A Note on

Noncommutative Krull Domains

L. Le Bruyn (%)
F. Van Oystaeyen,

University of Antwerp, UIA, Belgium

81.19

(*) First named author is supported by an NFHO-grant.




ABSTRACT
AMS classification 16A14, 16A10, 16A04, 16A02, 13A18, 16A39.

We define a kind of non-commutative Krull domains using serial over-
rings, which turn out to be localizations at prime ideals of height
one. We alobalize some properties of valuation rings to these so-called
S-Krull domains in particular, every element is normalizing. We study
divisorial ideals and introduce the class group and establish that

the class group (as well as the notion of S-Krull domain)behaves.well
under localization at T-functors. We pointout some special cases and
thé relation to existing theories of R. Fossum, M. Chamarie and

H. Marubayashi.




0. Introduction

In the search for a class of noncommutative rings with an arithmetical
ideal theory, generalizing the theory of commutative Dedekind rings,
several possibilities arise : hereditary Noetherian prime (HNP) rings
Asano orders, maximal orders, and Dedekind prime rings. An even richer

" gamma of possible definitions is available in case one aims to produce

a noncommutative counterpart to the theory of Krull domains. It is natural
to define these rings by local conditions at nrime ideals of height one.
The first ramification of the theory is created by the fact that in the
noncommutative case one may consider independent local conditions on the
localized rings but also on the type of localization used in the construction
of that local ring. Certain types of noncommutative Krull domains have
been studied by M Chamarie, [ 41, R. Fossum, (tame orders) [ 7 1, and

H. Marubayashi, {11 1. The rings we are studying in this note are S-Krull
rings (S for : serial) which are described "locally" (at prime ideals

of height one) by serial rings. One of our main aims is the introduction
of the class group of an S-Krull domain. To our knowledge there have been
no attempts to introduce and study the class group in the noncommutative
case, in the absence of a polynomial identity, not even for Dedekind prime
rings. The main structural property of S-Krull rings is that they turn out
to be intersections of nrincipal valuation rings in skewfields in

0. Schilling's sense, cf. [ 16 1. Some of the properties of nrincipal
valuation rings may be globalized to S-Krull rings, in particular : left
jdeals are ideals. After some structure theory in Section 1 we study
divisorial ideals and introduce the class group in section 2. Some of

the methods used in this note indicate that it is rewarding to work

with Tess restrictive definitions e.g. prime Coldie rings which are

"Tocally" HNP rings allow, under mild conditions on the Tocalizations at




prime ideals, a structure theory generalizing in many senses the theory
of tame orders as described in[ 7 ], but this will not be included in

this note.

1. Left S-Krull Domains

Throughout‘this note R will be a prime Goldie ring with simple Artinian
(Teft and right) ring of fractions Q. Let us point out that, the seemingly
weaker hypothesis that R is a right order in a simple ring, will lead to the
same theory for S-Krull domains. Recall that a ring S is said to be Jeft
serial if the set of its left ideals is totally ordered. A subring A of

a skewfield A is said to be a total subring if for x € U (o) we have

either x ¢ A or x'1 € A.

1.1. Proposition. If S is a Teft serial overring of R in Q then R is a

domain, Q is a skewfield and S is a total subring of the skewfield Q.

Proof. Put I](S) = {s €8S, Ann](s) # 0}, then I](S) is an ideal of S.
Indeed, take a, b ¢ 11(5) and Ann1a c Ann]b say, then any nonzero c ¢ Ann1a
annihilates a + b.

Consequently I](S) is a right ideal of S. Now consider a ¢ 11(5), s €8S;
then either S s ¢ Ann1(a) or Ann](a) c Ss. In the first case sa=0 ¢ I1(S);
in the second case every nonzero C ¢ Ann](a) is of the form ts for some

t €S, thus : (ts)a = t(sa) =0 i.e. s a ¢ I](S).

Now suppose that R is not a domain, then I](S) N R is a nonzero (twosided)
ideal of R. Since R is a prime foldie ring, I1(S) N R is essential and
contains a reqular element, x say. But x cannot be a right zero divisor

in S and an invertible element in Q, so we reach a contradiction. It
follows that R is a domain and ) is a skewfield. An arbitrary ge¢ Q

may be written as q = r*s-1 where r and s are reagular in RP. Now Sr ¢ Ss
would entail q ¢ S, while on the other hand Ss c Sr entails q'1 = sr'l €S

is a total subring of Q. @
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1.2. Definition R is said to be a left (resp. right) quasi Krull ring

if there is a family of overrings of R in Q, {Ov, v € V} say, such that :

QK; = For all v € V, 0, is left (resp. right) serial;QK, : R=1n 0.
- vey

1.3. Corollary. In view of Prosposition 1.1., left (resp. right, quasi

Krull rings are domains. Moreover, since total subrings of a skewfield
are both left and right serial, it follows that a left quasi-Krull ring

is a right quasi Krull ring and vice versa.

Recall, cf. [16 1, that a total subring of a skewfield Q is a valuation
ring of Q if and only if it is invariant under inner automorphisms of Q
and moreover, valuation rings of Q correspond bijectively to valuation

functions v : U(Q) - T for some ordered group T'. If ' = Z then v is

called a principal valuation and the corresponding valuation ring 0v

of Q is a principal valuation ring.

1.4. Remark (P.M. Cohn [ 5 1) If Q satisfies a polynomial identity then
every total subring of Q is a valuation ring. In general however total

subrings may be far from being valuation rings.

A ring S is said to be strongly left serial if the set of its left ideals

" is well ordered. Note that this is just another way of introducing a

left Noetherian hypothesis. However, strongly left serial domains need
not be right Noetherian, cf. [ 2 ], hence they certainly need not be
valuation rings in general. Nevertheless in the situation we are

considering we have :

1.5. Proposition An overring S of R in Q is a nrincipal valuation ring
of Q if and only if it is stronly left serial.
that S is a Teft principal ideal domain. Thus, S has a unique maximal

left ideal M which must then be the Jacchson radical of S, hence an




ideal. Write M =Sm; we will proceed to show that ™ = Sm = mS. Since

mS cSm=Mlet us suppose there is an s € S such that s m £ mS.

Since Q is a skewfield we can find u, véR such that s m=mu v'l. If

Su c Sv then sm = s uv - is in m S, contradiction, hence S v ¢ Sv
then sm=mu v ! is inm S, contradiction, hence Sv cSu or w =gl

for some a € S and a'l £ S. The proper left ideal Sa is contained

in Sm = M, tehrefore a = B m for some 8 ¢ S. Consequently, sm = m(Bm)'1 = B'l
with B ¢ S, a contradiction. In the terminology of L. Lesieur, [10 ],

M is a good ideal of S and therefore n (Sm)n = 0.

For x € S put v(x) = n where n is thgegxnima] positive integer such that

x £R mn+1; if x £S put v(x) = -v(x'l). It is straightforward (and well-
known) to check that v is a principal valuation of Q with corresponding

valuation ring S. o

1.6. Definition. R is a left (resp. right)S-Krull domain if there is a

family of overrings of R in Q, {Ov, veV} say, such that the following

conditions are met :

K1. : For all veV, 0V is strongly left (resp. right) serial.
K2. : R=n OV (we may assume 0v # Q for all v)

vey
K3. : For all r ¢ R, the set E(r) = {veV, r is not a unit of OV} is finite.

S SRS, A

if and only if it is a right S-Krull domain and, as notation suggested,

the 0V are principal valuation rings of Q.

Let K be the center of Q, C the center of R. Let Vf be the set of valuations
in V that are non-trivial on K.

In case Q is algebraic over K (e.g. if R is integral over C or if R satisfies
a polynomial identity) then V = V', but this may be false in general

(for example for some rings of twisted formal power series we do have

VAV ).




1.8. Lemma Let R be an S-Krull domain. Then C is a Krull domain (but it

may be a field!).

Proof It is clear that C=Z(R) < N Z (0,). On the other hand, N Z(0,)<R
veV v veV v

hence C = N Z(OV) follows.
vey

Now for veV, Z(",) is either equal to K or a princinal valuation ring of K.
It is clear that the family {Z(Ov), veV'} satisfies the approximation

property in K (see K,), hence C is a Krull domain.

1)

1.9. Remark From k = k[ x™1 0 k [x] ink(x) = K it is clear that C

may be a field and still different from K!

2. Diviscrial Ideals

Although many of the results of this section remain valid for rings
satisfying Kl,K2 only we suppose throughout that R is an S-Krull domain
defined by the set {OV, veV} of strongly left serial overrings. If
A, B CQ, write (A ;B) = {xeQ, x Ac B}, (A:B)={xe€eQ, AxcB

r
A (nonzero) left (resp. right) fractional R-ideal 1is a nonzero left

(resn. right) R-submodule A of Q such that there is a q ¢ Q such that

AgQ cR(resp. g A c R).

A is said to be a left (resp. right) divisorial R-ideal if it is left
(resp. right) fractional and (A : R) : P = A (resp. (M : R) : R = A.
r 1 1
If A is a left fractional R-ideal then it is readily verified that
(A : R) = HomR(A,R) is a right fractional R-ideal.
r

2.1. Proposition 1. For any subset A of Q, (A : R) = (A : R)
r 1

2. A left divisorial R-ideal is a right divisorial ideal.

Proof : Take s ¢ (A : R). Then A s c R yields 0, As < 0, for every v ¢V,
' r

j.e. s €N (Ov A :0,). Conversely of s € 1 (OVA : Ov) then we
veV r vey r
obtain As ¢ n Ov As c no,=R. Similarly, (A : P) = n (0A :0).
v v 1 vey 1




We claim : (OVA i OV) = (OVA ; Ov). Indeed, if sOV A c 0, then we have :

OVA.s== s_l(s OVA)s C s-1 Ovs ch therefore s ¢ (0 A : Ov). The other

v’ v
r
inclusion will follow from a left-right symmetrical argumentation.
2. May be easily deduced from 1; let us establish a little more here i.e.

for every left divisorial R-ideal B we have that B = N OVB. Since OVB
vey

is a left fractional Ov-ideal and since 0V js a (left) principal ideal domain,
it follows that OVB is a finitely generated projective Ov-modu1e.

Hence 0B = (0,B ; 0,) ; 0, - Pick s ¢ C ((OVB ; 0,) { 0,) then we have :

s(B:R)c n s(Ov

B:OV)C n 0,6 =R,
r veV r veV

v

whence s € ((B : R) : R) =B. Thus B= n  0B.
r 1 veV

2.2. Corollaries 1. One-sided R-submodules of Q are two-sided.
2. Every prime ideal P of R is completely prime and R satisfies the left
and right0Ore conditions for R-P.

3. R is fully left and right bounded.

Proof : 1. If a ¢ Q them Ra is a left divisional R-fdea] and therefore it
is a two-sided R-module.

2. That a prime ideal is completely prime is immediate from 1. Furthermore,
for given e € R, s ¢ R-P it is clear that there exist r'¢ R, s'€¢ R-P

and r"¢ R, s"€ R-P such that s'r = r's and rs" = sr".

3. For every prime ideal P, one-sided ideals of R/P are ideals, hence R/P

is a bounded ring, consequently R is fully left bounded.

By corollary 2.2.2. and 2.2.3. it follows that (even in the absense of
a Noetherian condition)the J.Lamkek -G Michler kernel functor K, associated
to a prime ideal P of R coincides with the symmetric KR~P‘ Therefore, the

left and right localizations at P may, without ambiguity, be described as




follows :

Q;(R) {a'b, a € R-P, b € R}

{a b'l, a€R, beR-P}

1]

P
Qb (R)
2.3. Proposition If P is a prime ideal of the S-Krull domain R then
1 r
2. The prime ideals of height one (denoted by Xl(R)) are precisely the

maximal divisorial ideals.

Proof. 1. Take x ¢ Q;(R). Then a x € R for some a € R-P.
Now a 0, = 0,a yields a O x ¢ 0,. Hence for all v € V we obtain :

a”l(a 0, X) ac 2! 0,8 ¢ 0 . This implies xa e n 0, =Rorxé Q;(R).

vey VY
A symmetrical argument finishes the proof of 1.
2. May be checked along the lines of the corresponding commutative statement,

see for example Theorem 3.12 of [ 6 ].

Let D(R) be the set of divisorial R-ideals in Q. Define an operation
D(R) x D(R) - D(R) by (A,B) - ((AB : R) : R). It is easily verified that
this is an associative operation admitting R as an identity element.

2.4. Proposition 1. As S-Krull domain satisfies the ascending chain condition
on divisorial ideals.
2. For any (left) fractional R-ideal A we have (A : A) =R

3. D(R) is a group.

Proof : 1 Straightforward (or mimic Theorem I.3.6. of [ 6 1).

2. If X # 0 in Q is such that A » ¢ R then we have : (Ax : A\) = (A : A),
1 1

hence we may restrict ourselves to consider the case where A is a left ideal

of R. Now if x ¢ (A i A) then x OA =0, xAcOA. NowOA=03a

for some a ¢ OV, whence X 0V ac Ova i.e. X 0V C OV and thus x ¢ Ov‘

Therefore (A : A) ¢ R and (A : A) =R follows.
1 1




3. Let A be a divisioral R-ideal. We have :
(((A:R)A) : R)
((A(A:R)) : R)

((A:R) : (A : R)) =R, and also :

R. Thus (A:R) is an inverse for A.

2.5. Proposition. 1 If P ¢ Xl(R) then QP(R) is a principal valuation ring.

2. R = 1.

R).
Pext(R) %R

Proof. 1. If Qp(R) is not a total subring of Q then there exists

1

aqe€Q such that Rg NRcPandRN Rq ™~ cP,

Thus (P:R) < ((Rg N R) : R) N ((Rg"1 N R) : R).

Since (Rq_l N R)g =RgNR it follows that :

((RgNR) : R) N ((RgFNR) :R) = (RgNR) : (RgnR) =R, which

contradicts the fact that P is a divisorial R-ideal. Now let x € (P:P)-R,

then x £ (P : P) and x PQP(R) c QP(R). Suppose the latter inclusion is

proper, then x PQy(R) < PQP(R) yields x P ¢ x PQP(R) N R =P, a contradiction.
Therefore x PQp(R) = Qp(R) and also PQy(R) = X1 Qp(R). In the same way

one proves that Qy(R)P = PQy(R) = Qp(R)x" L. Since P is divisioral,

P=n 0pFi.e 0,P 20, forsomevyeV. Inthat case
veV 0 0

o0 (o2

n (0V P)n = 0 entails f P" = 0 and then one easily constructs a
n=o0 0 n=0

principal valuation function as in Proposition 1.5..

1

2. Ify € n Qp(R) then Ry “NR is a divisorial ideal not in a maximal

PeX'(R)

divisorial ideal, hence Ry"lﬂR = R and thus y ¢ R.

2.6. Corollary For each P ¢ XL (R) there exists a v € V such that

Qp(R) = 0 (supposing X' (R) # @ i.e. R not a field).

s b

Obviously {Qp(R), PeXl(R)} satisfies K{sK5,K3, hence we may assume that

R is given by the family of its 1localizations at prime ideals of height one.




It follows that an ideal J is divisorial if and only if J = (R)J

N N
Pexl(r) P

n J).
pex’ (R) )

2.7. Lemma . 1. D(R) is an abelian group.

2. D(R) is the free abelian group on Xl(R).

Proof Consider divisorial ideals A and B of R.

Since ((AB : R) : R) may be identified with HomR(HomR(PB,R), R), it
follows from the exactness of the functor QP’ P ¢ Xl(R), and the fact
that R ~ Qp(R) is a flat ring epimorphism, that Qp(R) ((AB : R) : R) =

= Qp(((AB:R):R)) = (Qp(A B) : Qp(R)) : Mp(R) and also Qp(AB) = Qp(R)AB=
= Qp(R)AQp(R)B = Qp(A)Qp(B).

In QP(R), products of ideals are cormutative because QP(R) is a principal

valuation ring and thus all ideals are powers of the radical. Therefore

we obtain
((AB : R) : R) = N, ((Qp(P)Qp(B) : R) :+ R)
PeX™(R)
= N BYQ, (A): 2 = 0 : :
iy (@EBEOR R =1, R E:R) R
= ((BA : R) :R)

And this proves that D(R) is abelian.

2. This is now easy, the proof is similar to the proof given in the
commutative case c¢f. [ 6 1.

It is now clear how to define the class group of a S-Krull domain :

2.8. Definition The class group of an S-Krull domain R is defined to

be the abelian group D(R)/ Prin(R) where Prin(R) is the subgroup of

D(R) consisting of left principal ideals of R (these are two-sided!).
This group is denotec'by CT1(R). If Inv(R) is the subgroun of D(R)
consisting of invertinle divisorial ideals then Pic(R) = Inv(R) / Prin(R)

may be identified with a subgroup of CI(R).
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R MS L

1. The following sequence of groups is exact :
1> UR) ~UQ) $ Prin(r) > 1, where d is defined by d(u) = Ru,
u#o0 inQ.

2. The noncommutative approximation theorem : given a finite set
{nl,...,np} c Z, there exists an x € U(Q) such that vi(x) =Ny
i= 1,..., pandv(x) =0 forallveV- {vl,...,vp} where v,
corresponds to QP.(R).

Proof 1. Obvious. N;te that U(R) is normal in U(Q).

2. Follow the lines of proof of Theorem 5.8 in[6 ], bearing in mind

that, if P ¢ .G Pi for prime ideals P,Pi of R then P ¢ Pi for some

i, also in th;=1noncommutative case; moreover the products of prime ideals

appearing in the proof for the commutative case reappear in the non-

commutative version in such a way that the order of the factors does not

matter at all.

2.10 Proposition : Let R be an S-Krull domain and let K be a kernel

functor on R-mod which satisfies property T (i.e. QK is a perfect

Tocalization).

Then the following properties hold :

1. QK(R) is an S-Krull domain

2. The canonical ring morphism R - QK(R) defines a morphism C1(R) -
C1(Q(R)) -

Proof 1. By property T for K, the canonical jK TR~ QK(R) is a right

flat ring epimorphism. From Corollary 2.2.1. it follows that K is symmetric.

Consider a maximal ideal M of QK (R) and put P = M n R.

Since Prin(R) is a commutative group, left principal ideals commute

and thus a left principal ideal Ra will commute to any ideal but then

all ideals of R commute. If RaRb ¢ P consider agb ¢ QK(P) for some




11.

arbitrary quK(R). Then Iq ¢ P for some I¢ £(K) yields Iagb = algh ¢ P

because IRa = RaKl = aRI. By property T, QK(R)Iaqb = QK(P)ayb c QK(P)=M
follows. So agb € M for all qGQ, hence a or b is in M i.e. a or b is in
P and P in a prime ideal. Since any [€£(K) cannot be in P it follows that
we have a canonical monomorphism QK(R) - QP(R). Now if J is an ideal
of QK(R) which is not contained in H then J n R ¢ P hence QP(R)J =

= QP(R)(JﬂR) = QP(R). It is (well known and) straight forward to show
that the fact that ideals commute in R entails that ideals of R extend
to ideals of the localization at a kernel fﬁnctor havine property T.
Now by the Ore conditions with respect to R - P = G(P) this property
holds for K as well as KP. Now from QP(R)(JﬂR) = QP(R) it follows that
JNR contains a finitely generated (left)ideal J' not in P and such that
QK(R)J‘ is finitely generated on the left but also an ideal of QK(R) not
in M and contained in J. It is therefore easy to see that the filter

£(Kq, (r)-m) based upon the set of ideals of Qy(R) not contained in M has
K .

finite type i.e. each left ideal 1in it contains an ideal in it which

is finitely generated as a left QK(R)—module, hence it is an idempotent
filter, c¢f. [17 ], and Y=KQK(R)—M is a symmetric kernel functor. Obviously
QY(QK(R)) ¢ Qp(R). Conversely of x ¢ QP(R) then J'x ¢ R for some J' in R
not contained in P, say J'=Rs for some s ¢ R - P. Then QK(R)s is an
ideal of QK(R) not contained in M such that QK(R)s X < QK(R). If we
establish that Q_(Qu(R))s = Q (Q(R)) then x ¢ QY(QK(R)) and Qp(R) =
= QP(R) = QY(QK(R)) follows. Note that QK(R)—M is multiplicatively closed

because a left ideal L of QK(R) equals QK(P)(LHR) which is an ideal of
QK(R) satisfies the Ore conditions with respect to Qy(R)-M. Finally

this implies that vy has property T and therefore QK(R) s € £(v) entails
Qy(QK(R))s = QY(QK(P))‘ Well known propertiés of symmetric localization

entail that QK(R) = N Q, (D)_M(QK(R)), where @ is the set of maximal
' Meg KV /T
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ideals of QK(R). In order to establish 1. it will therefore be sufficient

to prove that QY(QK(R)) is an S-Krull domain. But QY(QK(R)) = QR_P(R) =
-1 where S = R - P, and we claim that RS“1 = N OV where W is the
vel
set of valuations in V such that U (0,) S. That sl c o n Oy is otvious
veW

Conversely, take 0 # x € N OV. The set F of valuations v such that
Vel
v(x) < 0 is finite. For every v ¢ F (note F c V-W) there exist, S,€ S,
n

n, €N such that v(svvx) > 0, so if s is the nroduct of the sCV, v EF
1

then v(sx) = 0 holds for all v € V i.e. s x € R or x € RS .
1

= RS

Finally we established that RS ~ hence QK(R) is a subintersection for R,

hence a Krull domain.

2. Property T for R entail exactness of QK and QK(M) o QK(R) ® M for
R

any M ¢ R-mod. If M is a divisioral ideal of R one easily deduces from
the foregoing remarks that Q, (M) is a divisorial ideal of QK(R). Thus

jK : R~ QK(R) induces an epimorphism C](jK) = C1(R) ~ C](QK(R)).

2.11. Corollaries 1. Examples of K as in Proposition 2.10 are : K = Kg
the kernel functor associated to an arbitrary multiplicatively closed

set S in R, K = KP where S is taken to be R-P, K = y Ki where {Ki} is
i

a set of kernel functors of type Kg of Kp (note that the sup of

geometric T functors is a geometric T functor, cf. [17 1).

2. A kernel functor K is said to be a djviSorial kernel‘functor if

L ¢ £(K) if and only if L™ € £(K). For example K, with P ¢ X'(R) is

divisorial. First let us point out that a divisorial kernel functor
over an S-Krull domain is Noetherian. Indeed, consider a sequence

L1 - L2 C ... Li ¢ of left ideals of R such that U Li € £ (K), then
i

because R satisfies the ascending chain condition on divisioral ideals

(check as in the commutative case) cf. N. Bourbaki [ 11, it follows




13.

that L* s C L** c L L™ s stationary i.e. L =
1 2 n n
%k

So Ly, € £(K), but K is divisorial hence Ln € £(K). Consequently, for

l** =
I_h+1—o.- .

a divisorial kernel functor K to have property T it is necessary and
sufficient that every L ¢ £(K) contains a K-projective L' also in £(K).

Obviously if C1(R) is a torsion group then every divisorial kernel functor
with a filter basis of civisorial ideals has nronerty T. Actually every

kernel functor y such that v = N, Ky is divisorial.
pex'(R) T
Therefore if A K, = £ the trivial kernel functor (e.g. in case R is a
pex!(r) "
Dedekind ring) then all kernel functors are divisorial. Note also that,
just as in the commutative case, the divisorial ideals of R are intersections
of principal (left) ideals hence K is a divisorial exactly then when
L €£(K) if and only if Rx € £(K) for all Rx o L. It seems reasonable
to expect that divisorial kernel functors of finite type have property T,

however we have no proof of this as yet.

2.12 Remark Let j : R~ S ke a faithfully flat extension of S-Krull

domains then Ker(C1(j) equals Ker(Pic(j)).
Proof If I ¢ D(R) is such that S I ¢ Prin(S)then faithfully flatness

of j entails that I is a finitely generated projective ideal of R i.e.

I ¢ Inv(R).

2.13. The P.I. Case Suppose that R is an S-Krull domain satisfying a

polynomial identity.

Since the center of R is a Krull domain (possibly a field) it follows
from a theorem of A. Braun that R is a finitely generated Z(R)-module
Now the left and right Ore conditions with respect to each prime ideal
of R yield that R is a Zariski central ring. If U c Spec R = X

V < Spec Z(R) = Y are the onen sets of birationality given by the

central kernel then there is a one-to-one correspondence VY I W‘(Z(R))e+
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- Un Xl(R) given by p > rad Rp = P, P - P N Z(R) = p. The valuation

ring QP(R) = Qp(R) corresponding to P ¢ U N Xl(R) is an Azumaya algebra
hence its associated valuation is unramified over the corresponding central
valuation i.e. UN Xl(P) describes the subset of V of centrally unramified
valuations. Note that in the P.I. case theory of S-Krull domain reduces

to a very special case of R. Fossum's theory of orders in particular

tame orders over domains. One may check that our class group then coincides

with the one introduces there.

2.14 The Zariski central case Although more general than the P.I. case

one can easily convince oneself that the theory of Zariski Central S-Krull
domains is a particular case of the thebry esthablished by M. Chamaric
[4 1, as well as of the theory expanded by H. Marubayashi [11 1,[ 121,

[ 13]1. If we exclude the case R = Q then V = V' (see after Corollary 1.7.)
and all valuations valuations v € V in some sense determined by a

central valuation.

Without further finiteness conditions, the class of Zariski central
S-Krull domains is not a trivial one, there do remain severalintringing
problems, e.g. the determination of the class groups C1(R), C1(Z(R))

and their interrelation, which we hope to attack in a subsequent paper.




[10 ]

[11]

[12 ]

[13]

[14]
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