and B = (R:A), then (A:QI) C (R:I(R:A)) =
(R:aB) = R:(R:(R:aB)) = (R:(aB)) = (a::B)-l = B_l b5 a_l = A 2 (R:I). The

result follows.

Proposition 3.2 : If R is a symmetric maximal order, then R[T] is a symmetric

maximal order.

Proof : In view of Lemma 1.1 it is sufficient to prove that (I:QI) = (I:rI) = R[T]

for any nonzero ideal I of R[T]. Suppose that q € stm(R[T]) is such that
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-

N

ql € I. Clearly, Istm(R) is a twosided ideal of stm(R) [T], therefore
it is principal and generated by a central element (cfr. [3], Prop. 5.1.3),
say IQSym(R) = stm(R)[T]g. So g is invertible in stm(R[T]). It follows
. P

E e . = . 0 0
from qI C I that qg stm(R)[T}g and q stm(R)[T] Put g qu + *+ q
with q4; € stm(R). Let C(I) denote the set of all leading coefficients
of elements of I together with the zero element. It is straightforward to
check that C(I) is an ideal of R such that qp E(C(I):QC(I)) = R. Hence

q' = ¢q Tp'_1 + ...+ € (1:21) and repeating the above argument yields

99
€ R, etec. Thus q € R[T].

Proposition 3.3 : If R is a symmetric maximal order satisfying the ascending

chain condition on divisorial ideals contained in R, then R[T] satisfies the

ascending chain condition on divisorial ideals contained in R[T].

Proof : Let {In:neElﬂ} be an ascending chain of divisorial ideals contained
in R[T]. Then {stm(R)In:nGETJ} is an ascending chain of ideals of stm(R)[T].
Since stm(R)[T] has ACC on twosided ideals, there is a matural number n'&€ N

= =>n'. = :(R:
such that stm(R)Im stm(R)In'for allm>n Denote Id (R:(R:1)) for
any ideal I of R. The chain C(In)d,nGET% where C(In) is the set of all leading
coefficients of elements of In together with the zero element, is an ascending
chain of divisorial ideals in R. Therefore, there is a natural number n" such
that C(Im)d = C(In.,)d for all m > n". Let n = sup(n',n”) and let k > n.

Let f € stm(R[T]) be such that fIn c Ik. Then fIanym(R) - Istym(R) = Ianym(R)’

Since any ideal of stm(R)[T] is principal Ianym(R) = Qg

ym(R)[T]g. Thus

fg € stm(R)[T]g. Now g is a unit in stm(R[T]), thus f € stm(R)[T], say

f=fTP 4+ ¢ TPl 4 L4,
P p-1 0

exists an element h € In such that h = aX© + am__lxm-l + ... F ag- Then

th = fanm+p + h' where h' is an element of degree less than m + p. But

Let a be any element of C(In), i.e. there

c . . -
fIn I, implies that fC(In) Cc C(Ik) and thus also fC(In)d C C(Ik)d C(In)

k

whence it follows that fp € R by Lemma 1.1. Repeating the argument, we

d’
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obtain that f € R[T]. Thus(lk:In)C R[T]. Consequently, by lemma 3.1

(R[T]:In) Y Ik C R[T]. The latter entails that I, C In, and this finishes

k
the proof.

Professor D.S. Passman pointed out the following lemma .

Lemma 3.4 : If R is a prime ring satisfying Formanek's condition, I an ideal
of R[T] and o € I, then there exists a nonzero element ¢ € Z(R) such that

ca € R(IN Z(R)[TD).

Proof : If o =) aiT1 € R[T], we put supp a = '[Tlla:.L # 0}.

(1) Let o be an element of I with the property that there is no proper subset
supp o such that S' = supp B with B € I. Let a = ’go a.l'l‘.1 and a_ # 0.
Then RanR N Z2(R) # 0. Hence there is an element o' = 'EO ai;zéil with

0 # a; € Z(R) and supp o' C supp o. We have ba' - a'bl; I for all b € R.

s' of 8

But supp(ba' - a'b) i supp o' C supp a. Therefore a'b = ba' for all b € R and
1 : | IV 1 | 1y G
hence o' € Z(R)[T]. Finally aa-ao € I and supp(ana a a ) # supp a.

This yields that a;a = ana' € RINZRITDH.
n

(2) Now let a = Z a.X
. i
i=0

Suppose that for all proper subsets S' of S = supp o and S' = supp B for some

l, a_# 0, be an arbitrary nonzero element of I.
n

B € I, there exists an element ¢ € Z(R) such that cB € R(I N Z(R)[T]). Pick
a subset S' of S such that S' = supp B for some R € I and S' is minimal with
this property. If S8' = S then (1) yields the result. If S' # S, then

m .
S' = supp B, B = z biTl eI, bm # 0. Similarly as in (1) we may assume

i=0

-
. - € - .

B e Z(R)IT] Then bma amB I and supp(bma amB) # SUPp o Hence
c(bma - ams) € R(I N ZR)[T]) for some ¢ € Z(R). Finally, (cbm)a € R(In ZRY[TD

and cbm € Z(R).

‘Suppose R satisfies the assumptions of the foregoing lemma, then we have :

Corollary 3.5 : If P € Spec R[T] such that PN R =0 and if I is an ideal of
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R[T], then I N (Z(R)[T]) C P N (Z(R)[T]) implies that I C P,

Proof : Let a € I. By the foregoing lemma ca € R(I N Z(R[T])) C R(P N Z(R[T]))C P
for some nonzero ¢ € Z(R). Therefore cR[T]Jo C P and since ¢ € P we obtain

o € P.
The following observation is clear :

Lemma 3.6 : Let R be a central Q-Krull ring and P € Xl(R). The following
statements are equivalent :
(1) Z(R/P)IT] has the intersection property (i.p.) with respect to (C/P N OIT],
(2) Q(Z(R/P))[T] has the i.p. with respect to Q(C/P N C)[T]

(where Q(Z(R/P)) denotes the field of fractioms of Z(R/P)),

(3) Q(Z(R/P)) is an algebraic field extension of Q(C/P N C).
We are now ready to state :

Theorem 3.7 : Let R be a central Q-Krull ring. Then R[T] is a central Q-Krull

ring if and only if for all P & XI(R) Q(Z(R/P)) is an algebraic field extension

of Q(C/P N C).

Proof : (1) If R[T] is a central 9-Krull ring, we only have to prove that

for any P € XI(R) PIT] is a height one prime ideal of R[T] (because of Lemma

1.5 and Lemma 3.6). Suppose 0 i Q © P[T] where Q is a prime ideal of R[T].

We have 0 i QN C[TICp[T] where p =P N CE Xl(C). Therefore p[T]GEXl(C[T])
because C is a Krull domain. Hence Q N C[T] = p[T]. Therefore QN R # 0

| and from P € XI(R) we derive that Q M R = P, Thus P[T] = Q.

(2) Conversely, in view of Theorem 2.1, Propositions 3.2 and 3.3 and Corollary

3.5 it remains to prove that for any ideal I of R[T] and any P € XI(R) such

that (I N C[T]) € (P N C)[T], we have I C P[T]. Because (I N C[T]) C (P N C)[T],

IR[T] (where RITJ = R[T] (CI[T]I\ (P N C)[T])-l) is a proper ideal of R[T] and

is contained in some maximal ideal M. Then M N RIT] = M is a prime ideal
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of R[T] such that (M N C[T])C (P N C)[T]. Now, (P N C)[T] € XI(C[T])

whence M N C[{T] = (P N C)[T]. This implies that M N C = P N C; thus

(M N R) CP because R is central Q~Krull. From M N R € Spec(R) and

P

M

€ XI(R) it follows that MN R = P and P[T] C M. Now we claim that

C P[T]. Suppose not, then M ¢ P[T] and v (M) # 0 where ¢ denotes the

canonical map ¢ : R[T]—R[T]/P[T] = (R/P)[T]. Because R is a central Q-Krull

ring, R/P satisfies Formanek's condition and so does (R/P)[T]. Therefore

e(M) N Z(R/P)IT] # 0. The assumption and Lemma 3.6 yield that

e(M) N (C/P N C)IT] # 0. So MNC[T] = (M + P[T]) n CIT] & (P n C)[T],

a

contradiction. Thus M = P[T] and I C P[T].

Note that we have proved the following fact : if R is a central Q-Krull ring

and P € XI(R) then the following statements are equivalent :

(1) (1 NnClT]) € (PN CY[T] implies I C P[T] where I 1is an ideal of R[T].

(2) Q(Z(R/P)) is algebraic over Q(C/P N C).

The next proposition answers an open question posed in [5] in the case that

R is a central Q-Krull ring.

Proposition 3.8 : Let R be a central Q-Krull ring and suppose that for all

P

€ XI(R) Q(Z(R/P)) is algebraic over Q(C/P N C). Then R[Xl"°"Xn] is a

central Q-Krull ring for all n€ N.

Proof : We proceed by induction on n. The case n = 1 follows from Theorem

3.7. By induction, we may assume that R[X],...,Xn] is a central Q-Krull ring.

.We need to prove that for all P € XI(R[XI,...,Xn]) and for all ideals I of

C i N ) @)
R[X,,...,X ] ICPiff I0C[X,...,X 1) CPNCIX,...,X 1. IfPNRIX,....X ]

-~

0, then T C P by Corollary 3.5. The same result holds if P N R[X "’Xi""’xn]

1°°

0 where Xi indicates that Xi does not occur. Hence we may assume that

N R[Xl""’Xn—l] #0,..., PN R[Xz,...,Xn]# 0. Therefore




_ 1
P = (P ﬁR)[Xl,...,Xn] = ((P N R)[Xl,...,Xn_l])[Xn] and PN R € X" (R).
1
N S
Note that (P R)[Xl"'°’xn—1] X (R[XI,...,Xn_l}) because R[XI""’Xn—l]
is a central Q-Krull ring. We still need to prove that

Z(R[Xl""’xn-l]/(P N RY[X "’Xn—l])[xn] = Z(R/P N R)[Xl"'°’xn] has the

1*°
3 1 N : =
i.p. with respegt to (C[Xl""’xn—l]/(P C)[Xl,...,Xn_l])[Xn] (c/Pp N C)

[X ..,Xn]. But this is clearly satisfied since Q(Z(R/P N R)) is algebraic

1’
over Q(C/P N C).

Remark

The authors do not know if the condition of Theorem 3.7 is always fulfilled
or not. We already noted that it's still an open question whether or not
condition (3) of Theorem 2.1 can be weakened or even dropped. If the last

case is true, then R[T] is always a central Q-Krull ring if R is.

Lemma 3.9 : Let R be a prime ring satisfying Formanek's condition. If

AEF&LtManh&WD=(&&HN.

EEQSE : It is clear that (R:QA)[T] C (R[T]:QA[T])- Conversely, let o € R[T]:RA[T].
We may Writé a = g(T)—lf(T) € stm(R[T]) with £(T) € R[T] and g(T) € C[T].

ANC # 0 since A€ F(R). Choose 0 # ¢ € A[T] N C. Then g(T)’lf(T)c =

h(T) € R[T] yielding that g(T) '£(T) = ¢ 'h(T) = ) c_ldjTj with (1) = § djTi.

1 j

- . - J
Since ( Z c djTJ)A C R[T], we have c ldj € (R:zA) for all j and hence

J
o€ (R:JZ,A) iT].
We end this note with the following nice observation.

Proposition 3.10 : If R[T] is a central Q-Krull ring, then R is also a central

2-Krull ring.

Proof : We check the conditions of Theorem 2.1. First, let S be a ring such

that R C S C stm(R) and ¢S C R for some 0 # ¢ € C. Then R[T] C S[T](:ngm(R[T])
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and ¢S[T] € R[T]. Hence R = S since R[T] is a symmetric maximal order.
Suppose A1 C ... C An<I ...CR is an ascending chain of divisorial ideals.
By the preceding lemma AI[T] c...C An[T] C ... CR[T] is a chain of divisorial

'ideals of R[T]. Since R[T] has ACC on divisorial ideals, An = A = ,,. for

n+1
some n. Finally, let P E‘XI(R), I an ideal of Rand (INCYC(P N C) = p.
Then (I N C)[T] € P[T] N C[T]. 1If we can prove that P[T] € Xl(R[T]), then
I C P since R[T] is central ©-Krull. Now P[T] € Spec(R[T]) and P[T] €D (RIT])

by Lemma 3.9. Hence P[T] € XI(R[T]).
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