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0. Introduction

In the search for a class of noncommutative rings with an arithmetical
ideal theory, generalizing the classical theory of Dedekind domains, several
possibilities arise; e.g. HNP-rings, Asano orders and Dedekind prime rings.
An even richer gamma of possible definitions is available in case one aims
to produce a noncommutative counterpart to the theory of Krull domains. A
natural way to define these rings is by imposing local conditions at the
minimal nonzero primé ideals. The first ramification of the theory is
created by the fact that in the noncommutative case one may consider indepen-
dent local conditions on the localized rings but also on the type of
localization used in the construction of that local ring. Recently, some
types of noncommutative Krull rings have been studied by M. Chamarie [2],

R. Fossum [3], and in particular H. Marubayashi [8,9,10,11]. All these
rings are supposed to be (maximal) orders in simple Artinian rings, e.g.
Marubayashi-Krull rings are Goldie prime rings such that the Lambek-Michler
localizations at prime ideals of height one are Asano orders.

On the other hand, F. Van Oystaeyen constructed a class of (not

(*) Both the second and third named author are supported by an N.F.W.0.-grant.




necessarily Goldie-) prime rings having properties analogeous to those of
Asano-orders, namely Q-rings, cfr [13,19]. In this note we aim to generalize
Q;rings in about the same manner Marubayashi Krull rings generalize Asano-
orders, this time using symmetric localization.

In section 2 we prove that the divisor classes form an abelian group
which is a direct product of infinite cyclic subgroups. One of the main
motivations for studying Q-rings is the fact that they fit nicely in the
theory of primes [13,15], which is the most manageable generalization of
valuation theory to the noncommutative case known to the authors. In section
3 we indicate that there is am equally sufficient valuation-like theory
attached to Q-Krull rings, which will be developed in part II of this paper.

In the last two sections, we present some examples of Q-Krull rings.

A sufficient condition is given to assure that R[T] remains Q-Krull if R is

S0.




1. gKrull rings

Throughout this note, all rings will be associative and have a umit
element, modules will be unitary. Ideal will always mean twosided ideal.
R-mod (resp. mod-R) stands for the cétegory of all left (resp. right)
R-modules.

An endofunctor ¢ in R-mod is said to be a kernel functor if it is a
left exact subfunctor of the identity in R-mod, ¢ is said to be JLdempotent
if o(M/o(M)) = O for any M € R-mod. To a kernel functor ¢ the filter of
left ideals of R, £(o) = {L left ideal of R : o(R/L) = R/L} is associated
and to a filter £ satisfying :

K1) : If1,J €L, thenINJEL ;

(K2) : If T €L and J is a left ideal of R such that I CJ, then J € L ;

(K3) : IfI €L and X €ER, then (I:x) = {r€R : rx € I}EL,

one associates the kernel funmctor o, (M) = {m € M[JI € £: Im = 0}. Recall
from [5,14,17] that this defines a one~to-one correspondence. p will be

idempotent if and only if £ satisfies also :

(R4) : If I €L and J is a left ideal of R such that (J:x) € L for every

x € I, then JEL.

A kernel functor o is called bilateral if its associated filter £(o)
has a cofinal set consisting of ideals, o is said to be symmetrnic if it is
both idempotent and bilateral.

It is well known that one can associate to any idempotent kernel functor o

a left exact localization functor Qo(-) in R-mod. Qc(R) is a ring containing
R/o(R) as a subring and there is a canonical ringhomomorphism jo : R-*QG(R).
In particular, if R is a prime ring, o(R) = 0, jo is the canonical embedding
and R may be viewed as a subring of Qc(R)' An idempotent kernel functor ¢ is

said to have property T if it satisfies one of the following equivalent condi-




tions : (Tl)EQo(-) is right exact and commutes with direct sums ;
(T2) : For every I € L(o) we have : Qo(R)jo(I) = QU(R) s
(T3) : For every M € R-mod : QG(M) = QG(R) ®R M ;
(T4) : jo : R«+Q0(R) is a flat epimorphism of rings.
0 will be called geometrical if it has property T and satisfies :
(G) : For any ideal I of R, Qo(Rjjo(I) is an ideal of QG(R). E.g. if o is
a central idempotent kernel functor, i.e. £(0) has a cofinal set consisting
of centrally generated ideals, ois geometrical.

Likewise, one can define all these concepts in mod-R. If 32(0) is a
set of ideals of R which is multiplicatively closed and if ££(o) (resp. £r(c))
(i.e. the filter of left (resp. right) R-ideals generated by £2(o)) is idem-
potent, we will denote by Q§(~) (resp. Qz(-)) the localization functor in
R-mod (resp. mod-R) associated with 32(0) (resp. £r(o)). E.g. if P is a
prime ideal of R, fz(R-P) will be the multiplicatively closed set of ideals
I of R not contained in P, Qﬁ_P(-) and Q;_P(-) will be the associated localiza-

tion functors.

Throughout, R will be a prime ring. The first problem encountered is to
find a symmetric analogue of the Goldie theorems, i.e. to give necessary and
sufficient conditions such that R may be embedded in a symmetric localization
stm(R) which is a simple ring (eventually satisfying additional chain condi-
tions) such that any localization of R at a symmetric kernel functor can be
viewed as a subring of stm(R). Clearly, a sufficient condition is that
Op-0 is an idempotent kermel functor having property T. However, to find
a necessary and sufficient intrinsic characterization in terms of elements
and ideals of R might prove rather difficult.

In order to bypass this problem as well as to exclude oddities as the ones

encountered in [6] and [7], arising from the fact that certain prime ideals

may have trivial intersection with the center Z(R), we will limit ourselves




to prime rings R satisfying Formanek's condition :

(F) : For every ideal I of R, I n Z(R) # 0.

lemma 1.1. : If R is a prime ring satisfying (F), then :
(1) : 920 is an idempotent kernel functor,
LAk PO 4 agmto_ =1 -
(2) : QR_O(R) & QR_O(R)—-{C r=rc |r € R, 0 # c € Z(R)} stm(R) are

simple rings.

proof
(1) : Suppose I € £2(R-0), J a left ideal of R such that ¢(I/J) = I/J.

It will be sufficient to prove that J € £2(R—0). Take 0 # ce€ I n Z(R),
then I' = Rec € £2(R-O) and g(I'/I' nJ) =1'/1' nJ. There exists an ideal
I" e £2(R—0) such that I"¢c = ¢I" Cc I' N J whence : I'I"C I' N JC J and

thus JE.C‘Q(R—O) because I'I" € .CZ(R-O) .

r

and OR-0

(2) ¢ In view of (1) it is easy to check that oz have property

R-0
T, using results of [19]. Therefore, Qé_O(R) and QE_O(R) are simple rings.
Verification of the fact that they are equal to{c:'-]r=r<:—1 |[reR, 0 #ceZ2(R)}

is straightforward.

A prime ring satisfying (F) is said to be an Q-ning if every ideal is a
product of maximal ideals. We call a ring quas{i-Local if it has a unique

maximal ideal.

Definition 1.2. : A prime ring satisfying (F) is said to be an Q-Kwll ning

if the following conditions hold :

(1) : There exist multiplicatively closed sets of ideals £2(°i) (i € A) such

=
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{q € stm(R)HIe.c (6;) : qI C R}
(2) :Vie€e A R.1 is a quasi-local @-ring;

3) : R = .ﬁ R.:




(4) : For every r € R there are only finitely many i € A such that
2
(r) = RrR @ £7(0.);

. 2 B _
(3) : Vien VIESL (ci).R.lI—IR.l—Ri.

i
no a priori reason why these Ri should be localizations. The following lemma

. L .
Remark : We have used the notation R, = Q, (R) = Q§ (R). However, there is
i

proves they are :

lemma 1.3. : Vi€A: oy is an idempotent kernel functor.

proof
(We write o for ci). Suppose I € 52(0), J a left R-ideal and o(I/J) = 1/J.
Because Q§(R)I = Qﬁ(R) we can write :

= 2 v oo
1 = @By * .. F o« B where o, € QO(R) and Bs € I. Take, I RBy + ... + RB
then Qi(R)I' = Qi(R). Therefore I'GEfz(c) for there exists an ideal K€ £2(o)

such that Kai CR, 1 <i<n. Therefore K.1C RBI + v.. # RBn = I', Because

I' C I we have o(Z'/JNTI') =1'/JN1'., So, there exists an ideal L € £2(o)
such that LB, C J NI', 1<i<n. Finally, we obtain : L.I' CJNI'CJ
and L.I' € £2(0) because £2(o) is closed under taking products, therefore

Je 0.

We immediately obtain that Ri = Qi (R) is indeed the localization of R with

: i

respect to the symmetric kernel functor oi having property (T). (5) may be

strenghtened to

P

(5') : Vi€ A: o) and c§ are geometrical, or to :

Hw H

(5" : Vi€ A: ¢, and cz are central kernel functors.

Remark : The Ri are prime rings satisfying the condition of Formanek, so they
have a symmetric ring of quotients stm(Ri)' If R satisfies (5') it can be

seen (using results of [16]) that stm(R) = stm(Ri)'




Each Ri is a quasi-local Q-ring. In particular, Ri has a unique maximal

ideal Pi, we will denote P, =R N Pi.

Proposition 1.4. :

H ' = =
(1) : Pi PiRi RiPi’

(2) : Pi is a prime ideal of R.

proof
(1) : It is clear that RiPi C ?i. Conversely, take a € P{ then we can find
an ideal I € 32(0.) such that Ta C RN P! = P,., Hence a € R,a = R.Ia C R.P..
i i i i i it1
Similarly, P! = P.R..
i i1
(2) : Suppose AB C Pi where A and B are ideals of R and B ¢ Pi' Then
R.BR, ¢ P! whence R,BR, = R,. Write | = ) x,b, y, where x.,y. € R, and
i7 i i1 i i 373 3*73 i
bj € B. There exists an ideal I € £2(oi) such that Ixj C R and yjI C R for
each j. Therefore, 12 = I1,1,I C RBR = B, Finally, we obtain A C ARi = AIZRi

C ABR, CP.R, = P! and thus : ACP] "R =P,,.
i i i i i

Remark :
1. In case R satisfies (5'), Prop. l.4. is nothing but a reformulation of
the following result due to F. Van Oystaeyen [16] : For a geometrical kernel
functor k there is a one-to-one correspondence between Spec QK(R) and G(X)
the set of prime ideals of R maximal with respect to not belonging to £(k).
2. It is straightforward to check that £2(ci) C £2(R—Pi)' Conversely, if
Je £2(R-P.) then J ¢ P,. Take x € J-P., then : R, x R, = R,. Therefore

i i i i i i
we can find elements ak’bk in Ri such that 2 a X bk = 1. There exists an
ideal I € £2(ci) such that Iak C R and ka C R for all k. Finally, I2 =

I.1.I Cc R x R CJ whence J € £2(ci).

Now consider the following conditions :




6) : Vi# j€AN: P, ¢ Pj and Pj ¢ P.;

6') : Vi# j€AN: PR, =P.P, =R,.

©5 * S TR B S

Using remark 2 above it is easy to see that these conditions are equivalent,

C 2 2 .
P. P, iff P. € L"(R-P.) =L .) 1ff P.R. = R.P, = R..
for, P, ¢ 3 i : ( J) (oJ) i%; ;

2. Fractional ideals and divisor classes

For every i € A, we define a gractional Ri-ideaﬂ I, to be a nonzero
left and right Ri—submodule of stm(R) such that there exists an element

c; € Z(Ri) : CiIi C R;.

Proposition 2.1. : The fractional ideals of R, form an abelian group under

multiplication, for every i € A,

Eroof
-1

-1
E ! n 3 * o . * = . = k- L] *
Take 0 # ¢ P: Z(Rl) Then R.c R.c R, Rlc Rlc (remark that
¢ is invertible in stm(R) because Z(Ri) C Z(stm(R» which is a field
. . . . PN !
because stm(R) is simple). Ric is an ideal of Ri’ hence, Ric = (Pi)
-1 -1

for some n € N. Therefore, Pi . ((Pi)n_l . Ric ) =R, = (R.¢

101 '
i = ®Rge o (B) ). Py

-1 .. . . . s .
and thus Pg exists. This implies that every ideal of R.l is invertible.

That the fractional ideals of Ri form an abelian group is now easily checked.

We define a fractional R-ideal I to be a nonzero left and right R-submodule

of Q (R) such that there exists an element c € Z(R) : cI C R.
sym

lemma 2.2. : When I is a fractional R-ideal, R, IR, # R, for only finitely

many 1 € A,

proof

Because stm(R) is an essential extension of R, IN R # 0. Take 0 # ¢c € I N R,




then (¢) = ReRC I and RiCRi Cc RiIRi° From (4) and (5) we get that
R.l Cc RiIRi for almost all i € A. On the other hand, there is an element
d € Z(R) such that d(RiIRi) C Ri for each 1 € A . Now, Ri(RdR) = Ri for

almost all 1 € A. Hence R,IR, C R, for all but finitely many i € A,

lemma 2.3. : Suppose that R satisfies (6) and let Ii be a fractional Ri-ideal
for each i € A such that for almost all i € A : Ii =R;. ThenI =0 Ii is a

fractional R-ideal and RiI = IRi = Ii.

Eroof

Put Ii = Ii N R. Suppose first that Ii C Ri for every i€ A, Then I C R

and I = I, N ...N I, with I gRj, j € {1,...,k}. We have that each

1 k
' ' nj ns ,,n° . .
Ij = (Pj) (nj > 0) whence (Pj) J C Ij = (Pj) JNR. When i # j, then
R, = (P.)nj R. € I.R. C R, because of (6'). When i = j, R.I, = I!. Because
1 J 1 J 1 1 J 3] 3

. 3 - . = . ﬁ,..ﬂ = . nooon : =
R, is a flat R-module, we get that RII Rl(Il Ik) RlII“ Rllk

Rifﬁ... f\Iir\... NR, = 1! = IR, . In the general case, there exist elements

i

¢, € Z(Ri) for each 1 < i < k such that ciIi c Ri' Furthermore, all c, may
be chosen in Z(R) because Z(Ri) C Z(stm(R)) and Z(stm(R)) is the field of
fractions of Z(R). Put ¢ = Cp eee O € Z(R) then c¢I =N cIi and hence

cIR. = cI! whence IR, = I!.
i i i i

Let A be a fractional R-ideal. Consider the twosided R-module

Ay = N R.ARi. Clearly, Ad is a fractional R-ideal and we can write each
i€l
R.AR. = (P!)nl(n. €Z ), whence A, = N (P!)nl and almost all n, are equal
i1 i i d se A i
to O.

lemma 2.4. : (1) AC Ad ;s (2) 1If A C B then Ad C Bd ;5 (3) Add = Ad'

proof
(1) and (2) are obvious.

= 1 ni . 1 ni . . o = ' n.
(3) Ad N (Pi) . Since each (Pi) is a fractional Ri ideal, RiAdRi (Pi) i
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by lemma 2.3. Hence Add = Ad.

Remark : It is easy to check that Ad is precisely the A o,-closure of A
1€A
in stm(R)’ i.e.

. 2
Ay = {a€ stm(R)IV1€ AdI el (ci) : Iq C A and qI C A}.

If A = Ay then A is said to be a divisornial Lideal. We define an equivalence
relation on the set of fractional R-ideals by saying that A ~ B if and only

if A, =B Denote by A the equivalence class determined by A. The set D (R)

d d°
of all equivalence classes forms a semigroup under * defined by‘K % B = (AdBd).

The unit element of D (R) is of course R.

Theorem 2.5. : If R is an Q-Krull ring satisfying (6), then D (R) is a direct

product of infinite cyclic subgroups generated by {ﬁi}iEEA .

proof
. . nj
(1) Suppose A is a divisorial ideal, say A =N Pi where n. € Z and n, = 0
for almost all i € A, Put B =n Pi-ni. From lemma 2.3 we deduce that B is
a divisorial R-ideal. Then, R, (R,AR,)(R.BR,)R, = (P!)"i(P!)™™ = R.. Hence,
AR T R R R 1 i i i

A®*B=R and D(R) is a group under .

(2) Suppose A =n Pini and B = N Pimi are both divisorial R-ideals, then

nj+m,
= p!PiTy

Ri(RiARi)(RiBRi)Ri i Ri(RiBRi)(RiARi)Ri whence D (R) is abelian.

(3) Write A = Pinl N ... N Pink N n Rj)' It is easy to check that

A= (?l)nl::,.. ® (?k)nk, whence D (R) is generated by {§i} Finally,

ienr”
suppose (ﬁl)n1==... ® (§n)nk = ﬁ, then Pinl N oo N Pink n{n Rj) = R

(Pi)ni yvielding that every n, = 0.

i

whence R.R = R,
i i

Theorem 2.6. : The center of an Q-Krull ring is a Krull domain.

proof

Because R is a prime ring, Z(R) is clearly a domain. Because the Ri are
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localizations of R, it is readily checked that Z(R) = N Z(Ri)' We will
1 €A
prove that each Z(Ri) is a discrete valuation ring. We know that K = Z(stm(R))

is the field of fractions of Z(Ri)' Define a function v on K* in the following

way
o "l R 11 -1 _l
v :KX>Z : a b -> n-m where Ria = (Pi) H Rib = (Pi) . Suppose a b =c¢ d

where a,b,c and d are elements of Z(Ri)’ We can write Ric = (P{)k and

2 1

. Because the elements of Z(Ri) are invertible in K, Ria Ria_ = Ri

I8.b = R.c 'R.4
1 1 1

= '
Rid = (Pi)

whence Ria-l = (Pi)_m, similarly Ric—] = (P{)_k. Therefore Ria_
whence (P;_)nmm = (Pi)z-k. Thus n-m = 2-k and v is well defined. It is now
easy to check that v is a Z-valued valuation. v(a-lb) 2 0 if and only if
Ria-lb = (Pi)n_m c R.» whence a-lb € Ri' We conclude that {x € K¥|v(x) > 0} =
Z(Ri) and therefore Z(Ri) is a discrete valuationring.

Finally, take ¢ € Z(R). Then Ri(c) = Ri for almost all i € A, But (c) = Re

and Ri(c) = Ric = R, for almost all i € A , Hence ¢ is a unit in all but

finitely many i whence Z(R) is a Krull domain.

Let A be a ring, X = Spec A its prime spectrum equipped with the Zariski
topology. A Zariski open set is equal to seme X(I) = {P € X|I £ P} where

I is an ideal of A. A ring homomorphism f : A » B is said to be an extension
if B = £(A)Z;(A) where Z (A) = {b € B|Vae A : bf(a) = f(a)b}. 1In that

case f—l(P) € Spec A for any P € Spec B and v : Spec B » Spec A; Pk~f—I(P) is
é continuous mapping.

A monomorphic extension f : A<=B is said to be a Zanishi extension if there
exist nonempty Zariski open sets Y(I) C Spec B and X(J) C Spec A such that the
restriction of ¢ yields a homeomorphism between Y(I) and X(J) with their
induced topologies, such that for every ideal H Crad I, the open set Y(H) C f(I)
corresponds to an open set Y(H') C X(J) with H' C fl(H). If ACB is an

extension, ¢ (P) = P N A. For nonempty open sets Y(I) and X(J), the Zariski
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extension property is equivalent to ¢ (Y(I)) = X(J) and H = rad B(H N A)
for every radical ideal H C rad I. A global Zariski extension is a Zariski

extension such that ¢ (I) = Spec B.

Proposition 2.7. : Every Ri is a global Zariski extension of its center.

R, is a local Q-ring. Hence Spec R, = {O,Pi} . Z(Ri) is a disg;ete valuation
ring whence Spec Z(Ri) = {0, pi} where P; is the unique maximal ideal of
Z(Ri)' Clearly, Pi N Z(Ri) =p; and P{ is the unique prime ideal lying over
p; - It is trivial to see that rad H = rad Ri(H N Z(Ri)) for every ideal H |

of R..
i

Remarks ’

1) Each minimal prime ideal of R belongs to the set {Pili €A}, For supp;se
P islminimal prime. Take 0 # c € P N Z(R). We have Rc = O R.c = N Pini.
If Nyseee,n are the only integers different from zero, we :asily obtain

P?l...Pﬁk C P?l n...N P;k C P whence Pi C P for some i, Hence P = Pi'

2) If each s is a geometric kernel functor, we also have the converse result,
namely each Pi is a minimal prime ideal. 1It's easy to check that
RANR = {x € R[Ix C A for some I € £2(oi)} when A is an ideal of R.
Suppose A is prime and A C Pi' We claim that RiA NR=A., If IxC A for
some I € £2(oi), then IR x RC A whence IC A or Rx RC A, The inclusion
I C A leads to a contradiction because A C Pi' Hence x € A.
On the other hand, RiA is a prime ideal in Ri’ for suppose XY C RiA/with
X,Y ideals of Ri' Then (XN R(YNR) CXYNRC RiA N R = A, Because
A is prime and each o5 is a T-functor we obtain X C RiA or Y C RiA'

Finally, because RiA is prime, we have RiA = Pi and therefore A = RiA NR=

P..

1
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3) If the set {Pi:i € A} is equal to the set of minimal nonzero prime ideals,
then a prime ideal is divisorial if and only if it is minimal prime.
For suppose P is a prime which is not minimal. There exist elements
X, such that x, € P but X, ¢ P, and this is true for all i. Hence
RixiRi = Ri and certainly RiPR.1 = Ri for each i. Therefore P g Pd = R.

The other implication is trivial.

3. Arithmetical pseudo valuations on Q-Krull rings

Throughout this section,every os is supposed to be geometric. In the
commutative case, valuation theory is a powerful tool in studying Krull
domains. The most manageable noncommutative generalization of valuation
rings known to the authors is the theory of the Van Geel-primes (cfr. [13,15]).
In this section we aim to relate the so called pseudo valuation functions
on the set of divisor classes to primes in stm(R). Because of its apparent
importance for the definition and description of the class group, we will
postpone a full account of this connexion until part II of this paper.

Let us recall some definitions. Let S be any ring. Following J. Van Geel
[13,15] we will call a pair (P,S') a paime in S if and only if it satisfies
the following properties :

(P1) : S' is a subring of S

(P2) : P is a prime ideal of S';

(P3) : Vx,y € S : if xS'y C P then either x € P or y € P,

If (P,S') is a prime in S, so is (P,Sp) where we denote by sP={se S|spc P
and Ps C P}.

Primes are natural generalizations of commutative valuation rings, for, if

S = K is a field, (P,Kp) is a prime in K if and only if KP is a valuation

ring in K and P is its maximal ideal.
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Extending the terminology of [13] to the Q-Krull ring case, we define :

Definition 3.1. : An arithmetical pseudo valuation v on D (R) is a function

v : DQR)>T uUi{~} where I' is a totally ordered group such that :
(V1) : VI, JE D(R) : vw(I % J) = v(I) + v(J);

(vV2) : VI,JE DR) : vw(I + J) = min (v(I),v(I));

(v3) : VI, JE€ D) : if I C J then v(I) = v(J);

(V4) : v(R) = 0 and v(0) = =,

For any X € Q = stm(R) we will denote :

Cx = N R, X Ri’ which is glearly a divisorial R-ideal. The next theorem
i€

is a slight adaptation of a similar result for Q-rings (cfr [13D)

Theorem 3.2. :

1. To any arithmetical pseudo valuation v on D (R) we can associate a
prime in stm(R)'
2. To any prime (P,Qp) in Q = stm(R) such that P = N R.PR. and R C Qp we

i
can associate an arithmetical pseudo valuation on D (R).

proof

1. Let v be an arithmetical pseudo valuation on D (R). Define

P={&xE€ QIv(CX)‘> 0}. By definition of v, P is clearly a multiplicatively

closed additive subgroup of Q yielding that P is an ideal of QP. If

X,y € Q such that pryCZP, then xRy C P because R C Qp. Therefore @

0<v( N RxRyR.) =v( N R, (N RxR)( N RyR,IR,) =v(C_%C) =
jen 01 ien Yien Y qen 1 x 7

v(Cx) + v(Cy) and thus either v(Cx) >0 or v(Cy) > 0 yielding that (,QP) is

a prime in Q = stm(R).

2, 1If (P,Qp) is a prime in Q such that N RiPRi =PandR C Qp, define for any
jen ©
divisorial R-ideal I :

v(I) = {x € Q|Cx % I CP}. Let I':be the set {V(I)FIE D (R)},then 1 is totally
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ordered by inclusion. To show this, suppose I,J € D (R) such that both
v(I) € v(J) and v(J) ¢ v(I). Therefore, there exist elements x,y € stm(R)
such that Cx * I CP, Cx *J¢gp, Cy *I¢P and Cy ®*JCP.

Because (P,Qp) is a prime, we obtain :

(Cx ® J)stm(R)p(Cy ¥ I) ¢ P yielding that for some z € Qp :

Cx J % Cz % v % I¢P. But D(R) is an abelian group whence

Cx L z ® Cy # J C P because for any Z € Qp we have that Cz #* PCP and
and P ¥ Cz C P, a contradiction. We claim that v(I) + v(J) = v(I ¥ J) is a
well defined addition on T which turns T into an ordered group with unit
element v(R). For if v(I) = v(I') and v(J) = v(J') for 1,I',J and J' € D(R),
then for any x € v(I # J) : C_ % I # J C P whence Cx XRICv() =v(ld),

X

hence C_ * I ¥ J' = an” J' % I C P, finally, since v(I) = v(I'),

Cx ®RJ'RI' = Cx ® I' % 3" C P follows, i.e. x € v(I' ® J'). The fact that

v(R) is a unit element is obvious.

v(I) < v(J) yields v(I) + v(H) < v(J) + v(H) for any H € D (R), for, if

.

x€v(I*H) then C *xHX¥I=C *I*HCP, i.e. C ¥HC v(I) € v(J)
whence Cx # J % HCP. The required properties (V1)-(V4) follow directly

from the definition of wv.

4. Some examples
In this section we shall give some examples of Q-Krull rings.

A : A commutative Krull domain is an Q-Krull ring.
B : A complete matrix ring Mn(R) over an Q-Krull ring is itself an Q-Krull ring.
C : An Q-ring which is a global Zariski extension of its center is an

Q-Krull ring.

D : An Azumaya algebra over a commutative Krull domain is an Q-Krull ring.
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E : If A is any simple algebra with center k and R is a commutative Krull

domain containing k, then A ®k R is an Q-Krull ring.

Broof

A and B are straightforward.

C : Let Z(R) be the center of R and {Pi}i.e p the set of all nonzero prime

jdeals of R. Then all kernel functors Opp. are idempotent, have property T
i

and are geometric, moreover QR-P (R) = QP (R) where p; = Pi N Z(R) (cfr [12,19]).
; .

i
Therefore it will be sufficient to prove that R =N Qp (R). Obviously,
i
RCN Qp (R). Conversely, suppose that er e (N QP (R))\ R where ¢ € Z(R)

: % a, t K K
and r € R. Because R is an Q-ring, Rc = Pll...Pnn, RrR = P11'°’Pnn where
zi,kiEN for all 1 < i <n and P.1 # Pj for i # j. Therefore,

I;R = Re!R ReR = 911‘1'21

e.g. i=l. Because Elr € QR-P (R) there is an ideal I ¢ P, of R such that
|

Rc ...Pﬁn'zn ¢ R. Therefore, ki - Zi < 0 for some i,

Ie'r C R: Therefore I = PZZ...P:S with r, € N for all 2<i<s. So,

rR = I.Rc R.RrR = Pl - Py

D : Let R be a commutative Krull domain and A an Azumaya algebra over R.

Ic cee P:S C R, a contradiction.

Clearly A = A“ﬁEEHomR(HomR(A,R),R) in R-mod. Therefore, cfr [4], if XI(R)

is the set of prime ideals of R of height one, them A = N 1 Q (Aa).
peX(® P

It is now easy to check that A is an ©-Krull ring.

E : As in D because every ideal I of A®k R is of the form A®k J where J

is an ideal of R.

Remark
It follows from E that any polynomial ring over a simple algebra is an {-Krull

ring giving examples of Q-Krull rings which are not Marubayashi-Krull.
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5. Polynomial extensions

lemma 5.1. : Let R be a quasi-local Q-ring with unique maximal ideal P
such that Z(R/P) = Z(R)/p where p = P N Z(R), then P = Qp[X](R[X])P[X] is

the unique maximal ideal of R = QP[X](R[X]).

Broof :

Suppose there exists an element x € R[X]\ P[X] such that P+ R x R is a proper

jdeal of R. Let x be an element of minimal degree with this property, say

X = anX + ..+ a - First, let us assume that a € P. Because

x' = an_lxn_l * ...t a € RIXI\P[X] with deg x' < deg x we can find elements
R € P = ' =

fi’gi € R and h € P such that | h + 2 fi x'gs . Thus, Z fi x g + h

i i
2 fi anX g; + ] whence P + R x R = R, a contradiction.
i

Therefore, an € R \P. Because RanR + P = R we can find an element

x' =X + an_lx + ... + do inP + R x R. We claim that ai mod P € Z(R/P)

for every 0 < i < n-1.

For, suppose there exists an element r € R and an index i, 0 < i € n-l such

that o r-Ta, € R\P, then rx'-x'r € R[X] \P[X] with deg(rx'-x'r) < deg x and

therefore P + R(rx'-x'r)R = RC P + R x ﬁ, a contradiction.

Therefore we can find elements ¢, € C and LA € P such that e, = ci+wi, whence
n-1 =

x" = X" + Cn—lx e tC € P+R xR and x" € C[X] \p[X]. Therefore,

+ R x R contains an invertible element, a contradiction. Hence P is a

a-1}

maximal ideal of R. Next, we have to prove that P is the unique maximal ideal.
Suppose Q were another maximal ideal of R. Let Q' = Q N R[X} then 0 # Q' N ¢[X]
€ Spec C[X] and clearly Q' N C[X]Cp[X]. Because p is a minimal prime ideal

of C, so is p[X] in C[X], whence Q' N C[X] = p[X]. This implies that p = Q' N C.
Because R is a global Zariski extemsion of its center and because Q' N R is a
nonzero prime ideal of R, Q' N R = P, yielding that P = R(Q' N R) CQ. Finally,

because P is a maximal ideal of R, Q = P follows.
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Using the same notation and assumptions we will prove :

Corollary 5.2. : R is a local Q-ring.

proof
It will be sufficient to prove that all ideals of R are powers of P. First,

note that P is invertible in stm(R[X]), (stm(R[X]) exists because R[X]

N ____l -

satisfies Formanek's condition if R does), indeed P ~ =R . P-I[X], where

P ! is the inverse of P in Q R).
, sym

Let I be a non trivial ideal of R, then I C P and I§—1 C R. By the ascending

n
P for some n € N, or

chain condition on twosided ideals of R, either I

either IC N P®, Because N P" = 0 (cfr [12]) we obtain I = PO,
n€N

lemma 5.3. : Let S = stm(R), then S[X]NR = R[X].

proof
Obviously, R[X] C R N S[X]. Conversely, let £(X) = snXn e bS] be any

element in ﬁr\S[X], where S5 € S for all 0 < i <n., Let £f(X) = h(X)élg(X)
where g(X) € R[X] and h(X) € C[X] \ p[X]. Because h(X) = h(X) mod P[X] is
an element of Z(R[X] /P[X]) = Z(R/P[X]) = Z(R/P)[X] and R/P is a simple ring,

there exists an element r(X) in R[X] such that h(X)r(X) = b i Em_lxm'l +

ve. & Eo' Therefore, h(X)£(X)r(X) = g(X)r(X) € (R/P) [X] whence _n € R/P

and thus 5 € R. By induction, all s; € R whence f(X) € R[X].

Returning to the original notation, let R be an Q-Krull ring with defining
quasi-local Q-rings R,. Pi is the maximal ideal of Ri’ Ci will be the center

1
' = N . = 'n . o= ! N .
of Ri’ Ps Pi Ci’ Pi Pi R, P; = P; Z(R)

1]

As above, we will denote ﬁi QP (R[X]);‘fz = ﬁ;?i. Let us define a multipli-

i
catively closed filter of ideals of R[X] : £2(Ki) = {I[X]aII € £2(°i);

o € Ci[X]\ pi[X] such that I[X] € R[X]}.
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lemma 5.4. : Qi.(R[X]) = &, = Q% (RIXD).
1 1

proof
Clearly, £2(Ki) is a symmetric filter and K3 has property T. Let g(X)-lf(X)
€ ﬁi where f£(X) € R[X] and g(X) € Ci[X]\ pi[X]. Therefore there exists an
ideal I € £(0,) such that Ig(X), If(x) € R[X]. Thus, I[X]g(X) . g(®) " 'E(x) C RIX]
yielding that R; C Qi.(R[X]). |
Conversely, suppose th)-lf(X) € Qﬁ.(R[X]) with g(X) € C[X] and £(X) € R[X]
and i[X]a . g(X)-lf(X) C R[X] for s;me a € Ci[X]\ pi[X] and I € £2(oi).
Then, RiI[X]txg(X)-If(X) = Ri[X]ag(X)-lf(X) C Ri[X] whence g(X)-lf(X) € Ri[X]c-l.
Thus, Qi. (RIXD) = R,.
Analogouzly one proves that Qz.(R[X]) = ii'
i
If R is an Q-Krull ring and if S = stm(R)’ then it is easy to check that
S[X] is an Q-ring (cfr [12,1]). Let {Mj}j €3 be the set of all its nomzero
prime ideals, let mj = Z2(8)[X] N Mj and define a symmetric idempotent filter

as follows :

£ (w) = {1[XIs|1 € £2(®-0),a € Z(S)[X]\ m such that I[X]a C RIX]}.
lemma 5.5. : Q% (R[X]) = q_ (S[X]) = Q© (RIX]).

———— Q)j mj (Dj

proof
Along the lines of lemma 5.4.

Theorem 5.6. : Let R be an 9-Krull ring such that Z(Ri/Pi) = Ci/pi for

all i € A, then R[X] is an Q-Krull ring.

Eroof

et R= N Ri' By Corollary 5.2., Ei is a quasi-local Q-ring and Ei N S[X]
i€l .
= Ri[X] by lemma 5.3. Because S[X] is an Q-ring which is a global Zariski

extension of its center, we obtain from the proof of section 4.c. that
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s[x] = N Qm (sfX]). Moreover,
b b

R[IX] = N RJIXI= N @® 0ns[xD=(nNn RIN( N (s[X1)).
iea t ijepn *t iepn *t jEJQmj

From lemmas 5.4. and 5.5. we know that the rings ﬁi and Qm.(S[X]) are over-

rings of R[X] satisfying the requirements of the definition of 2-Krull ring.

Finally, let us verify condition 4 of definition 1.2. Let £(X) € R[X].

The ideal R[X]If(X)R[X] contains a central element, say g(X) = aan + ...+ a .

Then RakR € £2(oi) for almost all i € A, yielding that ﬁig(X) = ﬁi for all

but finitely many i € A,

Also, S[X]g(X) € £2(Z(S)[X] - EB) for almost all j € J (because S[X] is an

Q-ring) implying that Qm.(S[X])g(X) = Qm.(S[X]) for all but finitely many j.
J

J
This completes the proof.

Remark
It is not known to the authors whether the condition Z(Ri/Pi) = Cilpi can
be dropped in general. We conjecture that this is not the case. An other

intruiging question is whether R[Tl""’Tn] remains ©-Krull if R[T] is Q-Krull.
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